Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 467
1.
Acta Biomater ; 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38871203

Psoriasis is a chronic skin inflammation influenced by dysregulated skin microbiota, with the role of microbiota in psoriasis gaining increasing prominence. Bacterial extracellular vesicles (bEVs) serve as crucial regulators in the interaction between hosts and microbiota. However, the mechanism underlying the therapeutic potential of bEVs from commensal bacteria in psoriasis remains unclear. Here, we investigated the therapeutic role of Cutibacterium acnes (C. acnes)-derived extracellular vesicles (CA-EVs) in psoriasis treatment. To prolong the active duration of CA-EVs, we encapsulated them in gelatin methacrylate (GelMA) to fabricate hydrogel microspheres (CA-EVs@GHM) with sustained release properties. As GelMA degraded, CA-EVs were gradually released, maintaining a high concentration in mouse skin even 96 hours post-treatment. In human keratinocyte cells (HaCaT), CA-EVs@GHM enhanced resistance to Staphylococcus aureus (S. aureus), promoted proliferation and migration of HaCaT cells exposed to S. aureus, and significantly reduced the expression of inflammatory genes such as interleukin (IL)-6 and C-X-C motif chemokine ligand 8 (CXCL8). In vivo, CA-EVs@GHM, more potent than CA-EVs alone, markedly attenuated proinflammatory gene expression, including tumor necrosis factor (TNF), Il6, Il17a, Il22 and Il23a in imiquimod (IMQ)-induced psoriasis-like mice, and restored skin barrier function. 16S rRNA sequencing revealed that CA-EVs@GHM might provide therapeutic effects against psoriasis by restoring microbiota diversity on the back skin of mice, reducing Staphylococcus colonization, and augmenting lipid metabolism. Furthermore, flow cytometry analysis showed that CA-EVs@GHM prevented the conversion of type 2 innate lymphoid cells (ILC2) to type 3 innate lymphoid cells (ILC3) in psoriasis-like mouse skin, reducing the pathogenic ILC3 population and suppressing the secretion of IL-17 and IL-22. In summary, our findings demonstrate that the long-term sustained release of CA-EVs alleviated psoriasis symptoms by controlling the transformation of innate lymphoid cells (ILCs) subgroups and restoring skin microbiota homeostasis, thus offering a promising therapy for psoriasis treatment. STATEMENT OF SIGNIFICANCE: Cutibacterium acnes, which is reduced in psoriasis skin, has been reported to promote skin homeostasis by regulating immune balance. Compared to live bacteria, bacterial extracellular vesicles (bEVs) are less prone to toxicity and safety concerns. bEVs play a pivotal role in maintaining bacterial homeostasis and modulating the immune system. However, bEVs without sustained release materials are unable to function continuously in chronic diseases. Therefore, we utilized hydrogel microspheres to encapsulate Cutibacterium acnes (C. acnes)-derived extracellular vesicles (CA-EVs), enabling long term sustained release. Our findings indicate that, CA-EVs loaded gelatin methacrylate hydrogel microspheres (CA-EVs@GHM) showed superior therapeutic effects in treating psoriasis compared to CA-EVs. CA-EVs@GHM exhibited a more significant regulation of pathological type 3 innate lymphoid cells (ILC3) and skin microbiota, providing a promising approach for microbiota-derived extracellular vesicle therapy in the treatment of skin inflammation.

2.
J Pharm Biomed Anal ; 246: 116252, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38788622

Balanophora harlandii Hook (B. harlandii), a folk medicine, has been traditionally employed to treat traumatic bleeding, gastroenteritis, icteric hepatitis, hemorrhoids, and other conditions. In this work, polysaccharides with anti-inflammatory effects were extracted from B. harlandii and purified. The extraction conditions were optimized, and the properties of one purified neutral fraction, denoted as BHPs-W-S3, were analyzed. BHPs-W-S3 has a molecular weight of 14.1 kDa, and its three main monosaccharides are glucose, galactose, and xylose, with a molar ratio of 6.4:1.7:1.1. Its main chain consists of →6)-α-D-Glcp-(1→, →4,6)-α-D-Glcp-(1→, →6)-ß-D-Galp-(1→, →3,6)-ß-D-Galp-(1→, and it has branch chains at the O-4 and/or O-3 positions. In addition, in vitro experiments showed that the polysaccharides from B. harlandi can decrease the phosphorylation level of p65 and IκBα in LPS-induced RAW264.7 cells to reduce the expression of the pro-inflammatory genes such as TNF-α, IL-6, and IL-1ß.


