Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
1.
Vet Res ; 55(1): 82, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937820

ABSTRACT

Respiratory diseases constitute a major health problem for ruminants, resulting in considerable economic losses throughout the world. Parainfluenza type 3 virus (PIV3) is one of the most important respiratory pathogens of ruminants. The pathogenicity and phylogenetic analyses of PIV3 virus have been reported in sheep and goats. However, there are no recent studies of the vaccination of sheep or goats against PIV3. Here, we developed a purified inactivated ovine parainfluenza virus type 3 (OPIV3) vaccine candidate. In addition, we immunized sheep with the inactivated OPIV3 vaccine and evaluated the immune response and pathological outcomes associated with OPIV3 TX01 infection. The vaccinated sheep demonstrated no obvious symptoms of respiratory tract infection, and there were no gross lesions or pathological changes in the lungs. The average body weight gain significantly differed between the vaccinated group and the control group (P < 0.01). The serum neutralization antibody levels rapidly increased in sheep post-vaccination and post-challenge with OPIV3. Furthermore, viral shedding in nasal swabs and viral loads in the lungs were reduced. The results of this study suggest that vaccination with this candidate vaccine induces the production of neutralizing antibodies and provides significant protection against OPIV3 infection. These results may be helpful for further studies on prevention and control strategies for OPIV3 infections.


Subject(s)
Respirovirus Infections , Sheep Diseases , Vaccines, Inactivated , Viral Vaccines , Animals , Sheep , Respirovirus Infections/veterinary , Respirovirus Infections/prevention & control , Respirovirus Infections/virology , Respirovirus Infections/immunology , Vaccines, Inactivated/immunology , Sheep Diseases/prevention & control , Sheep Diseases/virology , Sheep Diseases/immunology , Viral Vaccines/immunology , Respirovirus/immunology , Immunogenicity, Vaccine , Vaccination/veterinary
2.
Pharmaceutics ; 16(6)2024 May 30.
Article in English | MEDLINE | ID: mdl-38931866

ABSTRACT

Background: Nanoparticles conjugated with fluorescent probes have versatile applications, serving not only for targeted fluorescent imaging but also for evaluating the in vivo profiles of designed nanoparticles. However, the relationship between fluorophore density and nanoparticle behavior remains unexplored. Methods: The IR783-modified liposomes (IR783-sLip) were prepared through a modified ethanol injection and extrusion method. The cellular uptake efficiency of IR783-sLip was characterized by flow cytometry and fluorescence microscope imaging. The effects of IR783 density on liposomal in vivo behavior were investigated by pharmacokinetic studies, biodistribution studies, and in vivo imaging. The constitution of protein corona was analyzed by the Western blot assay. Results: Dense IR783 modification improved cellular uptake of liposomes in vitro but hindered their blood retention and tumor imaging performance in vivo. We found a correlation between IR783 density and protein corona absorption, particularly IgM, which significantly impacted the liposome performance. Meanwhile, we observed that increasing IR783 density did not consistently improve the effectiveness of tumor imaging. Conclusions: Increasing the density of modified IR783 on liposomes is not always beneficial for tumor near-infrared (NIR) imaging yield. It is not advisable to prematurely evaluate novel nanomaterials through fluorescence dye conjugation without carefully optimizing the density of the modifications.

