Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
1.
Food Chem ; 457: 140143, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38901339

ABSTRACT

The Hippophae rhamnoides L. pomace was generated in the production process for juice, wine of food industry. To expand the application of pomace, the extraction process optimization, enrichment and identification of triterpene acids were performed in this study. The extraction yield was 14.87% under optimal ultrasound-assisted extraction techniques performed via response surface methodology. The extract was subsequently purified to obtain the triterpenoid acid enrichment fraction (TPF) with the content of 75.23% ± 1.45%. 13 triterpenoid acids were identified via UPLC-Triple-TOF MS/MS and further semi-quantified through comparison with triterpenoid acid standards. TPF exhibited a strong inhibitory effect on α-glucosidase with IC50 value of 5.027 ± 0.375 µg/mL, as determined via enzyme inhibition experiment and molecular docking. Additionally, the TPF significantly reduced postprandial glucose levels, as revealed via carbohydrate tolerance tests, as well as ameliorate serum lipid profiles. Therefore, pomace may be a promising resource of functional food components with therapeutic and commercial values.

2.
Int J Mol Sci ; 25(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892131

ABSTRACT

Petanin, an acylated anthocyanin from the Solanaceae family, shows potential in tyrosinase inhibitory activity and anti-melanogenic effects; however, its mechanism remains unclear. Therefore, to investigate the underlying mechanism of petanin's anti-melanogenic effects, the enzyme activity, protein expression and mRNA transcription of melanogenic and related signaling pathways in zebrafish using network pharmacology, molecular docking and molecular dynamics simulation were combined for analysis. The results showed that petanin could inhibit tyrosinase activity and melanogenesis, change the distribution and arrangement of melanocytes and the structure of melanosomes, reduce the activities of catalase (CAT) and peroxidase (POD) and enhance the activity of glutathione reductase (GR). It also up-regulated JNK phosphorylation, inhibited ERK/RSK phosphorylation and down-regulated CREB/MITF-related protein expression and mRNA transcription. These results were consistent with the predictions provided through network pharmacology and molecular docking. Thus, petanin could inhibit the activity of tyrosinase and the expression of tyrosinase by inhibiting and negatively regulating the tyrosinase-related signaling pathway ERK/CREB/MITF through p-JNK. In conclusion, petanin is a good tyrosinase inhibitor and anti-melanin natural compound with significant market prospects in melanogenesis-related diseases and skin whitening cosmetics.


Subject(s)
Melanins , Molecular Docking Simulation , Zebrafish , Animals , Zebrafish/metabolism , Melanins/metabolism , Melanins/biosynthesis , Phosphorylation , MAP Kinase Signaling System/drug effects , Signal Transduction/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism , Monophenol Monooxygenase/metabolism , Monophenol Monooxygenase/antagonists & inhibitors , Microphthalmia-Associated Transcription Factor/metabolism , Microphthalmia-Associated Transcription Factor/genetics , Melanocytes/metabolism , Melanocytes/drug effects
3.
Chem Biodivers ; : e202400145, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738490

ABSTRACT

As a medicinal and edible resource, Hippophae rhamnoides Linn. subsp. sinensis Rousi is rich in bioactive secondary metabolites, including flavonoids and their derivatives, which offer protective effects against oxidative damage. This study reported the isolation of three new kaempferol derivatives from the seed residue of H. rhamnoides - Hippophandine A, B, and C (compounds 1-3). Their structures were elucidated by high-resolution electrospray ionization mass spectrometry (HR-ESI-MS), nuclear magnetic resonance (NMR), and chemical analyses. The compounds were evaluated for their ability to mitigate hydrogen peroxide (H2O2)-induced cell death in SH-SY5Y cells. The results elucidated that Hippophandine A-C at concentrations of 1, 5, and 10 µM reduced the levels of malondialdehyde (MDA) and increased the activity of antioxidative enzymes, such as superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT). Furthermore, they significantly altered the protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream heme oxygenase-1 (HO-1), which is an indicator of redox detection in H2O2-induced SH-SY5Y.

