Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 953
Filter
1.
J Nanobiotechnology ; 22(1): 384, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951903

ABSTRACT

BACKGROUND: Diabetic wounds present significant challenges, specifically in terms of bacterial infection and delayed healing. Therefore, it is crucial to address local bacterial issues and promote accelerated wound healing. In this investigation, we utilized electrospinning to fabricate microgel/nanofiber membranes encapsulating MXene-encapsulated microgels and chitosan/gelatin polymers. RESULTS: The film dressing facilitates programmed photothermal therapy (PPT) and mild photothermal therapy (MPTT) under near-infrared (NIR), showcasing swift and extensive antibacterial and biofilm-disrupting capabilities. The PPT effect achieves prompt sterilization within 5 min at 52 °C and disperses mature biofilm within 10 min. Concurrently, by adjusting the NIR power to induce local mild heating (42 °C), the dressing stimulates fibroblast proliferation and migration, significantly enhancing vascularization. Moreover, in vivo experimentation successfully validates the film dressing, underscoring its immense potential in addressing the intricacies of diabetic wounds. CONCLUSIONS: The MXene microgel-loaded nanofiber dressing employs temperature-coordinated photothermal therapy, effectively amalgamating the advantageous features of high-temperature sterilization and low-temperature promotion of wound healing. It exhibits rapid, broad-spectrum antibacterial and biofilm-disrupting capabilities, exceptional biocompatibility, and noteworthy effects on promoting cell proliferation and vascularization. These results affirm the efficacy of our nanofiber dressing, highlighting its significant potential in addressing the challenge of diabetic wounds struggling to heal due to infection.


Subject(s)
Anti-Bacterial Agents , Bandages , Nanofibers , Photothermal Therapy , Wound Healing , Wound Healing/drug effects , Nanofibers/chemistry , Photothermal Therapy/methods , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Mice , Biofilms/drug effects , Chitosan/chemistry , Male , Diabetes Mellitus, Experimental/therapy , Diabetes Mellitus, Experimental/complications , Temperature , Rats , Infrared Rays , Cell Proliferation/drug effects , Rats, Sprague-Dawley , Humans , Wound Infection/therapy
2.
Fish Shellfish Immunol ; : 109747, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969154

ABSTRACT

The transforming growth factor beta-activated kinase 1 (TAK1) / c-Jun N-terminal kinase (JNK) axis is an essential MAPK upstream mediator and regulates immune signaling pathways. However, whether the TAK1/JNK axis harnesses the strength in regulation of signal transduction in early vertebrate adaptive immunity is unclear. In this study, by modeling on Nile tilapia (Oreochromis niloticus), we investigated the potential regulatory function of TAK1/JNK axis on lymphocyte-mediated adaptive immune response. Both OnTAK1 and OnJNK exhibited highly conserved sequences and structures relative to their counterparts in other vertebrates. Their mRNA was widely expressed in the immune-associated tissues, while phosphorylation levels in splenic lymphocytes were significantly enhanced on the 4th day post-infection by Edwardsiella piscicida. In addition, OnTAK1 and OnJNK were significantly up-regulated in transcriptional level after activation of lymphocytes in vitro by phorbol 12-myristate 13-acetate plus ionomycin (P+I) or PHA, accompanied by a predominant increase in phosphorylation level. More importantly, inhibition of OnTAK1 activity by specific inhibitor NG25 led to a significant decrease in the phosphorylation level of OnJNK. Furthermore, blocking the activity of OnJNK with specific inhibitor SP600125 resulted in a marked reduction in the expression of T-cell activation markers including IFN-γ, CD122, IL-2, and CD44 during PHA-induced T-cell activation. In summary, these findings indicated that the conserved TAK1/JNK axis in Nile tilapia was involved in adaptive immune responses by regulating the activation of lymphocytes. This study enriched the current knowledge of adaptive immunity in teleost and provided a new perspective for understanding the regulatory mechanism of fish immunity.

