Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
Front Endocrinol (Lausanne) ; 15: 1417007, 2024.
Article in English | MEDLINE | ID: mdl-38952389

ABSTRACT

Ovarian aging is a complex process characterized by a decline in oocyte quantity and quality, directly impacting fertility and overall well-being. Recent researches have identified mitochondria as pivotal players in the aging of ovaries, influencing various hallmarks and pathways governing this intricate process. In this review, we discuss the multifaceted role of mitochondria in determining ovarian fate, and outline the pivotal mechanisms through which mitochondria contribute to ovarian aging. Specifically, we emphasize the potential of targeting mitochondrial dysfunction through innovative therapeutic approaches, including antioxidants, metabolic improvement, biogenesis promotion, mitophagy enhancement, mitochondrial transfer, and traditional Chinese medicine. These strategies hold promise as effective means to mitigate age-related fertility decline and preserve ovarian health. Drawing insights from advanced researches in the field, this review provides a deeper understanding of the intricate interplay between mitochondrial function and ovarian aging, offering valuable perspectives for the development of novel therapeutic interventions aimed at preserving fertility and enhancing overall reproductive health.


Subject(s)
Aging , Mitochondria , Ovary , Humans , Female , Mitochondria/metabolism , Aging/physiology , Aging/metabolism , Ovary/metabolism , Ovary/physiology , Animals , Antioxidants/therapeutic use , Oocytes/metabolism , Oocytes/physiology , Mitophagy/physiology
2.
Biology (Basel) ; 13(6)2024 May 21.
Article in English | MEDLINE | ID: mdl-38927240

ABSTRACT

Flooding and drought are the two most devastating natural hazards limiting maize production. Exogenous glycinebetaine (GB), an osmotic adjustment agent, has been extensively used but there is limited research on its role in mitigating the negative effects of different abiotic stresses. This study aims to identify the different roles of GB in regulating the diverse defense regulation of maize against drought and flooding. Hybrids of Yindieyu 9 and Heyu 397 grown in pots in a ventilated greenhouse were subjected to flooding (2-3 cm standing layer) and drought (40-45% field capacity) at the three-leaf stage for 8 d. The effects of different concentrations of foliar GB (0, 0.5, 1.0, 5.0, and 10.0 mM) on the physiochemical attributes and growth of maize were tested. Greater drought than flooding tolerance in both varieties to combat oxidative stress was associated with higher antioxidant activities and proline content. While flooding decreased superoxide dismutase and guaiacol peroxidase (POD) activities and proline content compared to normal water, they all declined with stress duration, leading to a larger reactive oxygen species compared to drought. It was POD under drought stress and ascorbate peroxidase under flooding stress that played crucial roles in tolerating water stress. Foliar GB further enhanced antioxidant ability and contributed more effects to POD to eliminate more hydrogen peroxide than the superoxide anion, promoting growth, especially for leaves under water stress. Furthermore, exogenous GB made a greater increment in Heyu 397 than Yindieyu 9, as well as flooding compared to drought. Overall, a GB concentration of 5.0 mM, with a non-toxic effect on well-watered maize, was determined to be optimal for the effective mitigation of water-stress damage to the physiochemical characteristics and growth of maize.

3.
mSystems ; 9(6): e0025724, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38780265

ABSTRACT

Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental condition characterized by social communication deficiencies and stereotypic behaviors influenced by hereditary and/or environmental risk factors. There are currently no approved medications for treating the core symptoms of ASD. Human fecal microbiota transplantation (FMT) has emerged as a potential intervention to improve autistic symptoms, but the underlying mechanisms are not fully understood. In this study, we evaluated the effects of human-derived FMT on behavioral and multi-omics profiles of the BTBR mice, an established model for ASD. FMT effectively alleviated the social deficits in the BTBR mice and normalized their distinct plasma metabolic profile, notably reducing the elevated long-chain acylcarnitines. Integrative analysis linked these phenotypic changes to specific Bacteroides species and vitamin B6 metabolism. Indeed, vitamin B6 supplementation improved the social behaviors in BTBR mice. Collectively, these findings shed new light on the interplay between FMT and vitamin B6 metabolism and revealed a potential mechanism underlying the therapeutic role of FMT in ASD.IMPORTANCEAccumulating evidence supports the beneficial effects of human fecal microbiota transplantation (FMT) on symptoms associated with autism spectrum disorder (ASD). However, the precise mechanism by which FMT induces a shift in the microbiota and leads to symptom improvement remains incompletely understood. This study integrated data from colon-content metagenomics, colon-content metabolomics, and plasma metabolomics to investigate the effects of FMT treatment on the BTBR mouse model for ASD. The analysis linked the amelioration of social deficits following FMT treatment to the restoration of mitochondrial function and the modulation of vitamin B6 metabolism. Bacterial species and compounds with beneficial roles in vitamin B6 metabolism and mitochondrial function may further contribute to improving FMT products and designing novel therapies for ASD treatment.