Anti-Inflammatory Agents , Polysaccharides , Mice , Animals , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , RAW 264.7 Cells , Molecular Weight , Balanophoraceae/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Macrophages/drug effects , Macrophages/metabolism , Lipopolysaccharides/pharmacology , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism , Inflammation/drug therapy
3.
Chem Res Toxicol ; 37(6): 1035-1043, 2024 Jun 17.
Article En | MEDLINE | ID: mdl-38771972

Chlorobenzoquinones (CBQs) are a class of emerging water disinfection byproducts that pose significant risks to public health. In this study, we found that three CBQs (tetrachloro-1,4-benzoquinone, 2,5-dichloro-1,4-benzoquinone, and 2-chloro-1,4-benzoquinone) can significantly aggravate cell death caused by Ras-selective lethal small molecule 3 (RSL3). Further study showed that the cell death caused by CBQs, either alone or in combination with RSL3, was related to iron accumulation and GPX4 inactivation, suggesting the occurrence of ferroptosis. Furthermore, reactive oxygen species are found to play a potential key role in mediating the toxicity of CBQs in CBQs and RSL3-induced ferroptosis. These findings will be helpful in understanding the toxic mechanism of CBQs to mammalian cells.


Benzoquinones , Ferroptosis , Reactive Oxygen Species , Ferroptosis/drug effects , Reactive Oxygen Species/metabolism , Benzoquinones/chemistry , Benzoquinones/pharmacology , Humans , Molecular Structure , Hydrocarbons, Chlorinated/chemistry , Hydrocarbons, Chlorinated/pharmacology , Hydrocarbons, Chlorinated/toxicity , Cell Survival/drug effects , Carbolines
4.
Article En | MEDLINE | ID: mdl-38821674

Environmental exposure would cause DNA damage and epigenetic modification changes, potentially resulting in physiological dysfunction, thereby triggering diseases and even cancer. DNA damage and epigenetic modifications are thus promising biomarkers for environmental exposures and disease states. Benefiting from its high sensitivity and accuracy, high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) is considered the "gold standard technique" for investigating epigenetic DNA modifications. This review summarizes the recent advancements of UHPLC-MS/MS-based technologies for DNA damage and epigenetic modifications analysis, mainly focusing on the innovative methods developed for UHPLC-MS/MS-related pretreatment technologies containing efficient genomic DNA digestion and effective removal of the inorganic salt matrix, and the new strategies for improving detection sensitivity of liquid chromatography-mass spectrometry. Moreover, we also summarized the novel hyphenated techniques of the advanced UHPLC-MS/MS coupled with other separation and analysis methods for the measurement of DNA damage and epigenetic modification changes in special regions and fragments of chromosomes.


DNA Damage , Epigenesis, Genetic , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Humans , DNA Methylation , DNA , Environmental Exposure/analysis , Animals
5.
IEEE Trans Image Process ; 33: 2835-2850, 2024.
Article En | MEDLINE | ID: mdl-38598373

Within the tensor singular value decomposition (T-SVD) framework, existing robust low-rank tensor completion approaches have made great achievements in various areas of science and engineering. Nevertheless, these methods involve the T-SVD based low-rank approximation, which suffers from high computational costs when dealing with large-scale tensor data. Moreover, most of them are only applicable to third-order tensors. Against these issues, in this article, two efficient low-rank tensor approximation approaches fusing random projection techniques are first devised under the order-d ( d ≥ 3 ) T-SVD framework. Theoretical results on error bounds for the proposed randomized algorithms are provided. On this basis, we then further investigate the robust high-order tensor completion problem, in which a double nonconvex model along with its corresponding fast optimization algorithms with convergence guarantees are developed. Experimental results on large-scale synthetic and real tensor data illustrate that the proposed method outperforms other state-of-the-art approaches in terms of both computational efficiency and estimated precision.

