Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
Add more filters











Publication year range
1.
Nano Lett ; 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39361338

ABSTRACT

Hydrogen, as a clean energy carrier, plays an important role in addressing the current energy and environmental crisis. However, conventional hydrogen production technologies require extreme reaction conditions, such as high temperature, high pressure, and catalysts. Herein, we study the microscopic mechanism of laser-induced water plasma and subsequent H2 production with real-time time-dependent density functional theory simulations and ab initio molecular dynamics simulations. The results demonstrate that intense laser excites liquid water to generate nonequilibrium plasma in a warm-dense state, which constitutes a superior reaction environment. Subsequent annealing leads to the recombination of energetic reactive particles to generate H2, O2, and H2O2 molecules. Annealing rate and laser wavelength are shown to modulate the product ratio, and the energy conversion efficiency can reach ∼9.2% with an annealing rate of 1.0 K/fs. This work reveals the nonequilibrium atomistic mechanisms of hydrogen production from laser-induced water plasma and shows far-reaching implications for the design of optically controllable hydrogen technology.

2.
Nat Commun ; 15(1): 7834, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39244565

ABSTRACT

Water structures at electrolyte/electrode interfaces play a crucial role in determining the selectivity and kinetics of electrochemical reactions. Despite extensive experimental and theoretical efforts, atomic-level details of ion-specific water structures on metal surfaces remain unclear. Here we show, using scanning tunneling microscopy and noncontact atomic force microscopy, that we can visualize water layers containing alkali metal cations on a charged Au(111) surface with atomic resolution. Our results reveal that Li+ cations are elevated from the surface, facilitating the formation of an ice-like water layer between the Li+ cations and the surface. In contrast, K+ and Cs+ cations are in direct contact with the surface. We observe that the water network structure transitions from a hexagonal arrangement with Li+ to a distorted hydrogen-bonding configuration with Cs+. These observations are consistent with surface-enhanced infrared absorption spectroscopy data and suggest that alkali metal cations significantly impact hydrogen evolution reaction kinetics and efficiency. Our findings provide insights into ion-specific water structures on metal surfaces and underscore the critical role of spectator ions in electrochemical processes.

3.
Sci Adv ; 10(31): eadn6216, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39093978

ABSTRACT

Optical nonlinearities are one of the most fascinating properties of two-dimensional (2D) materials. While tremendous efforts have been made to find and optimize the second-order optical nonlinearity in enormous 2D materials, opportunities to explore higher-order ones are elusive because of the much lower efficiency. Here, we report the giant high odd-order optical nonlinearities in centrosymmetric correlated van der Waals insulator manganese phosphorus triselenide. When illuminated by two near-infrared femtosecond lasers, the sample generates a series of profound four- and six-wave mixing outputs. The near-infrared third-order nonlinear susceptibility reaches near the highest record values of 2D materials. Comparative measurements to other prototypical nonlinear optical materials [lithium niobate, gallium(II) selenide, and tungsten disulfide] reveal its extraordinary wave mixing efficiency. The wave mixing processes are further used for nonlinear optical waveguide with multicolor emission. Our work highlights the promising prospect for future research of the nonlinear light-matter interactions in the correlated 2D system and for potential nonlinear photonic applications.

4.
Nat Nanotechnol ; 19(7): 907-918, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38987649

ABSTRACT

The exceptional physical properties of two-dimensional (2D) van der Waals (vdW) materials have been extensively researched, driving advances in material synthesis. Epitaxial growth, a prominent synthesis strategy, enables the production of large-area, high-quality 2D films compatible with advanced integrated circuits. Typical 2D single crystals, such as graphene, transition metal dichalcogenides and hexagonal boron nitride, have been epitaxially grown at a wafer scale. A systematic summary is required to offer strategic guidance for the epitaxy of emerging 2D materials. Here we focus on the epitaxy methodologies for 2D vdW materials in two directions: the growth of in-plane single-crystal monolayers and the fabrication of out-of-plane homostructures. We first discuss nucleation control of a single domain and orientation control over multiple domains to achieve large-scale single-crystal monolayers. We analyse the defect levels and measures of crystalline quality of typical 2D vdW materials with various epitaxial growth techniques. We then outline technical routes for the growth of homogeneous multilayers and twisted homostructures. We further summarize the current strategies to guide future efforts in optimizing on-demand fabrication of 2D vdW materials, as well as subsequent device manufacturing for their industrial applications.