3.
J Ultrasound Med ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38975721

ABSTRACT

OBJECTIVES: To establish a reliable ultrasound (US) method of evaluating dynamic extrusion of lateral meniscus in healthy population, and to investigate the pattern of dynamic meniscus extrusion (ME) in lateral meniscus under loading conditions. METHODS: The lateral ME was examined via US method in unloaded, double-leg standing, and single-leg standing positions. Two different US measurement methods were compared to the magnetic resonance imaging (MRI) results to determine the optimal measurement methods. The US results obtained by different researchers were tested for interobserver consistency and the results obtained by the same researcher on two separate days were tested for intraobserver consistency. The patterns of dynamic extrusion were compared between medial and lateral sides. RESULTS: A total of healthy 44 volunteers were included in the study, with 86 knees assessed by US, and 25 knees evaluated by MRI. The US evaluation of dynamic lateral ME demonstrated excellent interobserver and intraobserver reliability. The US measurements using method A were consistent with the MRI results with no significant difference (P = .861, intraclass correlation coefficient [ICC] = 0.868), while method B underestimated the lateral ME compared to MRI (P = .001, ICC = 0.649). Lateral ME decreased slightly from unloaded (1.0 ± 0.8 mm) to single-leg standing position (0.8 ± 0.8 mm), whereas medial ME increased significantly in both double-leg and single-leg standing positions (2.4 ± 0.7 mm, 2.6 ± 0.7 mm). CONCLUSION: A novel US evaluation method of lateral ME was established with reliable and accurate results compared to the MRI. Lateral ME in healthy populations decreased slightly as the loadings increased, which was different from the pattern of dynamic extrusion in medial meniscus.

4.
Nat Commun ; 15(1): 5678, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971858

ABSTRACT

Inherited non-hemolytic anemia is a group of rare bone marrow disorders characterized by erythroid defects. Although concerted efforts have been made to explore the underlying pathogenetic mechanisms of these diseases, the understanding of the causative mutations are still incomplete. Here we identify in a diseased pedigree that a gain-of-function mutation in toll-like receptor 8 (TLR8) is implicated in inherited non-hemolytic anemia. TLR8 is expressed in erythroid lineage and erythropoiesis is impaired by TLR8 activation whereas enhanced by TLR8 inhibition from erythroid progenitor stage. Mechanistically, TLR8 activation blocks annexin A2 (ANXA2)-mediated plasma membrane localization of STAT5 and disrupts EPO signaling in HuDEP2 cells. TLR8 inhibition improves erythropoiesis in RPS19+/- HuDEP2 cells and CD34+ cells from healthy donors and inherited non-hemolytic anemic patients. Collectively, we identify a gene implicated in inherited anemia and a previously undescribed role for TLR8 in erythropoiesis, which could potentially be explored for therapeutic benefit in inherited anemia.


Subject(s)
Anemia , Erythropoiesis , Toll-Like Receptor 8 , Humans , Erythropoiesis/genetics , Toll-Like Receptor 8/metabolism , Toll-Like Receptor 8/genetics , Female , Anemia/genetics , Male , Pedigree , Erythropoietin/metabolism , Erythropoietin/genetics , Adult , Signal Transduction , Mutation , Erythroid Cells/metabolism , Animals , Erythroid Precursor Cells/metabolism
5.
Infect Dis Poverty ; 13(1): 46, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877531