6.
Blood ; 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38635762

Axicabtagene ciloleucel (axi-cel) is an autologous anti-CD19 chimeric antigen receptor (CAR) T-cell therapy approved for treatment of relapsed/refractory (R/R) large B-cell lymphoma (LBCL). Despite extensive data supporting the use of axi-cel in patients with LBCL, outcomes stratified by race and ethnicity groups are limited. Here, we report clinical outcomes with axi-cel in patients with R/R LBCL by race and ethnicity in both real-world and clinical trial settings. In the real-world setting, 1290 patients with R/R LBCL who received axi-cel between 2017-2020 were identified from the Center for International Blood and Marrow Transplant Research database; 106 and 169 patients were included from the ZUMA-1 and ZUMA-7 clinical trials, respectively. Adjusted odds ratio (OR) and hazard ratio (HR) for race and ethnicity groups are reported. Overall survival was consistent across race/ethnicity groups. However, non-Hispanic (NH) Black patients had lower overall response rate (OR, 0.37, [95% CI, 0.22-0.63]) and lower complete response rate (OR, 0.57, [95% CI, 0.33-0.97]) than NH-white patients. NH-Black patients also had a shorter progression-free survival versus NH-white (HR, 1.41, [95% CI, 1.04-1.90]) and NH-Asian patients (HR, 1.67, [95% CI, 1.08-2.59]). NH-Asian patients had a longer duration of response compared with NH-white (HR, 0.56, [95% CI, 0.33-0.94]) and Hispanic patients (HR, 0.54, [95% CI, 0.30-0.97]). There was no difference in cytokine release syndrome by race/ethnicity; however, higher rates of any-grade ICANS were observed in NH-white patients compared with other patients. These results provide important context when treating patients with R/R LBCL with axi-cel across different racial and ethnic groups. ZUMA-1 (NCT02348216) and ZUMA-7 (NCT03391466), both registered on ClinicalTrials.gov.

7.
Se Pu ; 42(4): 333-344, 2024 Apr.
Article Zh | MEDLINE | ID: mdl-38566422

17ß-Estradiol (E2), an important endocrine hormone in the mammalian body, participates in the regulation of the physiological functions of the reproductive system, mammary glands, bone, and cardiovascular system, among others. Paradoxically, despite the physiological actions of endogenous E2 (0.2-1.0 nmol/L), numerous clinical and experimental studies have demonstrated that high-dose E2 treatment can cause tumor regression and exert pro-apoptotic actions in multiple cell types; however, the underlying mechanism remains undescribed. In particular, little information of the cellular processes responding to the lethality of E2 is available. In the present study, we attempted to characterize the cellular processes responding to high-dose (µmol/L) E2 treatment using quantitative phosphoproteomics to obtain a better understanding of the regulatory mechanism of E2-induced cell death. First, the cell phenotype induced by high-dose E2 was determined by performing Cell Counting Kit-8 assay (CCK8), cell cytotoxicity analysis by trypan blue staining, and microscopic imaging on HeLa cells treated with 1-10 µmol/L E2 or dimethyl sulfoxide (DMSO) for 1-3 d. E2 inhibited cell proliferation and induced cell death in a dose- and time-dependent manner. Compared with the DMSO-treated HeLa cells, the cells treated with 5 µmol/L E2 for 2 d demonstrated >74% growth inhibition and approximately 50% cell death. Thus, these cells were used for quantitative phosphoproteomic analysis. Next, a solid-phase extraction (SPE)-based immobilized titanium ion affinity chromatography (Ti4+-IMAC) phosphopeptide-enrichment method coupled with data-independent acquisition (DIA)-based quantitative proteomics was employed for the in-depth screening of high-dose E2-regulated phosphorylation sites to investigate the intracellular processes responding to high-dose E2 treatment. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) identified over 10000 phosphorylation sites regulated by E2 and DMSO in HeLa cells. In comparison with the DMSO-treated cells, the cells treated with 5 µmol/L E2 showed 537 upregulated phosphorylation sites and 387 downregulated phosphorylation sites, with a threshold of p<0.01 and |log2(fold change)|≥1. A total of 924 phosphorylation sites on 599 proteins were significantly regulated by high-dose E2, and these sites were subjected to enrichment analysis. In addition, 453 differently regulated phosphorylation sites on 325 proteins were identified only in the E2- or DMSO-treated cell samples. These phosphorylation sites may be phosphorylated or dephosphorylated in response to high-dose E2 stimulation and were subjected to parallel enrichment analyses. Taken together, 1218 phosphorylation sites on 741 proteins were significantly regulated by high-dose E2 treatment. The functional phosphoproteins in these two groups were then analyzed using Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) to determine the biological processes in which they participate and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database. Consistent with the cell-phenotype data, cell cycle-related proteins were highly enriched in the two groups of E2-regulated phosphoproteins (p<0.05), indicating that high-dose E2 treatment can regulate cell proliferation. In addition, E2-regulated phosphoproteins were highly enriched in the cellular processes of ribosome biogenesis, nucleocytoplasmic transport, and messenger ribonucleic acid (mRNA) processing/splicing (p<0.05), indicating that the activation of these processes may contribute to high-dose E2-induced cell death. These results further confirm that high-dose E2 treatment inhibits protein translation and induces cell death. Furthermore, the significant upregulation of multiple phosphorylation sites associated with epidermal growth factor receptor (EGFR) and mitogen-activated protein kinases (MAPKs) MAPK1, MAPK4, and MAPK14 by high-dose E2 indicates that the EGFR and MAPK signaling pathways are likely involved in the regulation of E2-induced cell death. These phosphorylation sites likely play vital roles in E2-induced cell death in HeLa cells. Overall, our phosphoproteomic data could be a valuable resource for uncovering the regulatory mechanisms of E2 in the micromolar range.