5.
Science ; 385(6704): 99-104, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38963849

ABSTRACT

Rhombohedral-stacked transition-metal dichalcogenides (3R-TMDs), which are distinct from their hexagonal counterparts, exhibit higher carrier mobility, sliding ferroelectricity, and coherently enhanced nonlinear optical responses. However, surface epitaxial growth of large multilayer 3R-TMD single crystals is difficult. We report an interfacial epitaxy methodology for their growth of several compositions, including molybdenum disulfide (MoS2), molybdenum diselenide, tungsten disulfide, tungsten diselenide, niobium disulfide, niobium diselenide, and molybdenum sulfoselenide. Feeding of metals and chalcogens continuously to the interface between a single-crystal Ni substrate and grown layers ensured consistent 3R stacking sequence and controlled thickness from a few to 15,000 layers. Comprehensive characterizations confirmed the large-scale uniformity, high crystallinity, and phase purity of these films. The as-grown 3R-MoS2 exhibited room-temperature mobilities up to 155 and 190 square centimeters per volt second for bi- and trilayers, respectively. Optical difference frequency generation with thick 3R-MoS2 showed markedly enhanced nonlinear response under a quasi-phase matching condition (five orders of magnitude greater than monolayers).

6.
J Phys Chem Lett ; 15(30): 7584-7590, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39025480

ABSTRACT

Exciton-phonon coupling (ExPC) is crucial for energy relaxation in semiconductors, yet the first-principles calculation of such coupling remains challenging, especially for two-dimensional (2D) systems. Here, an accurate method for calculating ExPC is developed and applied in exciton relaxation problems in monolayer WSe2. Considering the interplay between the exciton wave functions and electron-phonon coupling (EPC) matrix elements, we find that ExPC shows selection rules distinct from the ones of EPC. By employing the Wannier exciton model, we generalize these selection rules, which state that the angular quantum numbers of the exciton must match the winding numbers of the EPC matrix elements for the ExPC to be allowed. To verify our theory and method, we calculate intervalley exciton relaxation pathways, which agree well with a recent experiment.

7.
Nat Nanotechnol ; 19(9): 1299-1305, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38844662

ABSTRACT

Nanomaterials with a large chiroptical response and high structural stability are desirable for advanced miniaturized optical and optoelectronic applications. One-dimensional (1D) nanotubes are robust crystals with inherent and continuously tunable chiral geometries. However, their chiroptical response is typically weak and hard to control, due to the diverse structures of the coaxial tubes. Here we demonstrate that as-grown multiwalled boron nitride nanotubes (BNNTs), featuring coherent-stacking structures including near monochirality, homo-handedness and unipolarity among the component tubes, exhibit a scalable nonlinear chiroptical response. This intrinsic architecture produces a strong nonlinear optical response in individual multiwalled BNNTs, enabling second-harmonic generation (SHG) with a conversion efficiency up to 0.01% and output power at the microwatt level-both excellent figures of merit in the 1D nanomaterials family. We further show that the rich chirality of the nanotubes introduces a controllable nonlinear geometric phase, producing a chirality-dependent SHG circular dichroism with values of -0.7 to +0.7. We envision that our 1D chiral platform will enable novel functions in compact nonlinear light sources and modulators.

8.
Science ; 384(6701): 1254-1259, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38870285

ABSTRACT

Low-dimensional water transport can be drastically enhanced under atomic-scale confinement. However, its microscopic origin is still under debate. In this work, we directly imaged the atomic structure and transport of two-dimensional water islands on graphene and hexagonal boron nitride surfaces using qPlus-based atomic force microscopy. The lattice of the water island was incommensurate with the graphene surface but commensurate with the boron nitride surface owing to different surface electrostatics. The area-normalized static friction on the graphene diminished as the island area was increased by a power of ~-0.58, suggesting superlubricity behavior. By contrast, the friction on the boron nitride appeared insensitive to the area. Molecular dynamic simulations further showed that the friction coefficient of the water islands on the graphene could reduce to <0.01.