ABSTRACT

BACKGROUND: Digenetic trematodes, including blood flukes, intestinal flukes, liver flukes, lung flukes, and pancreatic flukes, are highly diverse and distributed widely. They affect at least 200 million people worldwide, so better understanding of their global distribution and prevalence are crucial for controlling and preventing human trematodiosis. Hence, this scoping review aims to conduct a comprehensive investigation on the spatio-temporal distribution and epidemiology of some important zoonotic digenetic trematodes. METHODS: We conducted a scoping review by searching PubMed, Web of Science, Google Scholar, China National Knowledge Infrastructure, and Wanfang databases for articles, reviews, and case reports of zoonotic digenetic trematodes, without any restrictions on the year of publication. We followed the inclusion and exclusion criteria to identify relevant studies. And relevant information of the identified studies were collected and summarized. RESULTS: We identified a total of 470 articles that met the inclusion criteria and were included in the review finally. Our analysis revealed the prevalence and global distribution of species in Schistosoma, Echinostoma, Isthmiophora, Echinochasmus, Paragonimus, Opisthorchiidae, Fasciolidae, Heterophyidae, and Eurytrema. Although some flukes are distributed worldwide, developing countries in Asia and Africa are still the most prevalent areas. Furthermore, there were some overlaps between the distribution of zoonotic digenetic trematodes from the same genus, and the prevalence of some zoonotic digenetic trematodes was not entirely consistent with their global distribution. The temporal disparities in zoonotic digenetic trematodes may attribute to the environmental changes. The gaps in our knowledge of the epidemiology and control of zoonotic digenetic trematodes indicate the need for large cohort studies in most countries. CONCLUSIONS: This review provides important insights into the prevalence and global distribution of some zoonotic digenetic trematodes, firstly reveals spatio-temporal disparities in these digenetic trematodes. Countries with higher prevalence rate could be potential sources of transmitting diseases to other areas and are threat for possible outbreaks in the future. Therefore, continued global efforts to control and prevent human trematodiosis, and more international collaborations are necessary in the future.


Subject(s)
Trematoda , Trematode Infections , Zoonoses , Animals , Zoonoses/epidemiology , Zoonoses/parasitology , Zoonoses/transmission , Trematode Infections/epidemiology , Trematode Infections/parasitology , Humans , Prevalence , Global Health
6.
Nano Lett ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842083

ABSTRACT

The primary challenge for resonant-gravimetric gas sensors is the synchronous improvement of the sensitivity and response time, which is restricted by low adsorption capacity and slow mass transfer in the sensing process and remains a great challenge. In this study, a novel 2D/2D Cu-TCPP@ZnIn2S4 composite is successfully constructed, in which Cu-TCPP MOF is used as a core substrate for the growth of 2D ultrathin ZnIn2S4 nanosheets with well-defined {0001} crystalline facets. The Cu-TCPP@ZnIn2S4 sensor exhibited high sensitivity (1.5 Hz@50 and 2.3 Hz@100 ppb), limit of detection (LOD: 50 ppb), and ultrafast (9 s @500 ppb) detection of triethylamine (TEA), which is the lowest LOD and the fastest sensor among the reported TEA sensors at room temperature, tackling the bottleneck for the ultrafast detection of the resonant-gravimetric sensor. These above results provide an innovative and easily achievable pathway for the synthesis of heterogeneous structure sensing materials.

7.
J Cosmet Dermatol ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867384

ABSTRACT

BACKGROUND: Substances that can efficiently enhance skin penetration while exerting no adverse effect are useful for drug and cosmetics formulation. OBJECTIVE: To investigate the safety and enhance skin penetration efficacy of Putocrin®, a combination containing 2% isosorbide dimethyl ether, 1% pentanediol, and 0.5% inositol. METHODS: An in vitro keratinocyte cell assay using 3-(4,5-dimethylthiazolyl-2)-2,5 diphenyltetrazolium bromide (MTT), and an in vitro EpiKutis® skin study adopted hematoxylin and eosin staining, immunostaining, and liquid chromatography-mass spectrometry (LC-MS) analysis were carried out to investigate the safety of Putocrin®. A pigskin-Franz cell system experiment applied high-performance liquid chromatography (HPLC) to compare the skin penetration efficiency of fluorescein isothiocyanate (Fitc)-labeled tranexamic acid with or without the assistance of Putocrin®. The safety and efficacy of Putocrin® was further evaluated on zebrafish embryos. RESULTS: The MTT assay showed that Putocrin® at concentration ≤2.5% did not significantly affect cell viability. The in vitro EpiKutis® skin study revealed that 2.5% Putocrin® did not affect skin morphology, filaggrin content, ceramide/protein, or fatty acid/protein ratios, but significantly increased loricrin content by 86.00% (p < 0.001). The pigskin-Franz cell penetration experiment demonstrated that Fitc-labeled tranexamic acid could barely penetrate the skin (with penetration rate of 1.121%), while Putocrin® significantly enhanced the penetration rate up to 83.983%, which was close to unlabeled tranexamic acid (90.013%). The zebrafish embryo study showed that 2.5% Putocrin® did not exert observable toxicity and obviously assisted the skin penetration of Fitc-labeled tranexamic acid into fish embryos. These results indicate the strong enhancing skin penetration potency of Putocrin®. CONCLUSION: This study demonstrated the safety as well as the strong enhancing skin penetration potency of Putocrin® for cosmetics formulation use.