Dimethyl Sulfoxide , Tandem Mass Spectrometry , Animals , Humans , Chromatography, Liquid , HeLa Cells , Estradiol/pharmacology , Phosphoproteins/chemistry , Phosphoproteins/metabolism , ErbB Receptors/metabolism , Phosphorylation , Mammals/metabolism
8.
MedComm (2020) ; 5(4): e543, 2024 Apr.
Article En | MEDLINE | ID: mdl-38585233

High metastatic propensity of osteosarcoma leads to its therapeutic failure and poor prognosis. Although nuclear activation miRNAs (NamiRNAs) are reported to activate gene transcription via targeting enhancer and further promote tumor metastasis, it remains uncertain whether NamiRNAs regulate osteosarcoma metastasis and their exact mechanism. Here, we found that extracellular vesicles of the malignant osteosarcoma cells (143B) remarkably increased the migratory abilities of MNNG cells representing the benign osteosarcoma cells by two folds, which attributed to their high miR-1246 levels. Specially, miR-1246 located in nucleus could activate the migration gene expression (such as MMP1) to accelerate MNNG cell migration through elevating the enhancer activities via increasing H3K27ac enrichment. Instead, MMP1 expression was dramatically inhibited after Argonaute 2 (AGO2) knockdown. Notably, in vitro assays demonstrated that AGO2 recognized the hybrids of miR-1246 and its enhancer DNA via PAZ domains to prevent their degradation from RNase H and these protective roles of AGO2 may favor the gene activation by miR-1246 in vivo. Collectively, our findings suggest that miR-1246 could facilitate osteosarcoma metastasis through interacting with enhancer to activate gene expression dependent on AGO2, highlighting the nuclear AGO2 as a guardian for NamiRNA-targeted gene activation and the potential of miR-1246 for osteosarcoma metastasis therapy.

9.
J Med Virol ; 96(5): e29634, 2024 May.
Article En | MEDLINE | ID: mdl-38682578

Metabolic reprogramming induced by Epstein-Barr virus (EBV) often mirrors metabolic changes observed in cancer cells. Accumulating evidence suggests that lytic reactivation is crucial in EBV-associated oncogenesis. The aim of this study was to explore the role of metabolite changes in EBV-associated malignancies and viral life cycle control. We first revealed that EBV (LMP1) accelerates the secretion of the oncometabolite D-2HG, and serum D-2HG level is a potential diagnostic biomarker for NPC. EBV (LMP1)-driven metabolite changes disrupts the homeostasis of global DNA methylation and demethylation, which have a significantly inhibitory effect on active DNA demethylation and 5hmC content. We found that loss of 5hmC indicates a poor prognosis for NPC patients, and that 5hmC modification is a restriction factor of EBV reactivation. We confirmed a novel EBV reactivation inhibitor, α-KG, which inhibits the expression of EBV lytic genes with CpG-containing ZREs and the latent-lytic switch by enhancing 5hmC modification. Our results demonstrate a novel mechanism of which metabolite abnormality driven by EBV controls the viral lytic reactivation through epigenetic modification. This study presents a potential strategy for blocking EBV reactivation, and provides potential targets for the diagnosis and therapy of NPC.