4.
Chem Biodivers ; : e202400564, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38708558

ABSTRACT

Chlorogenic acid (Chl), isochlorogenic acid A (Isochl A), and isochlorogenic acid B (Isochl B) are naturally occurring phenolic compounds, which have been shown to exert a regulatory effect on lipid metabolism. However, the mechanism underlying this effect remains unclear. Herein, we investigated the inhibitory effects and underlying mechanisms of these three phenolic compounds on oleic acid (OA)-induced HepG2 cells and high-fat diet (HFD)-fed zebrafish. Lipid accumulation and triacylglycerol levels increased in OA-induced cells, which was attenuated by Chl, Isochl A, and Isochl B. Moreover, the levels of malondialdehyde (MDA) and reactive oxygen species (ROS) decreased, while superoxide dismutase (SOD) levels increased by Chl, Isochl A and Isochl B treatment. Western blot analysis demonstrated that Chl, Isochl A and Isochl B reduced the expression of lipogenesis-related protein, including fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC) and peroxisome proliferator-activated receptor gamma (PPARγ). Moreover, peroxisome proliferator-activated receptor alpha gamma (PPARα) was increased by Chl, Isochl A, and Isochl B treatment. In addition, our results indicated that Chl, Isochl A and Isochl B decreased lipid profiles and lipid accumulation in HFD-fed zebrafish. Thus, these findings highlight the potential of Chl, Isochl A, and Isochl B as effective agents for treating or/and ameliorating non-alcoholic fatty liver disease (NAFLD).

5.
Plant Biotechnol J ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38690830

ABSTRACT

Dinitrotoluene sulfonates (DNTSes) are highly toxic hazards regulated by the Resource Conservation and Recovery Act (RCRA) in the United States. The trinitrotoluene (TNT) red water formed during the TNT purification process consists mainly of DNTSes. Certain plants, including switchgrass, reed and alfalfa, can detoxify low concentrations of DNTS in TNT red water-contaminated soils. However, the precise mechanism by which these plants detoxify DNTS remains unknown. In order to aid in the development of phytoremediation resources with high DNTS removal rates, we identified and characterized 1-hydroxymethyl-2,4-dinitrobenzene sulfonic acid (HMDNBS) and its glycosylated product HMDNBS O-glucoside as the degradation products of 2,4-DNT-3-SO3Na, the major isoform of DNTS in TNT red water-contaminated soils, in switchgrass via LC-MS/MS- and NMR-based metabolite analyses. Transcriptomic analysis revealed that 15 UDP-glycosyltransferase genes were dramatically upregulated in switchgrass plants following 2,4-DNT-3-SO3Na treatment. We expressed, purified and assayed the activity of recombinant UGT proteins in vitro and identified PvUGT96C10 as the enzyme responsible for the glycosylation of HMDNBS in switchgrass. Overexpression of PvUGT96C10 in switchgrass significantly alleviated 2,4-DNT-3-SO3Na-induced plant growth inhibition. Notably, PvUGT96C10-overexpressing transgenic switchgrass plants removed 83.1% of 2,4-DNT-3-SO3Na in liquid medium after 28 days, representing a 3.2-fold higher removal rate than that of control plants. This work clarifies the DNTS detoxification mechanism in plants for the first time, suggesting that PvUGT96C10 is crucial for DNTS degradation. Our results indicate that PvUGT96C10-overexpressing plants may hold great potential for the phytoremediation of TNT red water-contaminated soils.