Subject(s)
Disease Models, Animal , Fecal Microbiota Transplantation , Vitamin B 6 , Animals , Mice , Humans , Vitamin B 6/metabolism , Gastrointestinal Microbiome , Male , Social Behavior , Autism Spectrum Disorder/therapy , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/microbiology , Autistic Disorder/therapy , Autistic Disorder/metabolism , Autistic Disorder/microbiology
4.
Reprod Sci ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649667

ABSTRACT

Endometriosis diagnosis is usually delayed. The gold standard for diagnosing endometriosis is laparoscopy, which is invasive and accompanied by several risks. Currently, there are no effective non-invasive biomarkers for diagnosing endometriosis. Here, we investigated whether metabolites whose levels are altered in patients with endometriosis hold potential as diagnostic biomarkers for the disease. This case-control study involved 32 patients with endometriosis and 29 patients with other benign gynecological disease. The diagnosis of all patients was confirmed through postoperative histopathological examination, and the patients were divided into two groups: an endometriosis group (EM) and a control group. Fasting blood was collected and used for non-targeted metabolomic-based detection. The data were processed through principal component analysis, orthogonal partial least squares discriminant analysis, and significance analysis of microarrays. A univariate receiver operating characteristic curve was used to evaluate the diagnostic value of the metabolites. The metabolite profiles of patients with endometriosis were markedly different compared with those of the controls. In addition, several metabolic pathways, including biosynthesis of unsaturated fatty acids, arginine biosynthesis, and glutathione metabolism, were altered. Ornithine and medorinone showed better potential as biomarkers for endometriosis diagnosis than CA125. We analyzed the altered metabolic profiles in patients with endometriosis and found ornithine and medorinone as potential non-invasive biomarkers for endometriosis diagnosis, whereas the combined ornithine-medorinone diagnosis is more valuable. These findings may help advance research on non-invasive diagnostic biomarkers for endometriosis. Further research with an improved study design and a larger cohort should be performed to confirm the diagnostic potential and clinical application of these biomarkers.

6.
J Trace Elem Med Biol ; 84: 127436, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38547725

ABSTRACT

This review comprehensively explores the complex role of copper homeostasis in female reproductive system diseases. As an essential trace element, copper plays a crucial role in various biological functions. Its dysregulation is increasingly recognized as a pivotal factor in the pathogenesis of gynecological disorders. We investigate how copper impacts these diseases, focusing on aspects like oxidative stress, inflammatory responses, immune function, estrogen levels, and angiogenesis. The review highlights significant changes in copper levels in diseases such as cervical, ovarian, endometrial cancer, and endometriosis, underscoring their potential roles in disease mechanisms and therapeutic exploration. The recent discovery of 'cuproptosis,' a novel cell death mechanism induced by copper ions, offers a fresh molecular perspective in understanding these diseases. The review also examines genes associated with cuproptosis, particularly those related to drug resistance, suggesting new strategies to enhance traditional therapy effectiveness. Additionally, we critically evaluate current therapeutic approaches targeting copper homeostasis, including copper ionophores, chelators, and nanoparticles, emphasizing their emerging potential in gynecological disease treatment. This article aims to provide a comprehensive overview of copper's role in female reproductive health, setting the stage for future research to elucidate its mechanisms and develop targeted therapeutic strategies.