8.
Development ; 151(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38940293

ABSTRACT

Generation of hematopoietic stem and progenitor cells (HSPCs) ex vivo and in vivo, especially the generation of safe therapeutic HSPCs, still remains inefficient. In this study, we have identified compound BF170 hydrochloride as a previously unreported pro-hematopoiesis molecule, using the differentiation assays of primary zebrafish blastomere cell culture and mouse embryoid bodies (EBs), and we demonstrate that BF170 hydrochloride promoted definitive hematopoiesis in vivo. During zebrafish definitive hematopoiesis, BF170 hydrochloride increases blood flow, expands hemogenic endothelium (HE) cells and promotes HSPC emergence. Mechanistically, the primary cilia-Ca2+-Notch/NO signaling pathway, which is downstream of the blood flow, mediated the effects of BF170 hydrochloride on HSPC induction in vivo. Our findings, for the first time, reveal that BF170 hydrochloride is a compound that enhances HSPC induction and may be applied to the ex vivo expansion of HSPCs.


Subject(s)
Cell Differentiation , Hematopoiesis , Hematopoietic Stem Cells , Zebrafish , Animals , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Mice , Cell Differentiation/drug effects , Hematopoiesis/drug effects , Receptors, Notch/metabolism , Signal Transduction/drug effects , Embryoid Bodies/cytology , Embryoid Bodies/drug effects , Embryoid Bodies/metabolism , Cilia/metabolism , Cilia/drug effects , Blastomeres/cytology , Blastomeres/metabolism , Blastomeres/drug effects , Cells, Cultured
9.
Nat Prod Res ; : 1-6, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940020

ABSTRACT

Chlorella has a variety of biological activities, and it is worth further exploring its pharmacological effects. In this study, we investigated the antioxidant and anti-ageing activities of Chlorella polysaccharide extract (CPE). Further studies revealed that CPE exhibited anti-ageing, and antioxidant activities in vivo, including an extended Caenorhabditis elegans stress resistance, decreased deposition of lipofuscin, and reduced effects of amyloid ß protein on mobility, decreased levels of reactive oxygen species and increased activity of antioxidant enzymes. Moreover, it dramatically increased the expression of anti-stress and longevity genes and reduced the expression of ageing-related genes; therefore, it was hypothesised that the mechanism of the age-delaying effect of CPE was related to the insulin signalling pathway. In summary, CPE could delay ageing and provide a new avenue for the application and development of CPE.

10.
Front Chem ; 12: 1381835, 2024.
Article in English | MEDLINE | ID: mdl-38915902

ABSTRACT

Long-chain esters (LCEs) are known to affect aroma perception, but the mechanism of their effects remains unclear. In this study, ethyl palmitate (EP), an important LCE in Osmanthus fragrans flower absolute (OFFA), was selected as a target to identify its role and mechanism. The release characteristics of 10 aroma compounds from OFFA with and without EP were obtained by headspace gas chromatography mass spectrometry (HS-GC/MS) and olfactometry evaluation, respectively. The results show that EP changes the release behaviors of volatile compounds in solution, increases their olfactory detection thresholds (ODTs), and reduces the equilibrium headspace concentrations. According to Whitman's two-film model, EP was found to change the partition coefficients and mass transfer coefficients of the compounds between the liquid and gas phases. This indicates that EP plays an important role in the scent formation of a flavor product and that it is very valuable for the style design of the flavor product.