6.
Molecules ; 29(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38611771

ABSTRACT

To explore the composition of anthocyanins and expand their biological activities, anthocyanins were systematically isolated and purified from tubers of Solanum tuberosum L., and their tyrosinase inhibitory activity was investigated. In this study, two new anthocyanin degradation compounds, norpetanin (9) and 4-O-(p-coumaryl) rhamnose (10), along with 17 known anthocyanins and their derivatives, were isolated and purified from an acid-ethanolic extract of fresh purple potato tubers. Their structures were elucidated via 1D and 2D NMR and HR-ESI-MS and compared with those reported in the literature. The extracts were evaluated for anthocyanins and their derivatives using a tyrosinase inhibitor screening kit and molecular docking technology, and the results showed that petanin, norpetanin, 4-O-(p-coumaryl) rhamnose, and lyciruthephenylpropanoid D/E possessed tyrosinase inhibitory activity, with 50% inhibiting concentration (IC50) values of 122.37 ± 8.03, 115.53 ± 7.51, 335.03 ± 12.99, and 156.27 ± 11.22 µM (Mean ± SEM, n = 3), respectively. Furthermore, petanin was validated against melanogenesis in zebrafish; it was found that it could significantly inhibit melanin pigmentation (p < 0.001), and the inhibition rate of melanin was 17% compared with the normal group. This finding may provide potential treatments for diseases with abnormal melanin production, and high-quality raw materials for whitening cosmetics.


Subject(s)
Anthocyanins , Solanum tuberosum , Animals , Anthocyanins/pharmacology , Monophenol Monooxygenase , Melanins , Molecular Docking Simulation , Rhamnose , Zebrafish
7.
BMC Genom Data ; 25(1): 16, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38336648

ABSTRACT

BACKGROUND: Numerous species within the genus Caragana have high ecological and medicinal value. However, species identification based on morphological characteristics is quite complicated in the genus. To address this issue, we analyzed complete plastid genome data for the genus. RESULTS: We obtained chloroplast genomes of two species, Caragana arborescens and Caragana opulens, using Illumina sequencing technology, with lengths of 129,473 bp and 132,815 bp, respectively. The absence of inverted repeat sequences in the two species indicated that they could be assigned to the inverted repeat-lacking clade (IRLC). The genomes included 111 distinct genes (4 rRNA genes, 31 tRNA genes, and 76 protein-coding genes). In addition, 16 genes containing introns were identified in the two genomes, the majority of which contained a single intron. Repeat analyses revealed 129 and 229 repeats in C. arborescens and C. opulens, respectively. C. arborescens and C. opulens genomes contained 277 and 265 simple sequence repeats, respectively. The two Caragana species exhibited similar codon usage patterns. rpl20-clpP, rps19-rpl2, and rpl23-ycf2 showed the highest nucleotide diversity (pi). In an analysis of sequence divergence, certain intergenic regions (matK-rbcL, psbM-petN, atpA-psbI, petA-psbL, psbE-petL, and rps7-rps12) were highly variable. A phylogenetic analysis showed that C. arborescens and C. opulens were related and clustered together with four other Caragana species. The genera Astragalus and Caragana were relatively closely related. CONCLUSIONS: The present study provides valuable information about the chloroplast genomes of C. arborescens and C. opulens and lays a foundation for future phylogenetic research and molecular marker development.


Subject(s)
Caragana , Genome, Chloroplast , Genome, Plastid , Genome, Chloroplast/genetics , Phylogeny , Introns/genetics
8.
Eur J Pharmacol ; 960: 176154, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37884183

ABSTRACT

Oligostilbenes are a group of natural products derived from the polymerization of stilbene monomers. Despite the demonstration of their activities in regulating lipid metabolism, the function of oligostilbenes in the adipogenic transdifferentiation of multipotent myoblast cells remains unknown. Hence, the five oligostilbenes from Iris lactea were tested for their regulatory effects on adipogenic transdifferentiation of C2C12 myoblast cells. As a result, it was shown that Vitisin A-13-O-ß-D-glucoside (VitAOG), Vitisin A (VitA) and Hopeaphenol (Hop) can greatly inhibit the adipogenic transdifferentiation of C2C12 cells by reducing lipid accumulation and downregulating the expression of peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer binding protein beta (C/EBPß) and fatty acid binding proteins 4 (FABP4). In contrast, Vitisin D (VitD) and Isohopeaphenol (Isohop) promote adipogenic transdifferentiation of C2C12 cells by increasing lipid accumulation and upregulating the expression of adipogenesis and lipogenesis markers. Further research found that the lipolytic protein levels of adipocyte triglyceride lipase (ATGL) and phosphorylation of hormone-sensitive lipase (HSL) were elevated by VitAOG and VitA. Additionally, VitAOG and VitA maintain lipid homeostasis by improving mitochondrial function. Taken together, our study reveals an effect of oligostilbenes on lipid metabolism in C2C12 cells, and VitAOG and VitA can be regarded as potential candidates for the treatment of obesity and other disorders of lipid metabolism.