Subject(s)
Copper , Genital Diseases, Female , Homeostasis , Humans , Copper/metabolism , Female , Genital Diseases, Female/drug therapy , Genital Diseases, Female/metabolism
7.
Mol Hum Reprod ; 30(4)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38407339

ABSTRACT

The pathogenesis of adenomyosis is closely related to the epithelial-mesenchymal transition and macrophages. MicroRNAs have been extensively investigated in relation to the epithelial-mesenchymal transition in a range of malignancies. However, there is a paucity of research on extracellular vesicles derived from the eutopic endometrium of adenomyosis and their encapsulated microRNAs. In this study, we investigated the role of microRNA-25-3p derived from extracellular vesicles in inducing macrophage polarization and promoting the epithelial-mesenchymal transition in endometrial epithelial cells of patients with adenomyosis and controls. We obtained eutopic endometrial samples and isolated extracellular vesicles from the culture supernatant of primary endometrial cells. Real-time quantitative PCR analysis demonstrated that microRNA-25-3p was highly expressed in extracellular vesicles, as well as in macrophages stimulated by extracellular vesicles from eutopic endometrium of adenomyosis; and macrophages transfected with microRNA-25-3p exhibited elevated levels of M2 markers, while displaying reduced levels of M1 markers. After co-culture with the above polarized macrophages, endometrial epithelial cells expressed higher levels of N-cadherin and Vimentin, and lower protein levels of E-cadherin and Cytokeratin 7. It was revealed that microRNA-25-3p encapsulated in extracellular vesicles from eutopic endometrial cells could induce macrophage polarization toward M2, and the polarized macrophages promote epithelial-mesenchymal transition in epithelial cells. However, in vitro experiments revealed no significant disparity in the migratory capacity of endometrial epithelial cells between the adenomyosis group and the control group. Furthermore, it was observed that microRNA-25-3p-stimulated polarized macrophages also facilitated the epithelial-mesenchymal transition and migration of endometrial epithelial cells within the control group. Thus, the significance of microRNA-25-3p-induced polarized macrophages in promoting the development of adenomyosis is unclear, and macrophage infiltration alone may be adequate for this process. We emphasize the specificity of the local eutopic endometrial microenvironment and postulate its potential significance in the pathogenesis of adenomyosis.


Subject(s)
Adenomyosis , Extracellular Vesicles , MicroRNAs , Female , Humans , Adenomyosis/genetics , Adenomyosis/metabolism , Endometrium/metabolism , Epithelial-Mesenchymal Transition/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Epithelial Cells/metabolism , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Macrophages/metabolism
8.
CNS Neurosci Ther ; 30(4): e14494, 2024 04.
Article in English | MEDLINE | ID: mdl-37902195

ABSTRACT

AIM: As the main type of stroke, the incidence of cerebral venous thrombosis (CVT) has been rising. However, the comprehensive mechanisms behind it remain unclear. Thus, the multi-omics study is required to investigate the mechanism after CVT and elucidate the characteristic pathology of venous stroke and arterial stroke. METHODS: Adult rats were subjected to CVT and MCAO models. Whole-transcriptome sequencing (RNA-seq) and untargeted metabolomics analysis were performed to construct the transcriptome and metabolism profiles of rat brains after CVT and also MCAO. The difference analysis, functional annotation, and enrichment analysis were also performed. RESULTS: Through RNA-seq analysis, differentially expressed genes (DEGs) were screened. 174 CVT specific genes including Il1a, Ccl9, Cxxl6, Tnfrsf14, etc., were detected. The hemoglobin genes, including both Hba and Hbb, were significantly downregulated after CVT, compared both to the MCAO and Sham groups. Metabolism analysis showed that CVT had higher heterogeneity of metabolism compared to MCAO. Metabolites including N-stearoyltyrosine, 5-methoxy-3-indoleaceate, Afegostat, pipecolic acid, etc. were specially regulated in CVT. Through the immune infiltration analysis, it was found that CVT had a higher immune response, with the abundance of certain types of immune cells increased, especially T helper cells. It was important to find the prevalence of the activation of inflammatory chemokine, cytokine, NOD-like pathway, and neutrophil extracellular trap. CONCLUSION: We explored and analyzed the gene expression and metabolomic characteristics of CVT, revealed the specific inflammatory reaction mechanism of CVT and found the markers in transcriptome and metabolism levels. It points out the direction for CVT early diagnosis and treatment.