11.
Neural Netw ; 176: 106364, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38754288

ABSTRACT

In practical industrial processes, the receding optimization solution of nonlinear model predictive control (NMPC) is always a very knotty problem. Based on adaptive dynamic programming, the accelerated value iteration predictive control (AVI-PC) algorithm is developed in this paper. Integrating iteration learning with the receding horizon mechanism of NMPC, a novel receding optimization solution pattern is exploited to resolve the optimal control law in each prediction horizon. Besides, the basic architecture and the specific form of the AVI-PC algorithm are demonstrated, including the relationship among the iterative learning process, the prediction process, and the control process. On this basis, the convergence and admissibility conditions are established, and the relevant properties are comprehensively analyzed when the accelerated factor satisfies the established conditions. Furthermore, the accelerated value iterative function is approximated through the single critic network constructed by utilizing the multiple linear regression method. Finally, the plentiful simulation experiments are conducted from various perspectives to verify the effectiveness and progressiveness of the AVI-PC algorithm.


Subject(s)
Algorithms , Neural Networks, Computer , Nonlinear Dynamics , Computer Simulation , Humans , Machine Learning
12.
Neural Netw ; 177: 106388, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38776760

ABSTRACT

This paper investigates the optimal tracking issue for continuous-time (CT) nonlinear asymmetric constrained zero-sum games (ZSGs) by exploiting the neural critic technique. Initially, an improved algorithm is constructed to tackle the tracking control problem of nonlinear CT multiplayer ZSGs. Also, we give a novel nonquadratic function to settle the asymmetric constraints. One thing worth noting is that the method used in this paper to solve asymmetric constraints eliminates the strict restriction on the control matrix compared to the previous ones. Further, the optimal controls, the worst disturbances, and the tracking Hamilton-Jacobi-Isaacs equation are derived. Next, a single critic neural network is built to estimate the optimal cost function, thus obtaining the approximations of the optimal controls and the worst disturbances. The critic network weight is updated by the normalized steepest descent algorithm. Additionally, based on the Lyapunov method, the stability of the tracking error and the weight estimation error of the critic network is analyzed. In the end, two examples are offered to validate the theoretical results.


Subject(s)
Algorithms , Neural Networks, Computer , Nonlinear Dynamics , Game Theory , Humans , Computer Simulation
13.
J Immunol ; 212(12): 1877-1890, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38700398

ABSTRACT

Despite the advances in study on osmotic physiology in bony fish, the mechanism by which the immune system, especially T-cell immunity, adapts and responds to osmotic stress remains unknown. In the current study, we investigated the response of T cells to hyperosmotic stress in the bony fish Nile tilapia (Oreochromis niloticus). As a euryhaline fish, tilapia was able to adapt to a wide range of salinities; however, hypertonic stress caused inflammation and excessive T-cell activation. Furthermore, hypertonic stress increased the expression of IL-17A in T cells, upregulated the transcription factor RORα, and activated STAT3 signaling, along with IL-6- and TGF-ß1-mediated pathways, revealing an enhanced Th17 response in this early vertebrate. These hypertonic stress-induced events collectively resulted in an impaired antibacterial immune response in tilapia. Hypertonic stress elevated the intracellular ROS level, which in turn activated the p38-MK2 signaling pathway to promote IL-17A production by T cells. Both ROS elimination and the p38-MK2 axis blockade diminished the increased IL-17A production in T cells under hypertonic conditions. Moreover, the produced proinflammatory cytokines further amplified the hypertonic stress signaling via the MKK6-p38-MK2 axis-mediated positive feedback loop. To our knowledge, these findings represent the first description of the mechanism by which T-cell immunity responds to hypertonic stress in early vertebrates, thus providing a novel perspective for understanding the adaptive evolution of T cells under environmental stress.


