Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.960
1.
Materials (Basel) ; 17(12)2024 Jun 07.
Article En | MEDLINE | ID: mdl-38930165

Ethanol possesses high economic value, but as an industrial waste, it poses harm to human health and the environment. The paper describes the preparation of a thermoplastic polyurethane-poly(n-isopropylacrylamide) (TPU-PNIPAM) copolymer designed to selectively uptake alcohol in aqueous solution. The material was created by bonding TPU and PNIPAM together through intermolecular hydrogen bonds, enhancing its hydrophobic properties and making it easier to interact with alcohol molecules. As the amount of PNIPAM in TPU increases, the number of hydrophobic isopropyl groups in TPU-PNIPAM also increases, leading to an enhanced selective uptake ability of TPU-PNIPAM for alcohols in aqueous solution. When the temperature reaches 55 °C, the hydrophobic groups in TPU-PNIPAM are more exposed, further enhancing the selective uptake ability of TPU-PNIPAM for alcohols in aqueous solution. TPU-PNIPAM demonstrates selective preferential uptake for various concentrations and types of alcohol in aqueous solutions. The material's selective uptake performance for alcohols increases with their hydrophobicity, so TPU-PNIPAM exhibited the best adsorption performance for a 10 wt% n-propanol solution under the combined effect of steric hindrance. In addition, TPU-PNIPAM exhibited selective adsorption for other organic solvents, which demonstrated the universality of TPU-PNIPAM in removing contaminants from aqueous solutions.

2.
Micromachines (Basel) ; 15(6)2024 Jun 16.
Article En | MEDLINE | ID: mdl-38930762

The mode rotator is an important component in a PLC-based mode-division multiplexing (MDM) system, which is used to implement high-order modes with vertical intensity peaks, such as LP11b mode conversions from LP11a in PLC chips. In this paper, an LP11 mode rotator based on a polymer/silica hybrid inverted ridge waveguide is demonstrated. The proposed mode rotator is composed of an asymmetrical waveguide with a trench. According to the simulation results, the broadband conversion efficiency between the LP11a and LP11b modes is greater than 98.5%, covering the C-band after optimization. The highest mode conversion efficiency (MCE) is 99.2% at 1550 nm. The large fabrication tolerance of the proposed rotator enables its wide application in on-chip MDM systems.

3.
Int J Rheum Dis ; 27(6): e15218, 2024 Jun.
Article En | MEDLINE | ID: mdl-38923187

OBJECTIVE: Alterations in gut microbiota have been implicated in the pathogenesis of ankylosing spondylitis (AS), but the underlying mechanisms remain elusive. This study aims to investigate changes in gut microbiota and metabolites in individuals with AS before and after treatment with secukinumab, to identify the biological characteristics specific to AS patients and investigate the potential biomarkers, for optimizing therapeutic strategies more effectively. METHODS: Fecal microbiome data were collected from 30 AS patients before and after secukinumab therapy and compared with data from 40 healthy controls (HC). Additionally, we analyzed the metabolic profile of both groups from plasma. RESULTS: Findings indicated that the treatment-induced changes in the composition of several crucial bacterial groups, including Megamonas, Prevotella_9, Faecalibacterium, Roseburia, Bacteroides, and Agathobacter. Post-treatment, these groups exhibited a distribution more akin to that of the healthy populations compared with their pretreatment status. We identified three gut microbial taxa, namely Prevotellaceae_bacterium_Marseille_P2831, Prevotella_buccae, and Elusimicrobiota, as potential biomarkers for diagnosing individuals at a higher risk of developing AS and assessing disease outcomes. Plasma metabolomics analysis revealed 479 distinct metabolites and highlighted three disrupted metabolic pathways. Integration of microbiome and metabolomics datasets demonstrated a significant degree of correlation, underscoring the impact of the microbiome on metabolic activity. CONCLUSION: Secukinumab can restore the balance of the gut microbiome and metabolites in AS patients, rendering them more similar to those found in the healthy population. The analysis of microbiome and metabolomics data have unveiled some candidate biomarkers capable of evaluating treatment efficacy.