Subject(s)
Intracranial Thrombosis , Stroke , Rats , Animals , Brain , Inflammation
9.
Arch Gynecol Obstet ; 309(2): 363-371, 2024 02.
Article in English | MEDLINE | ID: mdl-37115275

ABSTRACT

BACKGROUND: Adenomyosis is a benign disorder characterized by the presence of ectopic endometrial glands and stroma within the myometrium. The main clinical manifestations of adenomyosis are dysmenorrhea, menorrhagia, and infertility, which affect patients' quality of life. Recently, with advancements in imaging techniques, magnetic resonance imaging, and ultrasonography have become the main diagnostic tools for adenomyosis. In addition to the diagnosis and differential diagnosis of adenomyosis, ultrasonography can also be used to evaluate the severity of adenomyosis. The emergence of new techniques, such as elastography and contrast-enhanced ultrasonography (CEUS), has significantly improved the accuracy of ultrasound-based diagnosis of adenomyosis. These two imaging tools can also be used for the differential diagnosis of adenomyosis and the evaluation of treatment efficacy after medication or ablation procedure. OBJECTIVE: we review the efficacy of ultrasonography as a diagnostic tool for adenomyosis. We also aim to introduce the potential of ultrasound imaging in the evaluation of the severity of this disease, as well as the application of elastography and contrast-enhanced ultrasonography (CEUS) in its diagnosis. RESULTS AND CONCLUSION: Our findings reveal the potential value of ultrasonography combined with elastography and/or CEUS as medication guidance and efficacy evaluation tools in the long-term management of adenomyosis.


Subject(s)
Adenomyosis , Female , Humans , Adenomyosis/diagnostic imaging , Adenomyosis/therapy , Quality of Life , Ultrasonography/methods , Treatment Outcome , Patient Acuity
10.
Mol Hum Reprod ; 30(1)2023 Dec 24.
Article in English | MEDLINE | ID: mdl-38113413

ABSTRACT

Ferroptosis is an iron-dependent programmed cell death process characterized by the accumulation of lethal oxidative damage. Localized iron overload is a unique clinical phenomenon in ovarian endometriosis (EM). However, the role and mechanism of ferroptosis in the course of ovarian EM remain unclear. Traditionally, autophagy promotes cell survival. However, a growing body of research suggests that autophagy promotes ferroptosis under certain conditions. This study aimed to clarify the status of ferroptosis in ovarian EM and explore the mechanism(s) by which iron overload causes ferroptosis and ectopic endometrial resistance to ferroptosis in human. The results showed increased levels of iron and reactive oxygen species in ectopic endometrial stromal cells (ESCs). Some ferroptosis and autophagy proteins in the ectopic tissues differed from those in the eutopic endometrium. In vitro, iron overload caused decreased cellular activity, increased lipid peroxidation levels, and mitochondrial morphological changes, whereas ferroptosis inhibitors alleviated these phenomena, illustrating activated ferroptosis. Iron overload increased autophagy, and ferroptosis caused by iron overload was inhibited by autophagy inhibitors, indicating that ferroptosis caused by iron overload was autophagy-dependent. We also confirmed the effect of iron overload and autophagy on lesion growth in vivo by constructing a mouse EM model; the results were consistent with those of the in vitro experiments of human tissue and endometrial stomal cells. However, ectopic lesions in patients can resist ferroptosis caused by iron overload, which can promote cystine/glutamate transporter hyperexpression by highly expressing activating transcription factor 4 (ATF4). In summary, local iron overload in ovarian EM can activate autophagy-related ferroptosis in ESCs, and ectopic lesions grow in a high-iron environment via ATF4-xCT while resisting ferroptosis. The effects of iron overload on other cells in the EM environment require further study. This study deepens our understanding of the role of ferroptosis in ovarian EM.


Subject(s)
Endometriosis , Ferroptosis , Iron Overload , Female , Animals , Mice , Humans , Activating Transcription Factor 4/metabolism , Endometriosis/metabolism , Ferroptosis/genetics , Iron Overload/complications , Iron Overload/metabolism , Iron Overload/pathology , Iron/metabolism , Autophagy/genetics , Stromal Cells/metabolism
11.
Expert Opin Ther Targets ; 27(8): 745-756, 2023.
Article in English | MEDLINE | ID: mdl-37584221