Subject(s)
Inflammation , Osmotic Pressure , Th17 Cells , Tilapia , Animals , Th17 Cells/immunology , Inflammation/immunology , Tilapia/immunology , Signal Transduction/immunology , Lymphocyte Activation/immunology , Interleukin-17/metabolism , Interleukin-17/immunology
14.
Ecol Evol ; 14(5): e11346, 2024 May.
Article in English | MEDLINE | ID: mdl-38716168

ABSTRACT

Numerous dams disrupt freshwater animals. The uppermost population of the critically endangered Yangtze finless porpoise has been newly formed below the Gezhouba Dam, however, information regarding the local porpoise is scarce. Passive acoustic monitoring was used to detect the behaviors of porpoises below the Gezhouba Dam. The influence of shipping, pandemic lockdown, hydrological regime, and light intensity on the biosonar activity of dolphins was also examined using Generalized linear models. Over the course of 4 years (2019-2022), approximately 848, 596, and 676 effective monitoring days were investigated at the three sites, from upstream to downstream. Observations revealed significant spatio-temporal biosonar activity. Proportion of days that are porpoise positive were 73%, 54%, and 61%, while porpoise buzz signals accounted for 78.49%, 62.35%, and 81.30% of all porpoise biosonar at the three stations. The biosonar activity of porpoises was much higher at the confluence area, particularly at the MZ site, during the absence of boat traffic, and during the Pandemic shutdown. Temporal trends of monthly, seasonal, and yearly variation were also visible, with the highest number of porpoises biosonar detected in the summer season and in 2020. Significant correlations also exist between the hydrological regime and light intensity and porpoise activity, with much higher detections during nighttime and full moon periods. Hydropower cascade development, establishment of a natural reserve, fish release initiatives, and implementation of fishing restrictions may facilitate the proliferation of the porpoise population downstream of the Gezhouba Dam within the Yichang section of the Yangtze River. Prioritizing restoration designs that match natural flow regimes, optimize boat traffic, and reduce noise pollution is crucial for promoting the conservation of the local porpoises.

15.
Anal Chim Acta ; 1307: 342640, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38719417

ABSTRACT

BACKGROUND: The analysis of cell membrane permeability plays a crucial role in improving the procedures of cell cryopreservation, which will affect the specific parameter settings in loading, removal and cooling processes. However, existing studies have mostly focused on deriving permeability parameters through osmotic theoretical models and cell volume response analysis, and there is still a lack of the direct experimental evidence and analysis at the single-cell level regarding the migration of cryoprotectants. RESULTS: In this work, a side perfusion microfluidics chips combined with Raman spectroscopy system was built to monitor in situ the Raman spectroscopy of extracellular and intracellular solution during loading and elution process with different cryoprotectant solution systems (single and dual component). And it was found that loading a high concentration cryoprotectant solution system through a single elution cycle may result in significant residual protective agent, which can be mitigated by employing a multi-component formula but multiple elution operations are still necessary. Furthermore, the collected spectral signals were marked and analyzed to was perform preliminary relative quantitative analysis. The results showed that the intracellular concentration changes can be accurately quantified by the Raman spectrum and are closely related to the extracellular solution concentration changes. SIGNIFICANCE AND NOVELTY: By using the method of small flow perfusion (≤20 µL/min) in the side microfluidic chip after the gravity sedimentation of cells, the continuous loading and elution process of different cryoprotectants on chip and the spectral acquisition can be realized. The intracellular and extracellular concentrations can be quantified in situ based on the ratio of spectral peak intensities. These results indicate that spectroscopic analysis can be used to effectively monitor intracellular cryoprotectant residues.