Antibodies, Monoclonal, Humanized , Feces , Gastrointestinal Microbiome , Metabolomics , RNA, Ribosomal, 16S , Ribotyping , Spondylitis, Ankylosing , Humans , Spondylitis, Ankylosing/drug therapy , Spondylitis, Ankylosing/blood , Spondylitis, Ankylosing/diagnosis , Spondylitis, Ankylosing/microbiology , Gastrointestinal Microbiome/drug effects , Male , Antibodies, Monoclonal, Humanized/therapeutic use , Female , Adult , Feces/microbiology , Treatment Outcome , RNA, Ribosomal, 16S/genetics , Case-Control Studies , Middle Aged , Bacteria/drug effects , Bacteria/genetics , Biomarkers/blood , Predictive Value of Tests , Dysbiosis
4.
Discov Med ; 36(185): 1221-1230, 2024 Jun.
Article En | MEDLINE | ID: mdl-38926108

BACKGROUND: Alzheimer's disease (AD) affects the brain and causes difficulties with cognition and emotions. At present, there are no viable therapies to halt or slow down the advancement of AD. Metallothionein III (MT-III) exhibits antioxidant and anti-inflammatory characteristics, indicating possible therapeutic benefits. This study aimed to explore the influence of MT-III on AD pathological alterations and cognitive abilities. METHODS: In this research, we employed the universally accepted AD mouse models (3xTg-AD) as test subjects and administrated vehicle or MT-III. The mice were subjected to the Morris water maze test to assess their spatial learning and memory capabilities. Moreover, to evaluate the consequent effects on neuronal groups in the hippocampus, the Nissl staining and neuronal nuclear antigen (NeuN) immunohistochemistry were used to identify the cellular morphology changes and density. Immunohistochemistry was also used to detect ß-amyloid (Aß) and glial fibrillary acidic protein (GFAP) to measure Aß accumulation and astrocyte growth. Western blot was also used to measure Tau pathology-related PHD finger protein 1 (PHF-1), phosphorylated Tau (AT-8), and total Tau protein. RESULTS: The administration of MT-III notably enhanced spatial learning and memory function in 3xTg-AD mice, as evidenced by the Morris water maze test (p < 0.01). According to immunohistochemistry and the obtained findings, it was observed that brain tissues of mice treated with MT-III showed a notable increase of Nissl bodies and NeuN intensity (p < 0.01) while a remarkable decrease in Aß accumulation and GFAP (p < 0.01). Additionally, MT-III largely decreased levels of Tau phosphorylation-related PHF-1 and AT-8 (p < 0.01) and slightly reduced the level of Tau 5 (p < 0.05). CONCLUSION: In summary, our research indicates that MT-III has the capacity to ameliorate pathological alterations in AD mouse models and safeguard their cognitive and emotional abilities. By decreasing ß-amyloid accumulation and reducing the intensity of Tau pathology, MT-III protected hippocampal subfield neurons against pathological harm. Furthermore, MT-III reduced inflammation by inhibiting abnormal proliferation of astrocytes. Of utmost importance, MT-III greatly enhanced the cognitive abilities related to spatial learning and memory in mice, suggesting its promising therapeutic properties for AD.


Alzheimer Disease , Astrocytes , Cell Proliferation , Disease Models, Animal , Metallothionein 3 , Mice, Transgenic , tau Proteins , Animals , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Astrocytes/metabolism , Astrocytes/pathology , Mice , Cell Proliferation/drug effects , tau Proteins/metabolism , Hippocampus/pathology , Hippocampus/metabolism , Amyloid beta-Peptides/metabolism , Male , Humans , Maze Learning/drug effects , Spatial Learning/drug effects , Glial Fibrillary Acidic Protein/metabolism
5.
Cancer Gene Ther ; 2024 Jun 26.
Article En | MEDLINE | ID: mdl-38926596

Glioblastoma (GBM) is the most common and aggressive primary brain cancer; angiogenesis and immunosuppression exacerbate GBM progression. COUP-TFII demonstrates pro-angiogenesis activity; however, its role in glioma progression remains unclear. This study revealed that COUP-TFII promotes angiogenesis in gliomas by inducing transdifferentiation of glioma cells into endothelial-like cells. Mechanistic investigation suggested that COUP-TFII as a transcription factor exerts its function via binding to the promoter of TXNIP. Interestingly, COUP-TFII knockdown attenuated tumorigenesis and tumor progression in an immunocompetent mouse model but promoted tumor progression in an immuno-deficient mouse model. As an explanation, repression of COUP-TFII induces cellular senescence and activates immune surveillance in glioma cells in vitro and in vivo. In addition, we used heparin-polyethyleneimine (HPEI) nanoparticles to deliver COUP-TFII shRNA, which regulated tumor angiogenesis and immunosuppression in an in situ GBM mouse model. This study provides a novel strategy and potential therapeutic targets to treat GBM.