DNA Methylation , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Virus Activation , Humans , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/physiology , Nasopharyngeal Carcinoma/virology , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/virology , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/pathology , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/complications , Viral Matrix Proteins/metabolism , Viral Matrix Proteins/genetics , Epigenesis, Genetic , Disease Progression
10.
J Agric Food Chem ; 72(18): 10655-10664, 2024 May 08.
Article En | MEDLINE | ID: mdl-38661642

Authenticating whole wheat foods poses a significant challenge for both the grain industry and consumers. Alkylresorcinols (ARs), serving as biomarkers of whole wheat, play a crucial role in assessing the authenticity of whole wheat foods. Herein, we introduce a novel molecularly imprinted electrochemical sensor with modifications involving a molecularly imprinted polymer (MIP) and MXene nanosheets, enabling highly sensitive and selective detection of ARs. Notably, we specifically chose 5-heneicosylresorcinol (AR21), the predominant homologue in whole wheat, as the template molecule. α-Cyclodextrin and acrylamide served as dual functional monomers, establishing a robust multiple interaction between the MIP and AR21. As a result, the sensor exhibited a wide linear range of 0.005 to 100 µg·mL-1 and a low detection limit of 2.52 ng·mL-1, demonstrating exceptional selectivity and stability. When applied to commercial whole wheat foods, the assay achieved satisfactory recoveries and accuracy, strongly validating the practicality and effectiveness of this analytical technique.


Electrochemical Techniques , Food Contamination , Molecular Imprinting , Resorcinols , Triticum , alpha-Cyclodextrins , Resorcinols/chemistry , Resorcinols/analysis , Triticum/chemistry , alpha-Cyclodextrins/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Food Contamination/analysis , Limit of Detection
11.
Curr Med Chem ; 2024 Feb 16.
Article En | MEDLINE | ID: mdl-38549534

BACKGROUND: Long non-coding RNA (LncRNA) is a type of non-coding RNA that plays an important role in the body and accounts for the majority of RNA, and this non-coding RNA can regulate disease onset and progression with its wide range of functions. LncRNA Xist, also known as the long non-coding RNA X inactive specific transcript, is a member of them. It can regulate the development of organismal diseases by acting downstream on specific target genes. In addition to this, it can also influence disease onset and progression by acting on apoptosis, migration, invasion, and other processes. It has been shown that XIST plays an important role in the development of inflammation. OBJECTIVE: To explore the role played by XIST in inflammation-related diseases and to explore its mechanism of action. METHODS: This paper summarizes and analyzes the role played by XIST in inflammation- related diseases by conducting a search in PubMed. CONCLUSION: In this paper, we summarize the mechanism of action of XIST in different types of inflammation-related diseases and propose new protocols for the future clinical treatment of these diseases.

12.
Environ Pollut ; 347: 123743, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38462195

Newly synthesized chemicals are being introduced into the environment without undergoing proper toxicological evaluation, particularly in terms of their effects on the vulnerable neurodevelopment. Thus, it is important to carefully assess the developmental neurotoxicity of these novel environmental contaminants using methods that are closely relevant to human physiology. This study comparatively evaluated the potential developmental neurotoxicity of 19 prevalent environmental chemicals including neonicotinoids (NEOs), organophosphate esters (OPEs), and synthetic phenolic antioxidants (SPAs) at environment-relevant doses (100 nM and 1 µM), using three commonly employed in vitro neurotoxicity models: human neural stem cells (NSCs), as well as the SK-N-SH and PC12 cell lines. Our results showed that NSCs were more sensitive than SK-N-SH and PC12 cell lines. Among all the chemicals tested, the two NEOs imidaclothiz (IMZ) and cycloxaprid (CYC), as well as the OPE tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), generated the most noticeable perturbation by impairing NSC maintenance and neuronal differentiation, as well as promoting the epithelial-mesenchymal transition process, likely via activating NF-κB signaling. Our data indicate that novel NEOs and OPEs, particularly IMZ, CYC, and TDCIPP, may not be safe alternatives as they can affect NSC maintenance and differentiation, potentially leading to neural tube defects and neuronal differentiation dysplasia in fetuses.