3.
J Clin Oncol ; : JCO2401001, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38857463

ABSTRACT

PURPOSE: Phase 3 studies of intravenous amivantamab demonstrated efficacy across EGFR-mutated advanced non-small cell lung cancer (NSCLC). A subcutaneous formulation could improve tolerability and reduce administration time while maintaining efficacy. PATIENTS AND METHODS: Patients with EGFR-mutated advanced NSCLC who progressed following osimertinib and platinum-based chemotherapy were randomized 1:1 to receive subcutaneous or intravenous amivantamab, both combined with lazertinib. Co-primary pharmacokinetic noninferiority endpoints were trough concentrations (Ctrough; on cycle-2-day-1 or cycle-4-day-1) and cycle-2 area under the curve (AUCD1-D15). Key secondary endpoints were objective response rate (ORR) and progression-free survival (PFS). Overall survival (OS) was a predefined exploratory endpoint. RESULTS: Overall, 418 patients underwent randomization (subcutaneous group, n=206; intravenous group, n=212). Geometric mean ratios of Ctrough for subcutaneous to intravenous amivantamab were 1.15 (90% CI, 1.04-1.26) at cycle-2-day-1 and 1.42 (90% CI, 1.27-1.61) at cycle-4-day-1; the cycle-2 AUCD1-D15 was 1.03 (90% CI, 0.98-1.09). ORR was 30% in the subcutaneous and 33% in the intravenous group; median PFS was 6.1 and 4.3 months, respectively. OS was significantly longer in the subcutaneous versus intravenous group (hazard ratio for death, 0.62; 95% CI, 0.42-0.92; nominal P=0.02). Fewer patients in the subcutaneous group experienced infusion-related reactions (13% versus 66%) and venous thromboembolism (9% versus 14%) versus the intravenous group. Median administration time for first infusion was reduced to 4.8 minutes (range, 0-18) for subcutaneous amivantamab from 5 hours (range, 0.2-9.9) for intravenous amivantamab. During cycle-1-day-1, 85% and 52% of patients in the subcutaneous and intravenous groups, respectively, considered treatment convenient; end-of-treatment rates were 85% and 35%, respectively. CONCLUSION: Subcutaneous amivantamab-lazertinib demonstrated noninferiority to intravenous amivantamab-lazertinib, offering a consistent safety profile with reduced infusion-related reactions, increased convenience, and prolonged survival.

4.
Front Cardiovasc Med ; 11: 1340602, 2024.
Article in English | MEDLINE | ID: mdl-38784169

ABSTRACT

Background: The relationship between obstructive sleep apnea syndrome (OSAS) and diabetic microangiopathy remains controversial. Objective: This study aimed to use bidirectional two-sample Mendelian Randomization (MR) to assess the causal relationship between OSAS and diabetic microangiopathy. Methods: First, we used the Linkage Disequilibrium Score Regression(LDSC) analysis to assess the genetic correlation. Then, the bidirectional two-sample MR study was conducted in two stages: OSAS and lung function-related indicators (forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1)) were investigated as exposures, with diabetic microangiopathy as the outcome in the first stage, and genetic tools were used as proxy variables for OSAS and lung function-related measures in the second step. Genome-wide association study data came from the open GWAS database. We used Inverse-Variance Weighted (IVW), MR-Egger regression, Weighted median, Simple mode, and Weighted mode for effect estimation and pleiotropy testing. We also performed sensitivity analyses to test the robustness of the results. Furthermore, we performed multivariate and mediation MR analyses. Results: In the LDSC analysis, We found a genetic correlation between OSAS, FVC, FEV 1, and diabetic microangiopathy. In the MR analysis, based on IVW analysis, genetically predicted OSAS was positively correlated with the incidence of diabetic retinopathy (DR), diabetic kidney disease (DKD), and diabetic neuropathy (DN). In the subgroup analysis of DR, there was a significant causal relationship between OSAS and background diabetic retinopathy (BDR) and proliferative diabetic retinopathy (PDR). The reverse MR did not show a correlation between the incidence of diabetic microangiopathy and OSAS. Reduced FVC had a potential causal relationship with increased incidence of DR and PDR. Reduced FEV1 had a potential causal relationship with the increased incidence of BDR, PDR, and DKD. Multivariate MR analysis showed that the association between OSAS and diabetic microangiopathy remained significant after adjusting for confounding factors. However, we did not find the significant mediating factors. Conclusion: Our results suggest that OSAS may be a cause of the development of diabetic microangiopathy, and OSAS may also be associated with a high risk of diabetic microangiopathy, providing a reference for a better understanding of the prevention of diabetic microangiopathy.