ABSTRACT

INTRODUCTION: The largest transmembrane mucin, mucin 16 (MUC16), contains abundant glycosylation sites on the molecular surface, allowing it to participate in various molecular pathways. When cells lose polarity and become cancerous, MUC16 is overexpressed, and more of the extracellular region (cancer antigen [CA]125) is released into serum and possibly, promote the development of diseases. Thus, MUC16 plays an indispensable role in clinical research and application. AREAS COVERED: This review summarizes the update proposed role of MUC16 in carcinogenesis and metastasis. Most importantly, we prospect its potential value in targeted therapy after screening 1226 articles published within the last 10 years from PubMed. Two reviewers screened each record and each report retrieved independently. We have summarized the progress of MUC16/CA125 in basic research and clinical application, and predicted its possible future development directions. EXPERT OPINION: As an important noninvasive co-factor in the diagnosis of gynecological diseases, MUC16 has been used for a long time, especially in the diagnosis and treatment of ovarian cancer. The overexpression of MUC16 plays a very obvious role in regulating inflammatory response, supporting immune suppression, and promoting the proliferation, division, and metastasis of cancer cells. In the next 20 years, there will be a luxuriant clinical application of MUC16 as a target for immune monitoring and immunotherapy.


Subject(s)
CA-125 Antigen , Ovarian Neoplasms , Female , Humans , Membrane Proteins , Ovarian Neoplasms/pathology
12.
Front Plant Sci ; 14: 1232755, 2023.
Article in English | MEDLINE | ID: mdl-37575941

ABSTRACT

Pepper (Capsicum annuum L) is one of the most important vegetables grown worldwide. Nevertheless, the key structural and regulatory genes involved in anthocyanin accumulation in pepper have not been well understood or fine mapped yet. In this study, F1, F2, BC1P1, and BC1P2 pepper populations were analyzed and these populations were derived from a cross between line 14-Z4, which has yellow anthers and green stems, and line 14-Z5, which has purple anthers and stems. The results showed that the yellow anthers and green stems were determined by a single recessive locus called to as ayw. While, using preliminary and fine mapping techniques, ayw locus was located between markers aywSNP120 and aywSNP124, with physical distance of 0.2 Mb. The CA11g18550 gene was identified as promising candidate for the ayw locus, as it co-segregated with the yellow anthers and green stems phenotypes. CA11g18550 encodes a homolog of the F3'5'H (flavonoid 3',5'-hydroxylase) anthocyanin synthesis structure gene. The missense mutation of CA11g18550 possibly resulted in a loss-of-function. The expression analysis showed that CA11g18550 was significantly expressed in the stems, leaves, anthers and petals in 14-Z5, and it's silencing caused the stems changing from purple to green. This study provides a theoretical basis for using yellow anthers and green stems in pepper breeding and helps to advance the understanding of anthocyanin synthesis.

13.
Reprod Biomed Online ; 47(3): 103231, 2023 09.
Article in English | MEDLINE | ID: mdl-37385897

ABSTRACT

RESEARCH QUESTION: Does iron overload in patients with endometriosis affect ovarian function? Can a method be developed to visually reflect this? DESIGN: Magnetic resonance imaging (MRI) R2* was used to evaluate the correlation between iron deposition of ovarian and anti-Müllerian hormone (AMH) in patients with endometriosis. All patients underwent T2* MRI scanning. Serum AMH levels were measured preoperatively. The area of focal iron deposition, iron content of the cystic fluid and AMH levels between the endometriosis and control groups were compared using non-parametric tests. The effects of iron overload on AMH secretion in mouse ovarian granulosa cells were investigated by adding different concentrations of ferric citrate to the medium. RESULTS: A significant difference was found between endometriosis and control groups in area of iron deposition (P < 0.0001), cystic fluid iron content (P < 0.0001), R2* of lesions (P < 0.0001) and R2* of the cystic fluid (P < 0.0001). Negative correlations were found between serum AMH levels and R2* of cystic lesions in patients with endometriosis aged 18-35 years (rs = -0.6484, P < 0.0001), and between serum AMH levels and R2* of cystic fluid (rs = -0.5074, P = 0.0050). Transcription level (P < 0.0005) and secretion level (P < 0.005) of AMH significantly decreased with the increase in iron exposure. CONCLUSION: Iron deposits can impair ovarian function, which is reflected in MRI R2*. Serum AMH levels and R2* of cystic lesions or fluid in patients aged 18-35 years had a negative correlation with endometriosis. R2* can be used to reflect the changes of ovarian function caused by iron deposition.