6.
J Mater Chem B ; 12(25): 6128-6136, 2024 Jun 27.
Article En | MEDLINE | ID: mdl-38836578

Boron neutron capture therapy (BNCT) is an emerging approach for treating malignant tumors with binary targeting. However, its clinical application has been hampered by insufficient 10B accumulation in tumors and low 10B concentration ratios of tumor-to-blood (T/B) and tumor-to-normal tissue (T/N). Herein, we developed fluorinated BPA derivatives with different fluorine groups as boron delivery agents for enabling sufficient 10B accumulation in tumors and enhancing T/B and T/N ratios. Our findings demonstrated that fluorinated BPA derivatives had good biological safety. Furthermore, fluorinated BPA derivatives showed improved 10B accumulation in tumors and enhanced T/B and T/N ratios compared to the clinical boron drug fructose-BPA (f-BPA). In particular, in B16-F10 tumor-bearing mice, fluorinated BPA derivatives met the requirements for clinical BNCT even at half of the clinical dose. Thus, fluorinated BPA derivatives are potentially effective boron delivery agents for clinical BNCT in melanoma.


Benzhydryl Compounds , Boron Neutron Capture Therapy , Halogenation , Animals , Mice , Boron Neutron Capture Therapy/methods , Benzhydryl Compounds/chemistry , Benzhydryl Compounds/pharmacology , Phenols/chemistry , Phenols/pharmacology , Humans , Mice, Inbred C57BL , Boron Compounds/chemistry , Boron Compounds/pharmacology , Melanoma, Experimental/drug therapy , Melanoma, Experimental/pathology , Molecular Structure
7.
AMIA Jt Summits Transl Sci Proc ; 2024: 374-383, 2024.
Article En | MEDLINE | ID: mdl-38827071

Parkinson's disease (PD) is associated with multiple clinical motor and non-motor manifestations. Understanding of PD etiologies has been informed by a growing number of genetic mutations and various fluid-based and brain imaging biomarkers. However, the mechanisms underlying its varied phenotypic features remain elusive. The present work introduces a data-driven approach for generating phenotypic association graphs for PD cohorts. Data collected by the Parkinson's Progression Markers Initiative (PPMI), the Parkinson's Disease Biomarkers Program (PDBP), and the Fox Investigation for New Discovery of Biomarkers (BioFIND) were analyzed by this approach to identify heterogeneous and longitudinal phenotypic associations that may provide insight into the pathology of this complex disease. Findings based on the phenotypic association graphs could improve understanding of longitudinal PD pathologies and how these relate to patient symptomology.

8.
Epilepsia Open ; 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38831626

OBJECTIVE: Deep brain stimulation (DBS) is a promising approach for the treatment of epilepsy. However, the optimal target for DBS and underlying mechanisms are still not clear. Here, we compared the therapeutic effects of DBS on distinct septal subregions, aimed to find the precise targets of septal DBS and related mechanisms for the clinical treatment. METHODS: Assisted by behavioral test, electroencephalography (EEG) recording and analyzing, selectively neuronal manipulation and immunohistochemistry, we assessed the effects of DBS on the three septal subregions in kainic acid (KA)-induced mouse seizure model. RESULTS: DBS in the medial septum (MS) not only delayed generalized seizure (GS) development, but reduced the severity; DBS in the vertical diagonal band of Broca (VDB) only reduced the severity of GS, while DBS in the horizontal diagonal band of Broca (HDB) subregion showed no anti-seizure effect. Notably, DBS in the MS much more efficiently decreased abnormal activation of hippocampal neurons. EEG spectrum analysis indicated that DBS in the MS and VDB subregions mainly increased the basal hippocampal low-frequency (delta and theta) rhythm. Furthermore, ablation of cholinergic neurons in the MS and VDB subregions blocked the anti-seizure and EEG-modulating effects of septal DBS, suggesting the seizure-alleviating effect of DBS was dependent on local cholinergic neurons. SIGNIFICANCE: DBS in the MS and VDB, rather than HDB, attenuates hippocampal seizure by activation of cholinergic neurons-augmented hippocampal delta/theta rhythm. This may be of great therapeutic significance for the clinical treatment of epilepsy with septal DBS. PLAIN LANGUAGE SUMMARY: The optical target of deep brain stimulation in the septum is still not clear. This study demonstrated that stimulation in the medial septum and vertical diagonal band of Broca subregions, but not the horizontal diagonal band of Broca, could alleviate hippocampal seizure through cholinergic neurons-augmented hippocampal delta/theta rhythm. This study may shed light on the importance of precise regulation of deep brain stimulation therapy in treating epileptic seizures.