Subject(s)
Adipogenesis , Iris Plant , Mice , Animals , Lipolysis , Lipogenesis , Iris Plant/metabolism , Sterol Esterase/metabolism , Glucosides/pharmacology , Cell Transdifferentiation , Lipids , 3T3-L1 Cells , PPAR gamma/metabolism
9.
ISA Trans ; 139: 291-307, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37076373

ABSTRACT

To address the problem of no-fly zone avoidance for hypersonic reentry vehicles in the multiple constraints gliding phase, a learning-based avoidance guidance framework is proposed. First, the reference heading angle determination problem is solved efficiently and skillfully by introducing a nature-inspired methodology based on the concept of the interfered fluid dynamic system (IFDS), in which the distance and relative position relationships of all no-fly zones can be comprehensively considered, and additional rules are no longer needed. Then, by incorporating the predictor-corrector method, the heading angle corridor, and bank angle reversal logic, a fundamental interfered fluid avoidance guidance algorithm is proposed to steer the vehicle toward the target zone while avoiding no-fly zones. In addition, a learning-based online optimization mechanism is used to optimize the IFDS parameters in real time to improve the avoidance guidance performance of the proposed algorithm in the entire gliding phase. Finally, the adaptability and robustness of the proposed guidance algorithm are verified via comparative and Monte Carlo simulations.

10.
Int J Mol Sci ; 24(4)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36834585

ABSTRACT

Doxorubicin (Dox) is one of the most frequently prescribed anti-cancer drugs. However, treatment with Dox is limited due to cumulative cardiotoxicity. 3-O-ß-d-Sophorosylkaempferol-7-O-{3-O-[2(E)-2,6-dimethyl-6-hydroxyocta-2,7-dienoyl]}-α-L-rhamnoside (F-A), kaempferol 3-sophoroside 7-rhamnoside (F-B), and hippophanone (F-C) were successfully obtained by purification and separation of seabuckthorn seed residue in our previous research. This study was undertaken to investigate the protective effect of three flavonoids against Dox-induced H9c2 cell apoptosis. Cell proliferation was detected by MTT assay. 2',7'-Dichlorofluorescein diacetate (DCFH-DA) was used to determine the production of intracellular reactive oxygen species (ROS). ATP content was measured using an assay kit. Transmission electron microscopy (TEM) was used to observe changes in mitochondrial ultrastructure. The expression levels of proteins (p-JNK, JNK, p-Akt, Akt, p-P38, P38, p-ERK, ERK, p-Src, Src, Sab, IRE1α, Mfn1, Mfn2, and cleaved caspase-3) were evaluated by Western blot. Molecular docking was performed using AutoDock Vina. The three flavonoids could significantly relieve Dox-induced cardiac injury and inhibit cardiomyocyte apoptosis. The mechanisms were mainly related to the stability of mitochondrial structure and function maintained by suppressing the production of intracellular ROS, p-JNK and cleaved caspase-3, and increasing ATP contents and protein expression of mitochondrial mitofusin (Mfn1, Mfn2), Sab and p-Src. Pretreatment with flavonoids from Hippophae rhamnoides Linn. can reduce Dox-induced H9c2 cell apoptosis based on the 'JNK-Sab-Ros' signal pathway.