Subject(s)
Endometriosis , Ovarian Neoplasms , Ovarian Reserve , Female , Humans , Animals , Mice , Endometriosis/pathology , Anti-Mullerian Hormone , Magnetic Resonance Imaging , Iron
15.
Radiol Case Rep ; 18(6): 2279-2281, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37128255

ABSTRACT

Medullary thyroid carcinoma is a rare malignant neuroendocrine tumor. Distant metastasis is difficult to detect early. It is most common in lung, liver, bone and brain. This case was reported as liver metastasis of medullary thyroid carcinoma in an elderly woman, but routine ultrasound findings were atypical. After a series of relevant imaging examinations, contrast-enhanced ultrasound and ultrasound-guided puncture biopsy were used to confirm the nature of the intrahepatic lesions. Therefore, we believe that multimodal ultrasound is of great value in the diagnosis of liver metastasis of medullary thyroid carcinoma.

16.
Medicine (Baltimore) ; 102(21): e33682, 2023 May 26.
Article in English | MEDLINE | ID: mdl-37233417

ABSTRACT

RATIONALE: Gastric-type endocervical adenocarcinoma (GAS) is non-human papillomavirus-associated cervical cancer and the location of the lesions is in the cervical canal mostly. PATIENT CONCERNS: Vaginal discharge is mistakenly thought to be caused by uterine fibroids. Misdiagnosis leads to disease progression. DIAGNOSES: Magnetic resonance imaging is an auxiliary tool and pathology is the gold standard for the diagnosis. INTERVENTIONS: Surgery and supplementary radiotherapy and chemotherapy ± targeted therapy are the main treatment methods. OUTCOMES: GAS with high malignant degree poor prognosis and insidious development, tends to develop toward the cervical canal and is lack of specific tumor markers, so it is easy to misdiagnosis and missed diagnosis. LESSONS: This case highlights the importance of improving the understanding of GAS. And when patients perform vaginal discharge, cervical canal hypertrophy, and cervical cancer screening negative, clinicians ought to be highly alert to GAS.


Subject(s)
Adenocarcinoma , Stomach Neoplasms , Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/diagnosis , Uterine Cervical Neoplasms/therapy , Uterine Cervical Neoplasms/pathology , Early Detection of Cancer , Adenocarcinoma/diagnosis , Adenocarcinoma/therapy , Adenocarcinoma/pathology , Cervix Uteri/pathology , Stomach Neoplasms/diagnosis , Stomach Neoplasms/therapy , Stomach Neoplasms/pathology , Diagnostic Errors
17.
Neurol Genet ; 9(3): e200074, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37152444

ABSTRACT

Background and Objectives: Ischemic stroke (IS) is responsible for major causes of global death and disability, for which promoting angiogenesis is a promising therapeutic strategy. This study analyzed circular RNA PDS5B (circPDS5B) and its related mechanisms in angiogenesis in IS. Methods: In the permanent middle cerebral artery occlusion (pMCAO) mouse model, circPDS5B, microRNA (miR)-223-3p, and NOTCH2 levels were checked. By testing neurologic function, neuronal apoptosis, and expression of angiogenesis-related proteins in pMCAO mice, the protective effects of circPDS5B knockdown were probed. In human brain microvascular endothelial cells (HBMECs) under oxygen-glucose deprivation (OGD) conditions, the effects of circPDS5B, miR-223-3p, and NOTCH2 on angiogenesis were studied by measuring cellular activities. Results: The increase of circPDS5B and NOTCH2 expression and the decrease of miR-223-3p expression were examined in pMCAO mice. Reducing circPDS5B expression indicated protection against neurologic dysfunction, apoptosis, and angiogenesis impairment. For circPDS5B-depleted or miR-223-3p-restored HBMECs under OGD treatment, angiogenesis was promoted. MiR-223-3p inhibition-associated reduction of angiogenesis could be counteracted by knocking down NOTCH2. CircPDS5B depletion-induced angiogenesis in OGD-conditioned HBMECs was repressed after overexpressing NOTCH2. Discussion: In IS, the expression of circPDS5B was upregulated, and miR-223-3p inhibited HBMECs activity and promoted NOTCH2 expression, thus promoting IS. CircPDS5B reduction improves angiogenesis following ischemic stroke by regulating microRNA-223-3p/NOTCH2 axis.