9.
Nature ; 630(8016): 375-380, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38778112

ABSTRACT

Ice surfaces are closely relevant to many physical and chemical properties, such as melting, freezing, friction, gas uptake and atmospheric reaction1-8. Despite extensive experimental and theoretical investigations9-17, the exact atomic structures of ice interfaces remain elusive owing to the vulnerable hydrogen-bonding network and the complicated premelting process. Here we realize atomic-resolution imaging of the basal (0001) surface structure of hexagonal water ice (ice Ih) by using qPlus-based cryogenic atomic force microscopy with a carbon monoxide-functionalized tip. We find that the crystalline ice-Ih surface consists of mixed Ih- and cubic (Ic)-stacking nanodomains, forming 19 × 19 periodic superstructures. Density functional theory reveals that this reconstructed surface is stabilized over the ideal ice surface mainly by minimizing the electrostatic repulsion between dangling OH bonds. Moreover, we observe that the ice surface gradually becomes disordered with increasing temperature (above 120 Kelvin), indicating the onset of the premelting process. The surface premelting occurs from the defective boundaries between the Ih and Ic domains and can be promoted by the formation of a planar local structure. These results put an end to the longstanding debate on ice surface structures and shed light on the molecular origin of ice premelting, which may lead to a paradigm shift in the understanding of ice physics and chemistry.

10.
Nature ; 629(8010): 74-79, 2024 May.
Article in English | MEDLINE | ID: mdl-38693415

ABSTRACT

Within the family of two-dimensional dielectrics, rhombohedral boron nitride (rBN) is considerably promising owing to having not only the superior properties of hexagonal boron nitride1-4-including low permittivity and dissipation, strong electrical insulation, good chemical stability, high thermal conductivity and atomic flatness without dangling bonds-but also useful optical nonlinearity and interfacial ferroelectricity originating from the broken in-plane and out-of-plane centrosymmetry5-23. However, the preparation of large-sized single-crystal rBN layers remains a challenge24-26, owing to the requisite unprecedented growth controls to coordinate the lattice orientation of each layer and the sliding vector of every interface. Here we report a facile methodology using bevel-edge epitaxy to prepare centimetre-sized single-crystal rBN layers with exact interlayer ABC stacking on a vicinal nickel surface. We realized successful accurate fabrication over a single-crystal nickel substrate with bunched step edges of the terrace facet (100) at the bevel facet (110), which simultaneously guided the consistent boron-nitrogen bond orientation in each BN layer and the rhombohedral stacking of BN layers via nucleation near each bevel facet. The pure rhombohedral phase of the as-grown BN layers was verified, and consequently showed robust, homogeneous and switchable ferroelectricity with a high Curie temperature. Our work provides an effective route for accurate stacking-controlled growth of single-crystal two-dimensional layers and presents a foundation for applicable multifunctional devices based on stacked two-dimensional materials.

11.
Nat Nanotechnol ; 19(4): 479-484, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38049594

ABSTRACT

The permeability and selectivity of biological and artificial ion channels correlate with the specific hydration structure of single ions. However, fundamental understanding of the effect of ion-ion interaction remains elusive. Here, via non-contact atomic force microscopy measurements, we demonstrate that hydrated alkali metal cations (Na+ and K+) at charged surfaces could come into close contact with each other through partial dehydration and water rearrangement processes, forming one-dimensional chain structures. We prove that the interplay at the nanoscale between the water-ion and water-water interaction can lead to an effective ion-ion attraction overcoming the ionic Coulomb repulsion. The tendency for different ions to become closely packed follows the sequence K+ > Na+ > Li+, which is attributed to their different dehydration energies and charge densities. This work highlights the key role of water molecules in prompting close packing and concerted movement of ions at charged surfaces, which may provide new insights into the mechanism of ion transport under atomic confinement.

12.
Faraday Discuss ; 249(0): 38-49, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-37786316

ABSTRACT

Condensation and arrangement of ions at water-solid interfaces are of great importance in the formation of electrical double layers (EDL) and the transport of ions under a confined geometry. So far, the microscopic understanding of interfacial ion configurations is still far from complete, especially when the local ion concentration is high and ion-ion interactions become prominent. In this study, we directly visualized alkali metal cations within the hydrogen-bonding network of water on graphite and Cu(111)-supported graphene surfaces, using qPlus-based noncontact atomic force microscopy (NC-AFM). We found that the codeposition of the alkali cations and water molecules on the hydrophobic graphite surface leads to the formation of an ion-doped bilayer hexagonal ice (BHI) structure, where the ions are repelled from each other and scattered in a disordered distribution. In contrast, the hydrated alkali cations aggregate in one dimension on the more hydrophilic graphene/Cu(111) surface, forming a nematic state with a long-range order. Such a nematic state arises from the delicate interplay between water-ion and water-water interactions under surface confinement. These results reveal the high sensitivity of ion-ion interactions and ionic ordering to the surface hydrophobicity and hydrophilicity.