Flame Retardants , Humans , Flame Retardants/analysis , Organophosphates/toxicity , Phosphates/analysis , Cell Differentiation , Esters , Environmental Monitoring
13.
Sensors (Basel) ; 24(6)2024 Mar 21.
Article En | MEDLINE | ID: mdl-38544270

The acoustic tomography (AT) velocity field reconstruction technique has become a research hotspot in recent years due to its noninvasive nature, high accuracy, and real-time measurement advantages. However, most of the existing studies are limited to the reconstruction of the velocity field in a rectangular area, and there are very few studies on a circular area, mainly because the layout of acoustic transducers, selection of acoustic paths, and division of measured regions are more difficult in a circular area than in a rectangular area. Therefore, based on AT and using the reconstruction algorithm of the Markov function and singular value decomposition (MK-SVD), this paper proposes a measured regional division optimization algorithm for velocity field reconstruction in a circular area. First, an acoustic path distribution based on the multipath effect is designed to solve the problem of the limited emission angle of the acoustic transducer. On this basis, this paper proposes an adaptive optimization algorithm for measurement area division based on multiple sub-objectives. The steps are as follows: first, two optimization objectives, the condition number of coefficient matrix and the uniformity of acoustic path distribution, were designed. Then, the weights of each sub-objective are calculated using the coefficient of variation (CV). Finally, the measured regional division is optimized based on particle swarm optimization (PSO). The reconstruction effect of the algorithm and the anti-interference ability are verified through the reconstruction experiments of the model velocity field and the simulated velocity field.

14.
Am J Hematol ; 99(5): 880-889, 2024 May.
Article En | MEDLINE | ID: mdl-38504387

Axicabtagene ciloleucel (axi-cel) in trials has demonstrated favorable efficacy compared with historical controls after ≥2 lines of therapy for the treatment of relapsed or refractory (R/R) large B cell lymphoma (LBCL). Herein, we compared the real-world effectiveness of axi-cel with efficacy and effectiveness of chemoimmunotherapy (CIT) in patients aged ≥65 years and patients with Eastern Cooperative Oncology Group performance status (ECOG PS) of 2. A total of 1146 patients treated with commercial axi-cel for R/R LBCL with ≥2 lines of prior therapy were included from the Center for International Blood and Marrow Transplantation Research prospective observational study, and 469 patients treated with CIT for R/R LBCL after ≥2 lines of prior therapy were included from SCHOLAR-1 (an international, multicohort, retrospective study). After propensity score matching, at a median follow-up of 24 months for patients receiving axi-cel and 60 months for patients receiving CIT, 12-month overall survival rates were 62% and 28%, respectively (hazard ratio, 0.30 [95% CI, 0.24-0.37]). Objective response rate (ORR) was 76% (complete response [CR] rate 58%) in patients receiving axi-cel versus 28% (CR rate 16%) for those receiving CIT. A 57% difference in ORR (55% difference in CR rate) favoring axi-cel over CIT was observed among patients aged ≥65 years. Increased magnitude of benefit in response rates for axi-cel versus CIT was also observed among patients with ECOG PS = 2. These findings further support the broader use of axi-cel in older patients and patients with ECOG PS = 2 with R/R LBCL.