18.
J Psychosom Obstet Gynaecol ; 44(1): 2214842, 2023 12.
Article in English | MEDLINE | ID: mdl-37231615

ABSTRACT

The management of endometriosis has been complicated by the COVID-19 pandemic. We aimed to introduce the establishment and application of a new follow-up method during the COVID-19 pandemic-the electronic follow-up (e-follow-up) platform for endometriosis-and to test the applicability of the platform-based follow-up management model and patient satisfaction. We used the platform for information entry and post-operative follow-up of 152 patients with endometriosis from January 2021 to August 2022, and compared patients' Zung's Self-Rating Depression Scale (SDS), Self-Rating Anxiety Scale (SAS), and Visual Analogue Score (VAS) (range: 0 - 10, indicating: no pain-extreme pain) scores preoperatively and after 6-month of follow-up, together with recording patients' follow-up satisfaction and number of recurrence of lesions. Eventually, the SDS, SAS, and VAS scores were significantly lower than those at pre-surgery (p < .001), and the follow-up satisfaction rate reached 100%, with 91.41% expressing great satisfaction. The cumulative number of recurrences was 2 out of 138. Follow-up using this platform reduce the risk of COVID-19 transmission, enabled more efficient access to healthcare resources for patients with endometriosis, improved the efficiency of follow-up management, met the mental health needs of the patients.


Subject(s)
COVID-19 , Endometriosis , Female , Humans , Endometriosis/surgery , Endometriosis/complications , Follow-Up Studies , Pandemics , Pelvic Pain/etiology
19.
Int J Mol Sci ; 24(8)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37108695

ABSTRACT

Ascorbic acid (AsA) is an antioxidant with significant functions in both plants and animals. Despite its importance, there has been limited research on the molecular basis of AsA production in the fruits of Capsicum annuum L. In this study, we used Illumina transcriptome sequencing (RNA-seq) technology to explore the candidate genes involved in AsA biosynthesis in Capsicum annuum L. A total of 8272 differentially expressed genes (DEGs) were identified by the comparative transcriptome analysis. Weighted gene co-expression network analysis identified two co-expressed modules related to the AsA content (purple and light-cyan modules), and eight interested DEGs related to AsA biosynthesis were selected according to gene annotations in the purple and light-cyan modules. Moreover, we found that the gene GDP-L-galactose phosphorylase (GGP) was related to AsA content, and silencing GGP led to a reduction in the AsA content in fruit. These results demonstrated that GGP is an important gene controlling AsA biosynthesis in the fruit of Capsicum annuum L. In addition, we developed capsanthin/capsorubin synthase as the reporter gene for visual analysis of gene function in mature fruit, enabling us to accurately select silenced tissues and analyze the results of silencing. The findings of this study provide the theoretical basis for future research to elucidate AsA biosynthesis in Capsicum annuum L.


Subject(s)
Capsicum , Glycogen Phosphorylase, Muscle Form , Ascorbic Acid/genetics , Fruit/genetics , Capsicum/genetics , Galactose , Phosphorylases , Gene Expression Regulation, Plant
20.
Mol Hum Reprod ; 29(6)2023 05 31.
Article in English | MEDLINE | ID: mdl-37079746

ABSTRACT

The development of endometriosis is closely linked to macrophages, and the type M1 macrophage has been hypothesized to play an inhibitory role in its progression. Escherichia coli induces macrophage polarization toward M1 in numerous diseases and differs in the reproductive tract of patients with and without endometriosis; however, its specific role in endometriosis development remains unknown. Therefore, in this study, E. coli was selected as a stimulator to induce macrophages, and its effects on the growth of endometriosis lesions in vitro and in vivo were investigated using C57BL/6N female mice and endometrial cells. It was revealed that E. coli inhibited the migration and proliferation of co-cultured endometrial cells by IL-1 in vitro and prevented the growth of lesions and induced macrophage polarization toward M1 in vivo. However, this change was counteracted by C-C motif chemokine receptor 2 inhibitors, suggesting that it was associated with bone marrow-derived macrophages. Overall, the presence of E. coli in the abdominal cavity may be a protective factor for endometriosis.


Subject(s)
Endometriosis , Macrophages, Peritoneal , Mice , Humans , Animals , Female , Escherichia coli , Endometriosis/metabolism , Mice, Inbred C57BL , Signal Transduction , Interleukin-1
SELECTION OF CITATIONS
SEARCH DETAIL