9.
Opt Express ; 32(9): 16307-16318, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38859261

Aiming at the difficulty of traditional chaotic-shift-keying (CSK) systems in resisting return map attacks, we propose an optical chaotic communication system based on time-delayed shift keying and common-signal-induced synchronization. This scheme combines amplified spontaneous emission (ASE) noise, phase modulator (PM), and fiber Bragg grating (FBG) to achieve dual masking in both intensity and phase fields, achieving 10Gb/s information transmission. A common-signal-induced method is used to achieve the synchronization of the system. Moreover, by shifting the time delay as the message-feeding method, the return map attack is effectively resisted, to prevent the amplitude and frequency information of the chaotic attractor from being exposed. In terms of confidentiality and communication performance, this scheme demonstrates good performance of time delay signatures (TDSs) concealment and long-distance transmission capability. In addition, this scheme maintains high sensitivity to key parameters and achieves better confidentiality while increasing the key space.

10.
Opt Express ; 32(8): 13688-13700, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38859332

Imaging through scattering media is a long-standing challenge in optical imaging, holding substantial importance in fields like biology, transportation, and remote sensing. Recent advancements in learning-based methods allow accurate and rapid imaging through optically thick scattering media. However, the practical application of data-driven deep learning faces substantial hurdles due to its inherent limitations in generalization, especially in scenarios such as imaging through highly non-static scattering media. Here we utilize the concept of transfer learning toward adaptive imaging through dense dynamic scattering media. Our approach specifically involves using a known segment of the imaging target to fine-tune the pre-trained de-scattering model. Since the training data of downstream tasks used for transfer learning can be acquired simultaneously with the current test data, our method can achieve clear imaging under varying scattering conditions. Experiment results show that the proposed approach (with transfer learning) is capable of providing more than 5dB improvements when optical thickness varies from 11.6 to 13.1 compared with the conventional deep learning approach (without transfer learning). Our method holds promise for applications in video surveillance and beacon guidance under dense dynamic scattering conditions.

11.
Opt Express ; 32(8): 13809-13824, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38859341

Mode coupling and device nonlinear impairment appear to be a long-standing challenge in the orbital angular momentum (OAM) mode division multiplexing (MDM) of intensity modulation direct detection (IM/DD) transmission systems. In this paper, we propose an end-to-end (E2E) learning strategy based on a frequency domain feature decoupling network (FDFDnet) emulator with joint probabilistic shaping (PS) and equalization for an OAM-MDM IM/DD transmission with three modes. Our FDFDnet emulator can accurately build a complex nonlinear model of an OAM-MDM system by separating the signal into features from different frequency domains. Furthermore, a FDFDnet-based E2E strategy for joint PS and equalization is presented with the aim of compensating the signal impairment for the OAM-MDM IM/DD system. An experiment is carried out on a 300 Gbit/s carrierless amplitude phase-32 (CAP-32) signal with three OAM modes over a 10 km ring-core fiber transmission, and the results show that the proposed FDFDnet emulator outperforms the traditional CGAN emulator, with improvements in the modelling accuracy of 30.8%, 26.3% and 31% for the three OAM modes. Moreover, the receiver sensitivity of the proposed E2E learning strategy is higher than for the CGAN emulator by 3, 2.5, 2.2 dBm and the real channel by 5.5, 5.1, and 5.3 dBm for the three OAM modes, respectively. Our experimental results demonstrate that the proposed FDFDnet emulator-based E2E learning strategy is a promising contender for achieving ultra-high-capacity interconnectivity between data centers.