Subject(s)
Cryoprotective Agents , Single-Cell Analysis , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Cryoprotective Agents/chemistry , Cryoprotective Agents/pharmacology , Cryoprotective Agents/isolation & purification , Lab-On-A-Chip Devices , Humans , Microfluidic Analytical Techniques/instrumentation , Cryopreservation/methods , Animals
16.
J Nanobiotechnology ; 22(1): 232, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720301

ABSTRACT

Diabetic wounds pose a challenge to healing due to increased bacterial susceptibility and poor vascularization. Effective healing requires simultaneous bacterial and biofilm elimination and angiogenesis stimulation. In this study, we incorporated polyaniline (PANI) and S-Nitrosoglutathione (GSNO) into a polyvinyl alcohol, chitosan, and hydroxypropyltrimethyl ammonium chloride chitosan (PVA/CS/HTCC) matrix, creating a versatile wound dressing membrane through electrospinning. The dressing combines the advantages of photothermal antibacterial therapy and nitric oxide gas therapy, exhibiting enduring and effective bactericidal activity and biofilm disruption against methicillin-sensitive Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, and Escherichia coli. Furthermore, the membrane's PTT effect and NO release exhibit significant synergistic activation, enabling a nanodetonator-like burst release of NO through NIR irradiation to disintegrate biofilms. Importantly, the nanofiber sustained a uniform release of nitric oxide, thereby catalyzing angiogenesis and advancing cellular migration. Ultimately, the employment of this membrane dressing culminated in the efficacious amelioration of diabetic-infected wounds in Sprague-Dawley rats, achieving wound closure within a concise duration of 14 days. Upon applying NIR irradiation to the PVA-CS-HTCC-PANI-GSNO nanofiber membrane, it swiftly eradicates bacteria and biofilm within 5 min, enhancing its inherent antibacterial and anti-biofilm properties through the powerful synergistic action of PTT and NO therapy. It also promotes angiogenesis, exhibits excellent biocompatibility, and is easy to use, highlighting its potential in treating diabetic wounds.


Subject(s)
Anti-Bacterial Agents , Bandages , Biofilms , Nitric Oxide , Photothermal Therapy , Rats, Sprague-Dawley , Wound Healing , Animals , Wound Healing/drug effects , Nitric Oxide/pharmacology , Nitric Oxide/metabolism , Rats , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/therapeutic use , Biofilms/drug effects , Photothermal Therapy/methods , Male , Chitosan/chemistry , Chitosan/pharmacology , Nanofibers/chemistry , Escherichia coli/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Diabetes Mellitus, Experimental/complications , Staphylococcus aureus/drug effects , Polyvinyl Alcohol/chemistry , Polyvinyl Alcohol/pharmacology , S-Nitrosoglutathione/pharmacology , S-Nitrosoglutathione/chemistry
17.
Article in English | MEDLINE | ID: mdl-38700967

ABSTRACT

We consider a robust dynamic event-driven control (EDC) problem of nonlinear systems having both unmatched perturbations and unknown styles of constraints. Specifically, the constraints imposed on the nonlinear systems' input could be symmetric or asymmetric. Initially, to tackle such constraints, we construct a novel nonquadratic cost function for the constrained auxiliary system. Then, we propose a dynamic event-triggering mechanism relied on the time-based variable and the system states simultaneously for cutting down the computational load. Meanwhile, we show that the robust dynamic EDC of original nonlinear-constrained systems could be acquired by solving the event-driven optimal control problem of the constrained auxiliary system. After that, we develop the corresponding event-driven Hamilton-Jacobi-Bellman equation, and then solve it through a unique critic neural network (CNN) in the reinforcement learning framework. To relax the persistence of excitation condition in tuning CNN's weights, we incorporate experience replay into the gradient descent method. With the aid of Lyapunov's approach, we prove that the closed-loop auxiliary system and the weight estimation error are uniformly ultimately bounded stable. Finally, two examples, including a nonlinear plant and the pendulum system, are utilized to validate the theoretical claims.