Subject(s)
Hippophae , Adenosine Triphosphate/metabolism , Apoptosis , Cardiotoxicity/metabolism , Caspase 3/metabolism , Doxorubicin/pharmacology , Endoribonucleases/metabolism , Flavonoids/pharmacology , Mitochondria/metabolism , Molecular Docking Simulation , Myocytes, Cardiac/metabolism , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Animals , Rats
11.
Biomed Chromatogr ; 37(2): e5536, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36264709

ABSTRACT

α-glucosidase inhibitors (AGIs) are widely used for the treatment of type 2 diabetes, but their side effects have made it to develop novel and alternative AGIs immediately. In this study, the extract of Hypericum perforatum L. (HPE) has been confirmed to have α-glucosidase inhibitory activity in vitro and in vivo. Seven active compounds, rutin, hyperoside, isoquercitrin, avicularin, quercitrin, quercetin, and biapigenin, were screened based on a bio-affinity chromatography column with α-glucosidase enzyme-conjugated solid phase and UPLC/MS, which exhibited excellent α-glycosidase inhibitory effects by the determined IC50 values. The mechanism of α-glycosidase inhibitory activity of biapigenin was studied for the first time. The results showed that biapigenin was a high-potential, reversible, and mixed enzyme inhibitor. Analysis by molecular docking further revealed that hydrophobic interactions were generated by interactions between biapigenin and amino acid residues LYS156, PHE303, PHE314, and LEU313. In addition, hydrogen bonding occurred between biapigenin and α-glucosidase amino acid residues ASP307, SER241, and LYS156. This research identified that biapigenin could be a novel AGI and further applied to the development of potential anti-diabetic drugs. Furthermore, our studies established a rapid in vitro screening method for AGIs from plants.


Subject(s)
Glycoside Hydrolase Inhibitors , Hypericum , Plant Extracts , alpha-Glucosidases/metabolism , Chromatography, Affinity/methods , Diabetes Mellitus, Type 2/drug therapy , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Hypericum/chemistry , Hypericum/metabolism , Molecular Docking Simulation , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Oils , Mass Spectrometry/methods
12.
RSC Adv ; 12(51): 32912-32922, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36425180

ABSTRACT

Iris lactea Pall. var. chinensis (Fisch.) Koidz (Iris lactea) is an herbaceous perennial widely distributed in China, India, and South Korea. Iris lactea has been extensively used in traditional Chinese medicine. The present study isolated a new oligostilbene (compound 1), together with three known oligostilbenes (compounds 2, 3 and 4) from the seeds of Iris lactea. The structures of these compounds were elucidated by HRESIMS, NMR, and chemical analyses. The network-based pharmacologic analysis platform was used to predict the target proteins related to inflammation of isolated compounds. Furthermore, the isolated compounds were tested for their anti-inflammatory effects in LPS-stimulated RAW 264.7 cells. In this network, 138 candidate targets of compounds related to its therapeutic effect on inflammation were identified. In addition, compounds 1, 2, 3 and 4 significantly decreased NO content and the IL-6 levels as well as the expression of COX-2 in LPS-stimulated RAW 264.7 cells.

13.
Foods ; 11(21)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36359989

ABSTRACT

In recent years, the relationship between Lycium ruthenicum Murr. anthocyanins (LRA) and health has attracted increasing attention. The purpose of this study is to investigate the anti-aging effect and mechanism of LRA through a D-galactose (DG)-induced aging rat model. Our results showed that the long-term intake of LRA, for 8 weeks, improved motor function, reduced serum aging markers, promoted the endogenous antioxidant system, and suppressed the serum inflammatory cytokines in aging rats. Besides, the LRA treatment alleviated DG-induced liver injuries by relieving the inflammation and inhibiting Fas/FasL-mediated cell death. More importantly, the abnormal serum metabolome profiles of the aging rats were restored by the LRA, relating to 38 metabolites and 44 pathways. Specifically, the LRA significantly affected the amino acid and protein-related metabolic pathways by regulating the levels of L-threonine, L-aspartic acid, glycine, L-histidine, D-homocysteine, L-homocitrulline, L-homoserine, guanidineacetic acid, and kynurenine. These results have important implications for the development of LRA as an anti-aging and liver-protective ingredient.