12.
Opt Express ; 32(8): 14116-14132, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38859366

Double line self-focusing characteristics of elliptical Airyprime beams (EAPBs) with different elliptical vertical-axis factor ß are investigated by varying the main ring radius r0. Overly large or small r0 results in the inhomogeneous distribution of light intensity at one linear focus of the double line self-focusing. Only when r0 is appropriate and ß is within a certain range, can double uniform line self-focusing happen to the EAPB. Moreover, the self-focusing ability of the second line self-focusing is weaken than that of the first line self-focusing. Under the premise of our selected values of beam parameters, the EAPB can achieve double uniform line self-focusing when r0 = 0.3 mm and ß = 0.58∼0.71. The focal length of the first line self-focusing, the lengths of double linear focus, and the self-focusing abilities of the double uniform line self-focusing can be regulated by varying ß within the range of 0.58∼0.71. If ß is smaller than 0.58 or larger than 0.71, it will lead to nonuniform line self-focusing. An explanation of the physical mechanism behind the double uniform line self-focusing of the EAPB is proposed. Finally, the experimental measurements of the line self-focusing of the EAPB confirm the validity of the above conclusions. This research provides a new solution on how to generate double uniform line self-focusing and new insights into the practical application of elliptical self-focusing beams.

13.
Opt Express ; 32(12): 21724-21738, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38859520

Recently a new family of partially coherent fields incorporating generalized inseparable cross-coupled phases named generalized higher-order twisted partially coherent beams (GHTPCBs) have been introduced. The twist factor u is a key parameter that not only quantifies the strength of the generalized cross-coupled phase for a given order, but also determines the amount of the concomitant orbital angular momentum (OAM). In this paper, we propose a simple and reliable method to measure the factor u using a two-pinhole mask. Without need of complicated optical system, it only requires to capture the far-field diffraction intensity distribution of the GHTPCB passing through the mask. By analyzing the Fourier spectrum of the intensity distribution, the value of twist factor can be derived nearly in real time. The influence of the separation distance between two pinholes and the pinholes' diameter and position on the measurement accuracy are thoroughly studied both in theory and experiment. The experimental results agree well with the theoretical results. Our methodology can also be extended to measure the sole factor of similar position dependent phases such as the topological charge of a vortex phase.

14.
ACS Biomater Sci Eng ; 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38860704

Resorption and atrophy of the alveolar bone, as two consequences of osteoporosis that remarkably complicate the orthodontic and prosthodontic treatments, contribute to the differentiated biological features and force-induced response of jaw bone marrow-derived mesenchymal stem cells (JBMSCs) in elderly patients. We isolated and cultured JBMSCs from adolescent and adult patients and then simulated the loading of orthodontic tension stress by constructing an in vitro three-dimensional (3D) stress loading model. The decline in osteogenic differentiation of aged JBMSCs was reversed by tensile stress stimulation. It is interesting to note that tension stimulation had a stronger effect on the osteogenic differentiation of elderly JBMSCs compared to the young ones, indicating a possible mechanism of aging rescue. High-throughput sequencing of microRNA (miRNAs) was subsequently performed before and after tension stimulation in all JBMSCs, followed by the comprehensive comparison of mechanically responsive miRNAs in the 3D strain microenvironment. The results suggested a significant reduction in the expression of miR-210-3p and miR-214-3p triggered by the 3D strain microenvironment in old-JBMSCs. Bioinformatic analysis indicated that both miRNAs participate in the regulation of critical pathways of aging and cellular senescence. Taken together, this study demonstrated that the 3D strain microenvironment efficiently rescued the cellular senescence of old-JBMSCs via modulating specific miRNAs, which provides a novel strategy for coordinating periodontal bone loss and regeneration of the elderly.

15.
ChemSusChem ; : e202400397, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38847747

Overcoming the significant volume strain in silicon-based anodes has been the focus of research for decades. The strain/stress in silicon-based anodes is inversely proportional to their size. In this study, we design atomic Si sites to achieve the ultimate size effect, which indeed exhibits a zero-strain feature. Compared with conventional silicon-based anodes with alloying addition reactions, the lithium-ion storage mechanism of atomic Si sites is solid-solution reactions, which brings about the zero-strain feature. Additionally, the ligand structure of atomic Si sites remains constant during cycling. This zero-strain feature results in excellent cycling stability. Furthermore, the exposed atomic Si sites enhance the electrochemical reaction kinetics, leading to outstanding rate performance. Moreover, the anode inherits the advantages of silicon-based anodes, including a low working voltage (~0.21 V) and high specific capacity (~2300 mAh g-1 or ~1203 mAh cm-3). This work establishes a novel pathway for designing low/zero-strain anodes.