13.
Adv Mater ; 36(11): e2303122, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37522646

ABSTRACT

Nonlinear optical crystals lie at the core of ultrafast laser science and quantum communication technology. The emergence of 2D materials provides a revolutionary potential for nonlinear optical crystals due to their exceptionally high nonlinear coefficients. However, uncontrolled stacking orders generally induce the destructive nonlinear response due to the optical phase deviation in different 2D layers. Therefore, conversion efficiency of 2D nonlinear crystals is typically limited to less than 0.01% (far below the practical criterion of >1%). Here, crystalline films of rhombohedral boron nitride (rBN) with parallel stacked layers are controllably synthesized. This success is realized by the utilization of vicinal FeNi (111) single crystal, where both the unidirectional arrangement of BN grains into a single-crystal monolayer and the continuous precipitation of (B,N) source for thick layers are guaranteed. The preserved in-plane inversion asymmetry in rBN films keeps the in-phase second-harmonic generation field in every layer and leads to a record-high conversion efficiency of 1% in the whole family of 2D materials within the coherence thickness of only 1.6 µm. The work provides a route for designing ultrathin nonlinear optical crystals from 2D materials, and will promote the on-demand fabrication of integrated photonic and compact quantum optical devices.

14.
Phys Rev Lett ; 131(23): 233801, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38134808

ABSTRACT

Optical phase matching involves establishing a proper phase relationship between the fundamental excitation and generated waves to enable efficient optical parametric processes. It is typically achieved through birefringence or periodic polarization. Here, we report that the interlayer twist angle in two-dimensional (2D) materials creates a nonlinear geometric phase that can compensate for the phase mismatch, and the vertical assembly of the 2D layers with a proper twist sequence generates a nontrivial "twist-phase-matching" (twist-PM) regime. The twist-PM model provides superior flexibility in the design of optical crystals, which can be applied for twisted layers with either periodic or random thickness distributions. The designed crystal from the twisted rhombohedral boron nitride films within a thickness of only 3.2 µm is capable of producing a second-harmonic generation with conversion efficiency of ∼8% and facile polarization controllability that is absent in conventional crystals. Our methodology establishes a platform for the rational design and atomic manufacturing of nonlinear optical crystals based on abundant 2D materials.

15.
Sci Bull (Beijing) ; 68(14): 1514-1521, 2023 Jul 30.
Article in English | MEDLINE | ID: mdl-37438155

ABSTRACT

Two-dimensional (2D) transition metal dichalcogenides (TMDs) are regarded as pivotal semiconductor candidates for next-generation devices due to their atomic-scale thickness, high carrier mobility and ultrafast charge transfer. In analog to the traditional semiconductor industry, batch production of wafer-scale TMDs is the prerequisite to proceeding with their integrated circuits evolution. However, the production capacity of TMD wafers is typically constrained to a single and small piece per batch (mainly ranging from 2 to 4 inches), due to the stringent conditions required for effective mass transport of multiple precursors during growth. Here we developed a modularized growth strategy for batch production of wafer-scale TMDs, enabling the fabrication of 2-inch wafers (15 pieces per batch) up to a record-large size 12-inch wafers (3 pieces per batch). Each module, comprising a self-sufficient local precursor supply unit for robust individual TMD wafer growth, is vertically stacked with others to form an integrated array and thus a batch growth. Comprehensive characterization techniques, including optical spectroscopy, electron microscopy, and transport measurements unambiguously illustrate the high-crystallinity and the large-area uniformity of as-prepared monolayer films. Furthermore, these modularized units demonstrate versatility by enabling the conversion of as-produced wafer-scale MoS2 into various structures, such as Janus structures of MoSSe, alloy compounds of MoS2(1-x)Se2x, and in-plane heterostructures of MoS2-MoSe2. This methodology showcases high-quality and high-yield wafer output and potentially enables the seamless transition from lab-scale to industrial-scale 2D semiconductor complementary to silicon technology.