5.
J Med Virol ; 96(5): e29627, 2024 May.
Article in English | MEDLINE | ID: mdl-38659381

ABSTRACT

The immune mechanism underlying hepatitis B surface antigen (HBsAg) loss, particularly type I inflammatory response, during pegylated interferon-α (PEG-IFN) therapy remains unclear. In this study, we aimed to elucidate such immune mechanisms. Overall, 82 patients with chronic hepatitis B (CHB), including 41 with HBsAg loss (cured group) and 41 uncured patients, received nucleos(t)ide analogue and PEG-IFN treatments. Blood samples from all patients, liver tissues from 14 patients with CHB, and hepatic perfusate from 8 liver donors were collected for immune analysis. Jurkat, THP-1 and HepG2.2.15 cell lines were used in cell experiments. The proportion of IFN-γ+ Th1 cells was higher in the cured group than in the uncured group, which was linearly correlated with HBsAg decline and alanine aminotransferase (ALT) levels during treatment. However, CD8+ T cells were weakly associated with HBsAg loss. Serum and intrahepatic levels of Th1 cell-associated chemokines (C-X-C motif chemokine ligand [CXCL] 9, CXCL10, CXCL11, IFN-γ) were significantly lower in the cured patients than in patients with a higher HBsAg quantification during therapy. Serum from cured patients induced more M1 (CD68+CD86+ macrophage) cells than that from uncured patients. Patients with chronic HBV infection had significantly lower proportions of CD86+ M1 and CD206+ M2 macrophages in their livers than healthy controls. M1 polarization of intrahepatic Kupffer cells promoted HBsAg loss by upregulating the effector function of tissue-resident memory T cells with increased ALT levels. IFN-γ+ Th1 activates intrahepatic resident memory T cells to promote HBsAg loss by inducing M1 macrophage polarization.


Subject(s)
Hepatitis B Surface Antigens , Hepatitis B, Chronic , Liver , Macrophages , Memory T Cells , Th1 Cells , Adult , Female , Humans , Male , Middle Aged , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , Hepatitis B Surface Antigens/immunology , Hepatitis B virus/immunology , Hepatitis B, Chronic/immunology , Hepatitis B, Chronic/drug therapy , Interferon-alpha , Interferon-gamma , Liver/immunology , Macrophages/immunology , Memory T Cells/immunology , Th1 Cells/immunology
6.
Cell Biosci ; 14(1): 54, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678227

ABSTRACT

BACKGROUND: Extensive hepatocyte mortality and the absence of specific medical therapy significantly contribute to the unfavorable prognosis of acute liver failure (ALF). Ferroptosis is a crucial form of cell death involved in ALF. In this study, we aimed to determine the impact of Mediator complex subunit 1 (Med1) on ferroptosis and its potential hepatoprotective effects in ALF. RESULTS: Med1 expression is diminished in the liver of lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-induced ALF mice, as well as in hepatocytes damaged by H2O2 or TNF-α/D-GalN in vitro. Med1 overexpression mitigates liver injury and decreases the mortality rate of ALF mice by ferroptosis inhibition. The mechanism by which Med1 inhibits erastin-induced ferroptosis in hepatocytes involves the upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream antioxidant genes heme oxygenase-1 (HO-1), glutamate cysteine ligase catalytic (GCLC), and NAD(P)H quinone oxidoreductase 1 (NQO1). Furthermore, Med1 overexpression suppresses the transcription of proinflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the liver of mice with LPS/D-GalN-induced ALF. CONCLUSION: Overall, our research findings indicate that Med1 suppresses ferroptosis and alleviates liver injury in LPS/D-GalN-induced ALF through the activation of Nrf2. These findings substantiate the therapeutic viability of targeting the Med1-Nrf2 axis as a means of treating individuals afflicted with ALF.