16.
Front Microbiol ; 15: 1347704, 2024.
Article En | MEDLINE | ID: mdl-38873143

The heterogeneous composition of fungi plays an indispensable role in the foundation of the multifunctionalities of ecosystems within drylands. The precise mechanisms that govern fluctuations in soil fungal assemblages in dryland ecosystems remain incompletely elucidated. In this study, biological soil crusts (biocrusts) at different successional stages in the Gurbantunggut Desert were used as substrates to examine the characteristics and driving factors that influence fungal abundance and community dynamics during biocrust development using qPCR and high-throughput sequencing of the ITS2 region. The findings showed that the physicochemical properties changed significantly with the development of biocrusts. In particular, total nitrogen increased 4.8 times, along with notable increases in ammonium, total phosphorus (2.1 times) and soil organic carbon (6.5 times). Initially, there was a rise in fungal abundance, which was subsequently followed by a decline as the biocrust developed, with the highest abundance detected in lichen crust (2.66 × 107 copies/g soil) and the lowest in bare sand (7.98 × 106 copies/g soil). Ascomycetes and Basidiomycetes emerged as dominant phyla, collectively forming 85% of the fungal community. As the biocrust developed, noticeable alterations occurred in fungal community compositions, resulting from changes in the relative proportions of Dothideomycetes, Lecanoromycetes and unclassified ascomycetes. Nitrogen, phosphorus, organic carbon content, and pH of biocrusts were identified as direct or indirect regulators of fungal abundance and community structure. The complexity of fungal networks increased as biocrusts developed as revealed by network analysis, but reduced in the stability of fungal communities within algal and lichen crusts. Keystone species within the fungal community also underwent changes as biocrust developed. These results suggested that shifts in interspecies relationships among fungi could further contribute to the variation in fungal communities during the development of biocrusts.

17.
Opt Lett ; 49(12): 3408-3411, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38875632

Directional surface plasmon polaritons (SPPs) are expected to promote the energy efficiency of plasmonic devices, via limiting the energy in a given spatial domain. The directional scattering of dielectric nanoparticles induced by the interference between electric and magnetic responses presents a potential candidate for directional SPPs. Magnetic nanoparticles can introduce permeability as an extra manipulation, whose directional scattered SPPs have not been investigated yet. In this work, we demonstrated the directional scattered SPPs by using single magnetic nanoparticles via simulation and experiment. By increasing the permeability and particle size, the high-order TEM modes are excited inside the particle and induce more forward directional SPPs. It indicated that the particle size manifests larger tuning range compared with the permeability. Experimentally, the maximum forward-to-backward (F-to-B) SPP scattering intensity ratio of 118.52:1 is visualized by using a single 1 µm Fe3O4 magnetic nanoparticle. The directional scattered SPPs of magnetic nanoparticles are hopeful to improve the efficiency of plasmonic devices and pave the way for plasmonic circuits on-chip.

18.
Food Chem ; 456: 139981, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38876061

Aroma, a principal determinant of consumer preference for fruit wines, has recently garnered much attention. Fruit wines brewing was concomitant with complex biochemical reactions, in which a variety of compounds jointly contribute to the aroma quality. To date, the mechanisms underlying the synthesis of aroma compounds and biological regulation methods in fruit wines have remained ambiguous, hindering the further improvement of fruit wines sensory profiles. This review provides a detailed account of the synthesis and regulatory mechanisms of typical aroma compounds and their contributions to the characteristics of wines. Additionally, Comprehensive involves between microflora and the formation of aroma compounds have been emphasized. The microflora-mediated aroma compounds evolution can be controlled by key fermentation techniques to protect and enhance. Meanwhile, the genes impacting key aroma compounds can be identified, which provide references for the rapid screening of aroma-enhanced strains as well as target formation of aroma by modifying relative genes.