18.
J Multidiscip Healthc ; 17: 2303-2312, 2024.
Article in English | MEDLINE | ID: mdl-38765616

ABSTRACT

Objective: This study explores the impact of a nursing intervention grounded in empowerment theory, focusing on behavioral change, on brain metastasis patients post-breast cancer surgery. Methods: Between June 2021 and June 2023, 102 patients diagnosed with brain metastasis after breast cancer surgery at Bao Ding No.1 Central Hospital were randomized into two groups. The control group (51 patients) received standard nursing care, while the observation group (51 patients) participated in a behavioral change nursing intervention influenced by empowerment theory. The evaluation metrics included measures of negative emotions, compliance with treatment protocols, overall quality of life, and nursing satisfaction, assessed at multiple time points during the study period. Results: The intervention led to significant reductions in negative emotions for all patients when compared to their pre-intervention statuses, with the observation group exhibiting notably lower depression and anxiety scores at one and three months post-intervention (P < 0.05). Additionally, this group achieved higher compliance scores and demonstrated greater improvements in quality of life than the control group (P < 0.05). Nursing satisfaction was also significantly higher in the observation group, with 96.08% reporting high satisfaction compared to 80.39% in the control group (P < 0.05). Conclusion: Implementing a nursing intervention that emphasizes behavioral changes and leverages empowerment theory significantly enhances the quality of life, reduces negative emotions, boosts compliance with treatment, and increases nursing satisfaction among patients with brain metastasis following breast cancer surgery. This suggests that such interventions could be a valuable component of postoperative care for this patient population.

19.
Mol Med ; 30(1): 61, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760717

ABSTRACT

BACKGROUND: Triple negative breast cancer (TNBC) is a heterogeneous and aggressive disease characterized by a high risk of mortality and poor prognosis. It has been reported that Laminin γ2 (LAMC2) is highly expressed in a variety of tumors, and its high expression is correlated with cancer development and progression. However, the function and mechanism by which LAMC2 influences TNBC remain unclear. METHODS: Kaplan-Meier survival analysis and Immunohistochemical (IHC) staining were used to examine the expression level of LAMC2 in TNBC. Subsequently, cell viability assay, wound healing and transwell assay were performed to detect the function of LAMC2 in cell proliferation and migration. A xenograft mouse model was used to assess tumorigenic function of LAMC2 in vivo. Luciferase reporter assay and western blot were performed to unravel the underlying mechanism. RESULTS: In this study, we found that higher expression of LAMC2 significantly correlated with poor survival in the TNBC cohort. Functional characterization showed that LAMC2 promoted cell proliferation and migration capacity of TNBC cell lines via up-regulating CD44. Moreover, LAMC2 exerted oncogenic roles in TNBC through modulating the expression of epithelial-mesenchymal transition (EMT) markers. Luciferase reporter assay verified that LAMC2 targeted ZEB1 to promote its transcription. Interestingly, LAMC2 regulated cell migration in TNBC via STAT3 signaling pathway. CONCLUSION: LAMC2 targeted ZEB1 via activating CD44/STAT3 signaling pathway to promote TNBC proliferation and migration, suggesting that LAMC2 could be a potential therapeutic target in TNBC patients.


Subject(s)
Cell Proliferation , Gene Expression Regulation, Neoplastic , Hyaluronan Receptors , Laminin , STAT3 Transcription Factor , Signal Transduction , Triple Negative Breast Neoplasms , Zinc Finger E-box-Binding Homeobox 1 , Humans , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Animals , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/mortality , Cell Line, Tumor , Female , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , Zinc Finger E-box-Binding Homeobox 1/metabolism , Zinc Finger E-box-Binding Homeobox 1/genetics , Laminin/metabolism , Laminin/genetics , Mice , Epithelial-Mesenchymal Transition/genetics , Cell Movement/genetics , Middle Aged , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics
20.
J Geriatr Cardiol ; 21(4): 379-386, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38800547

ABSTRACT

Coronary artery perforation (CAP) poses a significant challenge for interventional cardiologists. Management of CAP depends on the location and severity of the perforation. The conventional method for addressing the perforation of large vessels involves the placement of a covered stent, while the perforation of distal and collateral vessels is typically managed using coils, autologous skin, subcutaneous fat, microspheres, gelatin sponge, thrombin or other substances. However, the above techniques have certain limitations and are not applicable in all scenarios. Our team has developed a range of innovative strategies for effectively managing CAP. This article provides an insightful review of the various tips and tricks for the treatment of CAP.

SELECTION OF CITATIONS
SEARCH DETAIL
...