Biological Products , Lymphoma, Large B-Cell, Diffuse , Humans , Aged , Retrospective Studies , Lymphoma, Large B-Cell, Diffuse/drug therapy , Biological Products/therapeutic use , Pathologic Complete Response , Immunotherapy, Adoptive , Antigens, CD19
15.
Sci China Life Sci ; 67(6): 1242-1254, 2024 Jun.
Article En | MEDLINE | ID: mdl-38478296

RNA N6-methyladenosine (m6A), as the most abundant modification of messenger RNA, can modulate insect behaviors, but its specific roles in aggregation behaviors remain unexplored. Here, we conducted a comprehensive molecular and physiological characterization of the individual components of the methyltransferase and demethylase in the migratory locust Locusta migratoria. Our results demonstrated that METTL3, METTL14 and ALKBH5 were dominantly expressed in the brain and exhibited remarkable responses to crowding or isolation. The individual knockdown of methyltransferases (i.e., METTL3 and METTL14) promoted locust movement and conspecific attraction, whereas ALKBH5 knockdown induced a behavioral shift toward the solitary phase. Furthermore, global transcriptome profiles revealed that m6A modification could regulate the orchestration of gene expression to fine tune the behavioral aggregation of locusts. In summary, our in vivo characterization of the m6A functions in migratory locusts clearly demonstrated the crucial roles of the m6A pathway in effectively modulating aggregation behaviors.


Adenosine , Locusta migratoria , Methyltransferases , Animals , Adenosine/metabolism , Adenosine/analogs & derivatives , Locusta migratoria/genetics , Locusta migratoria/physiology , Locusta migratoria/metabolism , Methyltransferases/metabolism , Methyltransferases/genetics , Behavior, Animal/physiology , Brain/metabolism , Brain/physiology , Transcriptome , AlkB Homolog 5, RNA Demethylase/metabolism , AlkB Homolog 5, RNA Demethylase/genetics , Gene Expression Regulation , Insect Proteins/genetics , Insect Proteins/metabolism , Grasshoppers/genetics , Grasshoppers/physiology , Grasshoppers/metabolism
17.
Environ Pollut ; 346: 123640, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38401637

Pentachlorophenol (PCP) - cadmium (Cd) complex pollution has been identified as a form of persistent soil pollution in south China, exerting detrimental impacts on the indigenous soil bacterial communities. Hence, it is worthwhile to investigate whether and how bacterial populations alter in response to these pollutants. In this study, Escherichia coli was used as a model bacterium. Results showed that PCP exposure caused bacterial cell membrane permeability changes, intracellular ROS elevation, and DNA fragmentation, and triggered apoptosis-like cell death at low exposure concentration and necrosis at high exposure concentration. Cd exposure caused severe oxidative damage and cell necrosis in the tested bacterial strain. The co-exposure to PCP and Cd elevated the ROS level, stimulated the bacterial caspase activity, and induced DNA fragmentation, thereby leading to an apoptosis-like cell death. In conclusion, PCP-Cd complex pollution can cause bacterial population to decrease through apoptosis-like cell death pathway. However, it is worth noting that the subpopulation survives under the complex pollution stress.


Pentachlorophenol , Humans , Pentachlorophenol/toxicity , Pentachlorophenol/metabolism , Cadmium/toxicity , Cadmium/metabolism , Reactive Oxygen Species/metabolism , Apoptosis , Cell Death , Necrosis
18.
Dev Cell ; 59(4): 465-481.e6, 2024 Feb 26.
Article En | MEDLINE | ID: mdl-38237590

The progression from naive through formative to primed in vitro pluripotent stem cell states recapitulates epiblast development in vivo during the peri-implantation period of mouse embryo development. Activation of the de novo DNA methyltransferases and reorganization of transcriptional and epigenetic landscapes are key events that occur during these pluripotent state transitions. However, the upstream regulators that coordinate these events are relatively underexplored. Here, using Zfp281 knockout mouse and degron knockin cell models, we identify the direct transcriptional activation of Dnmt3a/3b by ZFP281 in pluripotent stem cells. Chromatin co-occupancy of ZFP281 and DNA hydroxylase TET1, which is dependent on the formation of R-loops in ZFP281-targeted gene promoters, undergoes a "high-low-high" bimodal pattern regulating dynamic DNA methylation and gene expression during the naive-formative-primed transitions. ZFP281 also safeguards DNA methylation in maintaining primed pluripotency. Our study demonstrates a previously unappreciated role for ZFP281 in coordinating DNMT3A/3B and TET1 functions to promote pluripotent state transitions.