7.
Thorac Cancer ; 15(13): 1072-1081, 2024 May.
Article in English | MEDLINE | ID: mdl-38532546

ABSTRACT

BACKGROUND: Neoadjuvant chemoimmunotherapy (NCIT) for locally advanced esophageal squamous cell carcinoma (ESCC) is supported by increasing data, but the sample size is limited, and the findings are not completely consistent. We conducted a real-world study and a meta-analysis to evaluate the efficacy and safety of NCIT in locally advanced ESCC. METHODS: We retrospectively assessed the outcomes of patients with locally advanced ESCC who completed NICT and subsequent esophagectomy at our hospital between January 2019 and December 2022, including pathological complete response (pCR) rate, major pathological response (MPR) rate, 1-, 2-, and 3-year overall survival (OS) rates, disease control rate (DCR), objective response rate (ORR), 1-year recurrence rate, R0 resection rate and adverse events. Moreover, a meta-analysis of 27 published literatures was also conducted for comparison. RESULTS: In the analysis, 128 patients were studied, with 25% achieving pCR, 46.1% MPR, and 99.2% R0 resection. The 1-, 2-, and 3-year OS rates were 91.41% (95% CI: 85.15%-95.63%), 75.00% (95% CI: 66.58%-82.23%) and 64.84% (95% CI: 55.91%-73.07%).ORR and DCR were 31.2% (95% CI: 23.31-39.99) and 64.1% (95% CI: 55.15%-72.38%), and the 1-year recurrence rate was 26.7% (95% CI: 22.5%-38.1%). Treatment-related events occurred in 96.1% but were acceptable. In a meta-analysis of 27 studies with 1734 patients, pooled rates for pCR, MPR, ORR, DCR, and R0 resection were 29%, 52%, 71%, 97%, and 98%, respectively, with a 1-year recurrence rate of 12%. CONCLUSION: NCIT is safe and provides potential survival benefits for patients with locally advanced ESCC. However, randomized phase 3 trial data is still needed.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Immunotherapy , Neoadjuvant Therapy , Humans , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/therapy , Esophageal Squamous Cell Carcinoma/mortality , Neoadjuvant Therapy/methods , Esophageal Neoplasms/pathology , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/mortality , Esophageal Neoplasms/therapy , Male , Female , Immunotherapy/methods , Middle Aged , Aged , Retrospective Studies , Adult
8.
Transl Lung Cancer Res ; 13(2): 345-354, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38496687

ABSTRACT

Background: To date, the role of programmed death ligand-1 (PD-L1) messenger RNA (mRNA) derived from tumor-educated platelets (TEPs) has not been well investigated in patients with advanced non-small cell lung cancer (NSCLC). A few reports have examined whether mRNA in TEPs can predict the clinical responses of patients with advanced NSCLC following immunotherapy. This study aimed to identify novel biomarkers to improve the clinical benefits and outcomes of NSCLC patients. Methods: Advanced NSCLC patients receiving a combination of immunotherapy and chemotherapy, or immunotherapy alone as a first- or second-line treatment at the Fudan University Shanghai Cancer Center were enrolled in this study. All the patients had wild-type epidermal growth factor receptor/anaplastic lymphoma kinase. The patients were enrolled in clinical trials for immune checkpoint inhibitors (ICIs), including nivolumab, pembrolizumab, atezolizumab, durvalumab, tremelimumab, and camrelizumab. Tumoral PD-L1 expression was tested by immunohistochemistry (PD-L1 22C3 pharmDx kit, Agilent, Santa Clara, CA, USA) in archived tissue samples, when available, to calculate the tumor proportion scores (TPSs). RNA and exosomal RNA of blood were isolated before immunotherapy using the Yunying RNA extraction kit (Yunying Medicine, Shanghai, China). The concentration and quality of the RNA was determined using a Qubit fluorometer (Life Technologies, Carlsbad, CA, USA). Finally, we analyzed the predictive value of TEP-derived PD-L1 mRNA expression and association with the level of the tumoral PD-L1 expression. Results: In total, 72 patients were enrolled in this study. Most of the patients were male (n=54, 75.0%), had adenocarcinoma (n=49, 68.1%). We found there was no significant correlation between the TEP-derived mRNA of PD-L1 and tumoral PD-L1 expression based on the results of the Pearson Correlation test (r=-0.19, P=0.233). Based on the median of PD-L1 mRNA, 72 patients were divided into a high PD-L1 group and a low PD-L1 group. We found that 19 patients (44.4%) responded to immunotherapy [partial response or progression-free survival (PFS) >6 months] in the high PD-L1 group, but only five patients (13.9%) responded to immunotherapy in the low PD-L1 group (P<0.01). The median PFS of the low PD-L1 group was lower than that of the high PD-L1 group (2.8 vs. 8.3 months, P<0.001). For the patients who were treated with immunotherapy alone (n=64), a similar PFS advantage was observed in the high PD-L1 group (2.8 vs. 8.0 months, P=0.002). Conclusions: This article presented the first data on TEP-derived PD-L1 mRNA in advanced NSCLC patients following immunotherapy and showed the potential advantage of using it as the surrogate biomarker for predicting the PFS and overall survival of patients following immunotherapy.