14.
Foods ; 11(19)2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36230101

ABSTRACT

The present study extracted total saponins from quinoa husks with pressurized hot water extraction and optimized the extraction conditions. The response surface methodology (RSM) with a Box-Behnken design (BBD) was employed to investigate the effects of extraction flow rate, extraction temperature and extraction time on the extraction yield of total saponins. A maximal yield of 23.06 mg/g was obtained at conditions of 2 mL/min, 210 °C and 50 min. The constituents of the extracts were analyzed by liquid chromatography-mass spectrometry (LC-MS). A total of twenty-three compounds were identified, including five flavonoids, seventeen triterpenoid saponins and a phenolic acid. Moreover, we performed an in vitro assay for the α-glucosidase activity and found a stronger inhibitory effect of the quinoa husk extracts than acarbose, suggesting its potential to be developed into functional products with hypoglycemic effect. Finally, our molecular docking analyses indicated triterpenoid saponins as the main bioactive components.

15.
Molecules ; 27(18)2022 Sep 18.
Article in English | MEDLINE | ID: mdl-36144823

ABSTRACT

Natural blue food colourant is rare. The aim of this work was to screen compounds from the common copigments that could improve the blue tones of anthocyanins (ACNs) and to investigate the effect of different copigments on the colour stability of anthocyanins in neutral species. International Commission on Illumination (CIE) colour space, UV, IR, NMR, atomic force microscopy (AFM) and computational chemistry methods were utilised to evaluate ACNs from Lycium ruthenicum Murr. (LR), which is complexed with food additives and biological agents. The results indicate that Pro-Xylane (PX), Ectoin (ECT) and dipotassium glycyrrhizinate (DG) enhance the blue colour of the ACNs. ACNs-PX presents a colour close to Oxford Blue and has a surface height of 2.13 ± 0.14 nm and slightly improved stability. The half-life of ACNs-DG is improved 24.5-fold and had the highest complexation energy (-50.63/49.15) kcal/mol, indicating hydrogen bonds and π-π stacking forces enhance stability. These findings offer a new perspective for anthocyanin utilisation as a blue colourant and contribute to the large-scale application of LR.


Subject(s)
Food Coloring Agents , Lycium , Anthocyanins/chemistry , Color , Glycyrrhizic Acid , Lycium/chemistry
16.
Antioxidants (Basel) ; 11(6)2022 May 31.
Article in English | MEDLINE | ID: mdl-35739997

ABSTRACT

Oxidative stress plays a critical role in the pathogenesis of various neurodegenerative diseases. Increasing evidence suggests the association of mitochondrial abnormalities with oxidative stress-related neural damage. Silibinin, a natural flavonol compound isolated from Silybum marianum, exhibits multiple biological activities. The present study investigated the effects of silibinin on H2O2-induced oxidative stress in human neuroblastoma SH-SY5Y cells. Exposure to H2O2 (750 µM) reduced the viability of SH-SY5Y cells, which was coupled with increased reactive oxygen species (ROS), abnormal cell morphology, and mitochondrial dysfunction. Remarkably, silibinin (1, 5, and 10 µM) treatment attenuated the H2O2-induced cell death. Moreover, silibinin reduced ROS production and the levels of malondialdehyde (MDA), increased the levels of superoxide dismutase (SOD) and glutathione (GSH), and increased mitochondrial membrane potential. Moreover, silibinin normalized the expression of nuclear factor 2-related factor 2 (Nrf2)-related and mitochondria-associated proteins. Taken together, our findings demonstrated that silibinin could attenuate H2O2-induced oxidative stress by regulating Nrf2 signaling and improving mitochondrial function in SH-SY5Y cells. The protective effect against oxidative stress suggests silibinin as a potential candidate for preventing neurodegeneration.