Epigenesis, Genetic , Pluripotent Stem Cells , Animals , Mice , DNA Methylation/genetics , Chromatin/metabolism , DNA/metabolism , Cell Differentiation/genetics , Germ Layers/metabolism , Transcription Factors/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism
19.
Nat Struct Mol Biol ; 31(1): 42-53, 2024 Jan.
Article En | MEDLINE | ID: mdl-38177668

DNA cytosine methylation plays a vital role in repressing retrotransposons, and such derepression is linked with developmental failure, tumorigenesis and aging. DNA methylation patterns are formed by precisely regulated actions of DNA methylation writers (DNA methyltransferases) and erasers (TET, ten-eleven translocation dioxygenases). However, the mechanisms underlying target-specific oxidation of 5mC by TET dioxygenases remain largely unexplored. Here we show that a large low-complexity domain (LCD), located in the catalytic part of Tet enzymes, negatively regulates the dioxygenase activity. Recombinant Tet3 lacking LCD is shown to be hyperactive in converting 5mC into oxidized species in vitro. Endogenous expression of the hyperactive Tet3 mutant in mouse oocytes results in genome-wide 5mC oxidation. Notably, the occurrence of aberrant 5mC oxidation correlates with a consequent loss of the repressive histone mark H3K9me3 at ERVK retrotransposons. The erosion of both 5mC and H3K9me3 causes ERVK derepression along with upregulation of their neighboring genes, potentially leading to the impairment of oocyte development. These findings suggest that Tet dioxygenases use an intrinsic auto-regulatory mechanism to tightly regulate their enzymatic activity, thus achieving spatiotemporal specificity of methylome reprogramming, and highlight the importance of methylome integrity for development.


5-Methylcytosine , Dioxygenases , Animals , Mice , 5-Methylcytosine/metabolism , Dioxygenases/genetics , Dioxygenases/metabolism , Retroelements/genetics , DNA Methylation , Oocytes/metabolism , Demethylation
20.
BMC Plant Biol ; 24(1): 32, 2024 Jan 05.
Article En | MEDLINE | ID: mdl-38183049

BACKGROUND: As a vital type of noncoding RNAs, circular RNAs (circRNAs) play important roles in plant growth and development and stress response. However, little is known about the biological roles of circRNAs in regulating the stability of male fertility restoration for cytoplasmic male sterility (CMS) conditioned by Gossypium harknessii cytoplasm (CMS-D2) cotton under high-temperature (HT) stress. RESULTS: In this study, RNA-sequencing and bioinformatics analysis were performed on pollen grains of isonuclear alloplasmic near-isogenic restorer lines NH [N(Rf1rf1)] and SH [S(Rf1rf1)] with obvious differences in fertility stability under HT stress at two environments. A total of 967 circRNAs were identified, with 250 differentially expressed under HT stress. We confirmed the back-splicing sites of eight selected circRNAs using divergent primers and Sanger sequencing. Tissue-specific expression patterns of five differentially expressed circRNAs (DECs) were also verified by RT-PCR and qRT-PCR. Functional enrichment and metabolic pathway analysis revealed that the parental genes of DECs were significantly enriched in fertility-related biological processes such as pollen tube guidance and cell wall organization, as well as the Pentose and glucuronate interconversions, Steroid biosynthesis, and N-Glycan biosynthesis pathways. Moreover, we also constructed a putative circRNA-mediated competing endogenous RNA (ceRNA) network consisting of 21 DECs, eight predicted circRNA-binding miRNAs, and their corresponding 22 mRNA targets, especially the two ceRNA modules circRNA346-miR159a-MYB33 and circRNA484-miR319e-MYB33, which might play important biological roles in regulating pollen fertility stability of cotton CMS-D2 restorer line under HT stress. CONCLUSIONS: Through systematic analysis of the abundance, characteristics and expression patterns of circRNAs, as well as the potential functions of their parent genes, our findings suggested that circRNAs and their mediated ceRNA networks acted vital biological roles in cotton pollen development, and might be also essential regulators for fertility stability of CMS-D2 restorer line under heat stress. This study will open a new door for further unlocking complex regulatory mechanisms underpinning the fertility restoration stability for CMS-D2 in cotton.


Gossypium , RNA, Circular , Gossypium/genetics , RNA, Circular/genetics , Cytoplasm , Fertility/genetics , RNA , Heat-Shock Response/genetics
...