17.
J Phys Chem Lett ; 14(24): 5573-5579, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37306346

ABSTRACT

Raman spectroscopy, a nondestructive fingerprinting technique, is mainly utilized to identify molecular species and phonon modes of materials. However, direct Raman characterization of two-dimensional materials typically synthesized on catalytic metal substrates is extremely challenging because of the significant electric screening and interfacial electronic couplings. Here, we demonstrate that by covering as-grown graphene with boron nitride (BN) films, the Raman intensity of graphene can be enhanced by two orders of magnitude and is also several times stronger than that of suspended graphene. This great Raman enhancement originates from the optical field amplification by Fabry-Pérot cavity in BN films and the local field plasmon near copper steps. We further demonstrate the direct characterization of the local strain and doping level of as-grown graphene and in situ monitoring of the molecule reaction process by enhanced Raman spectroscopy. Our results will broaden the optical investigations of interfacial sciences on metals, including photoinduced charge transfer dynamics and photocatalysis at metal surfaces.

18.
Nat Commun ; 14(1): 2382, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37185918

ABSTRACT

Isotopic mixtures result in distinct properties of materials such as thermal conductivity and nuclear process. However, the knowledge of isotopic interface remains largely unexplored mainly due to the challenges in atomic-scale isotopic identification. Here, using electron energy-loss spectroscopy in a scanning transmission electron microscope, we reveal momentum-transfer-dependent phonon behavior at the h-10BN/h-11BN isotope heterostructure with sub-unit-cell resolution. We find the phonons' energy changes gradually across the interface, featuring a wide transition regime. Phonons near the Brillouin zone center have a transition regime of ~3.34 nm, whereas phonons at the Brillouin zone boundary have a transition regime of ~1.66 nm. We propose that the isotope-induced charge effect at the interface accounts for the distinct delocalization behavior. Moreover, the variation of phonon energy between atom layers near the interface depends on both of momentum transfer and mass change. This study provides new insights into the isotopic effects in natural materials.

19.
Nature ; 615(7950): 56-61, 2023 03.
Article in English | MEDLINE | ID: mdl-36859579

ABSTRACT

Correlating atomic configurations-specifically, degree of disorder (DOD)-of an amorphous solid with properties is a long-standing riddle in materials science and condensed matter physics, owing to difficulties in determining precise atomic positions in 3D structures1-5. To this end, 2D systems provide insight to the puzzle by allowing straightforward imaging of all atoms6,7. Direct imaging of amorphous monolayer carbon (AMC) grown by laser-assisted depositions has resolved atomic configurations, supporting the modern crystallite view of vitreous solids over random network theory8. Nevertheless, a causal link between atomic-scale structures and macroscopic properties remains elusive. Here we report facile tuning of DOD and electrical conductivity in AMC films by varying growth temperatures. Specifically, the pyrolysis threshold temperature is the key to growing variable-range-hopping conductive AMC with medium-range order (MRO), whereas increasing the temperature by 25 °C results in AMC losing MRO and becoming electrically insulating, with an increase in sheet resistance of 109 times. Beyond visualizing highly distorted nanocrystallites embedded in a continuous random network, atomic-resolution electron microscopy shows the absence/presence of MRO and temperature-dependent densities of nanocrystallites, two order parameters proposed to fully describe DOD. Numerical calculations establish the conductivity diagram as a function of these two parameters, directly linking microstructures to electrical properties. Our work represents an important step towards understanding the structure-property relationship of amorphous materials at the fundamental level and paves the way to electronic devices using 2D amorphous materials.

20.
J Phys Chem A ; 127(13): 2902-2911, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-36949622

ABSTRACT

We applied the harmonic inversion technique to extract vibrational eigenvalues from the semiclassical initial value representation (SC-IVR) propagator of molecular systems described by explicit potential surfaces. The cross-correlation filter-diagonalization (CCFD) method is used for the inversion problem instead of the Fourier transformation, which allows much shorter propagation time and is thus capable of avoiding numerical divergence issues while getting rid of approximations like the separable one to the pre-exponential factor. We also used the "Divide-and-Conquer" technique to control the total dimensions under consideration, which helps to further enhance the numerical behavior of SC-IVR calculations and the stability of harmonic inversion methods. The technique is tested on small molecules and water trimer to justify its applicability and reliability. Results show that the CCFD method can effectively extract the vibrational eigenvalues from short trajectories and reproduce the original spectra conventionally obtained from long-time ones, with no loss on accuracy while the numerical behavior is much better. This work demonstrates the possibility to apply the combined method of CCFD and SC-IVR to real molecular potential surfaces, which might be a new way to overcome the numerical instabilities caused by the increase of dimensions.

SELECTION OF CITATIONS
SEARCH DETAIL