17.
Int J Mol Sci ; 23(12)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35742972

ABSTRACT

Plant laccase genes belong to a multigene family, play key roles in lignin polymerization, and participate in the resistance of plants to biotic and abiotic stresses. Switchgrass is an important resource for forage and bioenergy production, yet information about the switchgrass laccase gene family is scarce. Using bioinformatic approaches, a genome-wide analysis of the laccase multigene family in switchgrass was carried out in this study. In total, 49 laccase genes (PvLac1 to PvLac49) were identified; these can be divided into five subclades, and 20 of them were identified as targets of miR397. The tandem and segmental duplication of laccase genes on Chr05 and Chr08 contributed to the expansion of the laccase family. The laccase proteins shared conserved signature sequences but displayed relatively low sequence similarity, indicating the potential functional diversity of switchgrass laccases. Switchgrass laccases exhibited distinct tissue/organ expression patterns, revealing that some laccases might be involved in the lignification process during stem development. All five of the laccase isoforms selected from different subclades responded to heavy metal. The immediate response of lignin-related laccases, as well as the delayed response of low-abundance laccases, to heavy-metal treatment shed light on the multiple roles of laccase isoforms in response to heavy-metal stress.


Subject(s)
Metals, Heavy , Panicum , Laccase/genetics , Laccase/metabolism , Lignin/metabolism , Panicum/genetics , Panicum/metabolism , Phylogeny , Protein Isoforms/genetics
18.
Zhongguo Zhong Yao Za Zhi ; 47(8): 2178-2186, 2022 Apr.
Article in Chinese | MEDLINE | ID: mdl-35531734

ABSTRACT

The present study investigated the main components of fenugreek(Trigonella foenum-graecum L.) leaf flavonoids(FLFs) and their antioxidant activity. FLFs were prepared and enriched by solvent extraction, and the flavonoids were characterized by high-performance liquid chromatography-quadrupole-time-of-flight tandem mass spectrometry(HPLC-Q-TOF-MS/MS). The protective effect of FLFs against H_2O_2-induced stress damage to L02 hepatocytes was also investigated. Firstly, the cell viability was measured by MTT assay. The oxidative stress injury model was induced by H_2O_2 in L02 cells. The release of lactate dehydrogenase(LDH), the content of reduced glutathione(GSH) and malondialdehyde(MDA), and the activities of superoxide dismutase(SOD) and catalase(CAT) were measured by assay kits. Hoechst fluorescence staining was performed to observe the cell apoptosis. The expression levels of c-Jun N-terminal kinase(JNK), extracellular signal-regulated kinase 1/2(ERK1/2), nuclear factor erythroid-2 related factor 2(Nrf2), heme oxygenase 1(HO-1), and their phosphorylated proteins were detected by Western blot. Based on the MS fragment ion information and data in databases, FLFs contained eight flavonoids with quercetin and kaempferol as the main aglycons. The cell viabi-lity assay revealed that as compared with the conditions in the H_2O_2 treatment group, 3.125-25 µg·mL~(-1) FLFs could increase the viability of L02 cells, reduce LDH release and MDA content in a dose-dependent manner, potentiate the activities of SOD, CAT, and GSH, decrease the phosphorylation of JNK and ERK1/2 proteins, and up-regulate the expression of Nrf2 and HO-1. The results of fluorescence staining showed that the nucleus of the H_2O_2 treatment group showed concentrated and dense strong blue fluorescence, while the blue fluorescence intensity of the FLFs group decreased significantly. FLFs showed a protective effect against H_2O_2-induced oxidative damage in L02 cells, and the underlying mechanism is associated with the enhancement of cell capability in clearing oxygen free radicals and the inhibition of apoptosis by the activation of the MAPKs/Nrf2/HO-1 signaling pathway. The antioxidant effect of fenugreek leaf is related to its rich flavonoids.