19.
Clin Oral Investig ; 28(7): 375, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38878120

OBJECTIVE: To investigate the impact of mineralized dentin matrix (MDM) on the prognosis on bone regeneration and migration of retained roots after coronectomy. MATERIALS AND METHODS: Patients were divided into three groups based on the type of bone graft after coronectomy: Group C (n = 20, collagen), Group T (n = 20, tricalcium phosphate (TCP) + collagen), and Group D (n = 20, MDM + collagen). CBCT scans, conducted immediately and 6 months after surgery, were analyzed using digital software. Primary outcomes, including changes in bone defect depth and retained root migration distance, were evaluated 6 months after surgery. RESULTS: After 6 months, both Groups D and T exhibited greater reduction of the bone defect and lesser retained root migration than Group C (p < 0.001). Group D had greater regenerated bone volume in the distal 2 mm (73 mm3 vs. 57 mm3, p = 0.011) and lesser root migration (2.18 mm vs. 2.96 mm, p < 0.001) than Group T. The proportion of completely bone embedded retained roots was also greater in Group D than in Group C (70.0% vs. 42.1%, p = 0.003). CONCLUSIONS: MDM is an appropriate graft material for improving bone defect healing and reducing retained root migration after coronectomy. CLINICAL RELEVANCE: MDM is an autogenous material prepared chairside, which can significantly improve bone healing and reduce the risk of retained root re-eruption. MDM holds promise as a routine bone substitute material after M3M coronectomy.


Bone Regeneration , Calcium Phosphates , Collagen , Cone-Beam Computed Tomography , Dentin , Humans , Male , Female , Calcium Phosphates/therapeutic use , Prognosis , Middle Aged , Collagen/therapeutic use , Bone Regeneration/drug effects , Tooth Root/diagnostic imaging , Tooth Root/surgery , Adult , Tooth Crown/surgery , Treatment Outcome , Bone Transplantation/methods , Bone Substitutes/therapeutic use
20.
PLoS One ; 19(6): e0282451, 2024.
Article En | MEDLINE | ID: mdl-38843159

IMPORTANCE: The frequency and characteristics of post-acute sequelae of SARS-CoV-2 infection (PASC) may vary by SARS-CoV-2 variant. OBJECTIVE: To characterize PASC-related conditions among individuals likely infected by the ancestral strain in 2020 and individuals likely infected by the Delta variant in 2021. DESIGN: Retrospective cohort study of electronic medical record data for approximately 27 million patients from March 1, 2020-November 30, 2021. SETTING: Healthcare facilities in New York and Florida. PARTICIPANTS: Patients who were at least 20 years old and had diagnosis codes that included at least one SARS-CoV-2 viral test during the study period. EXPOSURE: Laboratory-confirmed COVID-19 infection, classified by the most common variant prevalent in those regions at the time. MAIN OUTCOME(S) AND MEASURE(S): Relative risk (estimated by adjusted hazard ratio [aHR]) and absolute risk difference (estimated by adjusted excess burden) of new conditions, defined as new documentation of symptoms or diagnoses, in persons between 31-180 days after a positive COVID-19 test compared to persons without a COVID-19 test or diagnosis during the 31-180 days after the last negative test. RESULTS: We analyzed data from 560,752 patients. The median age was 57 years; 60.3% were female, 20.0% non-Hispanic Black, and 19.6% Hispanic. During the study period, 57,616 patients had a positive SARS-CoV-2 test; 503,136 did not. For infections during the ancestral strain period, pulmonary fibrosis, edema (excess fluid), and inflammation had the largest aHR, comparing those with a positive test to those without a COVID-19 test or diagnosis (aHR 2.32 [95% CI 2.09 2.57]), and dyspnea (shortness of breath) carried the largest excess burden (47.6 more cases per 1,000 persons). For infections during the Delta period, pulmonary embolism had the largest aHR comparing those with a positive test to a negative test (aHR 2.18 [95% CI 1.57, 3.01]), and abdominal pain carried the largest excess burden (85.3 more cases per 1,000 persons). CONCLUSIONS AND RELEVANCE: We documented a substantial relative risk of pulmonary embolism and a large absolute risk difference of abdomen-related symptoms after SARS-CoV-2 infection during the Delta variant period. As new SARS-CoV-2 variants emerge, researchers and clinicians should monitor patients for changing symptoms and conditions that develop after infection.


COVID-19 , Electronic Health Records , SARS-CoV-2 , Humans , COVID-19/epidemiology , COVID-19/diagnosis , Female , Male , Middle Aged , SARS-CoV-2/isolation & purification , Retrospective Studies , Adult , Aged , United States/epidemiology , Post-Acute COVID-19 Syndrome , Florida/epidemiology , Cohort Studies
...