Subject(s)
NF-E2-Related Factor 2 , Trigonella , Antioxidants/metabolism , Antioxidants/pharmacology , Apoptosis , Flavonoids/pharmacology , Hepatocytes/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Plant Leaves/metabolism , Superoxide Dismutase/metabolism , Tandem Mass Spectrometry , Trigonella/metabolism
19.
J Exp Bot ; 73(12): 4157-4169, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35383829

ABSTRACT

S-adenosyl- l-methionine (SAM) is the methyl donor involved in the biosynthesis of guaiacyl (G) and syringyl (S) lignins in vascular plants. SAM is synthesized from methionine through the catalysis of the enzyme S-adenosylmethionine synthase (SAMS). However, the detailed function of SAMS in lignin biosynthesis has not been widely investigated in plants, particularly in monocot species. In this study, we identified PvSAMS genes from switchgrass (Panicum virgatum L.), an important dual-purpose fodder and biofuel crop, and generated numerous transgenic switchgrass lines through PvSAMS RNA interference technology. Down-regulation of PvSAMS reduced the contents of SAM, G-lignins, and S-lignins in the transgenic switchgrass. The methionine and glucoside derivatives of caffeoyl alcohol were found to accumulate in the transgenic plants. Moreover, down-regulation of PvSAMS in switchgrass resulted in brownish stems associated with reduced lignin content and improved cell wall digestibility. Furthermore, transcriptomic analysis revealed that most sulfur deficiency-responsive genes were differentially expressed in the transgenic switchgrass, leading to a significant increase in total sulfur content; thus implying an important role of SAMS in the methionine cycle, lignin biosynthesis, and sulfur assimilation. Taken together, our results suggest that SAMS is a valuable target in lignin manipulation, and that manipulation of PvSAMS can simultaneously regulate the biosynthesis of SAM and methylated monolignols in switchgrass.


Subject(s)
Panicum , Cell Wall/metabolism , Down-Regulation , Gene Expression Regulation, Plant , Lignin/metabolism , Methionine/metabolism , Panicum/genetics , Panicum/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , S-Adenosylmethionine/metabolism , Sulfur/metabolism
20.
New Phytol ; 235(2): 563-575, 2022 07.
Article in English | MEDLINE | ID: mdl-35383390

ABSTRACT

Strigolactones (SLs) play a critical role in regulating plant tiller number. LATERAL BRANCHING OXIDOREDUCTASE (LBO) encodes an important late-acting enzyme for SL biosynthesis and regulates shoot branching in Arabidopsis. However, little is known about the function of LBO in monocots including switchgrass (Panicum virgatum L.), a dual-purpose fodder and biofuel crop. We studied the function of PvLBO via the genetic manipulation of its expression levels in both the wild-type and miR156 overexpressing (miR156OE ) switchgrass. Co-expression analysis, quantitative real-time polymerase chain reaction (qRT-PCR), transient dual luciferase assay, and chromatin immunoprecipitation-qPCR were all used to determine the activation of PvLBO by miR156-targeted Squamosa Promoter Binding Protein-like 2 (PvSPL2) in regulating tillering of switchgrass. PvLBOtranscripts dramatically declined in miR156OE transgenic switchgrass, and the overexpression of PvLBO in the miR156OE transgenic line produce fewer tillers than the control. Furthermore, we found that PvSPL2 can directly bind to the promoter of PvLBO and activate its transcription, suggesting that PvLBO is a novel downstream gene of PvSPL2. We propose that PvLBO functions as an SL biosynthetic gene to mediate tillering and acts as an important downstream factor in the crosstalk between the SL biosynthetic pathway and the miR156-SPL module in switchgrass.


Subject(s)
Arabidopsis , MicroRNAs , Panicum , Arabidopsis/genetics , Carrier Proteins/metabolism , Gene Expression Regulation, Plant , MicroRNAs/genetics , MicroRNAs/metabolism , Oxidoreductases/metabolism , Panicum/metabolism , Plants, Genetically Modified/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...