9.
Transl Lung Cancer Res ; 13(2): 292-306, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38496688

ABSTRACT

Background: Despite recent progresses in immune checkpoint blockade (ICB) in small-cell lung cancer (SCLC), a lack of understanding regarding the systemic tumor immune environment (STIE) and local tumor immune microenvironment (TIME) makes it difficult to accurately predict clinical outcomes and identify potential beneficiaries from ICB therapy. Methods: We enrolled 191 patients with stage I-III SCLC and comprehensively evaluated the prognostic role of STIE by several quantitative measurements, and further integrate it with a local immune score system (LISS) established by eXtreme Gradient Boosting (XGBoost) machine learning algorithm. We also test the value of STIE in beneficiary selection in our independent advanced SCLC cohort receiving programmed cell death 1 ligand 1 (PD-L1) blockade therapy. Results: Among several systemic immune markers, the STIE as assessed by prognostic nutritional index (PNI) was correlated with disease-free survival (DFS) and overall survival (OS), and remained as an independent prognostic factor for SCLC patients [hazard ratio (HR): 0.473, 95% confidence interval (CI): 0.241-0.929, P=0.030]. Higher PNI score was closely associated with inflamed SCLC molecular subtype and local tumor-infiltrating lymphocytes (TILs). We further constructed a LISS which combined top three important local immune biomarkers (CD8+ T-cell count, PD-L1 expression on CD8+ T-cell and CD4+ T-cell count) and integrated it with the PNI score. The final integrated immune risk system was an independent prognostic factor and achieved better predictive performance than Tumor Node Metastasis (TNM) stages and single immune biomarker. Furthermore, PNI-high extensive-stage SCLC patients achieved better clinical response and longer progression-free survival (PFS) (11.8 vs. 5.9 months, P=0.012) from PD-L1 blockade therapy. Conclusions: This study provides a method to investigate the prognostic value of overall immune status by combining the PNI with local immune biomarkers in SCLC. The promising clinical application of PNI in efficacy prediction and beneficiary selection for SCLC immunotherapy is also highlighted.

10.
Clin Chem ; 70(4): 629-641, 2024 04 03.
Article in English | MEDLINE | ID: mdl-38416709

ABSTRACT

BACKGROUND: ROS1 fusion-positive (ROS1+) nonsmall cell lung cancer (NSCLC) patients are highly sensitive to tyrosine kinase inhibitor (TKI) treatments. However, acquired TKI resistance remains the major hurdle preventing patients from experiencing prolonged benefits. METHODS: 107 advanced or metastatic ROS1+ NSCLC patients who progressed on crizotinib and lorlatinib were recruited. Tissue and plasma samples were collected at baseline (N = 50), postcrizotinib (N = 91), and postlorlatinib (N = 21), which were all subject to the 139-gene targeted next-generation DNA sequencing. Molecular dynamics modeling was performed to investigate the effects of ROS1 mutations on binding to different TKIs. RESULTS: In patients with postcrizotinib and postlorlatinib samples, an accumulation of on- and off-target resistance alterations after multiple TKI treatments was observed. ROS1 G2032R and MET amplification were the most common on-target and off-target alterations, respectively. Patients with CD74-ROS1 and SLC34A2-ROS1 had longer progression-free survival (PFS) (P < 0.001) and higher rates of resistance mutations (on-target, P = 0.001; off-target, P = 0.077) than other ROS1 fusion variants following crizotinib treatment. Ten distinct on-target resistance mutations were detected after TKI therapies, of which 4 were previously unreported (ROS1 L2010M, G1957A, D1988N, L1982V). Molecular dynamics simulations showed that all 4 mutations were refractory to crizotinib, while G1957A, D1988N, and L1982V were potentially sensitive to lorlatinib and entrectinib. CONCLUSIONS: This study provided a comprehensive portrait of TKI-resistance mechanisms in ROS1+ NSCLC patients. Using in silico simulations of TKI activity, novel secondary mutations that may confer TKI resistance were identified and may support clinical therapeutic decision-making.


Subject(s)
Aminopyridines , Carcinoma, Non-Small-Cell Lung , Lactams , Lung Neoplasms , Pyrazoles , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Crizotinib/therapeutic use , Crizotinib/pharmacology , Protein-Tyrosine Kinases/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Lactams, Macrocyclic/pharmacology , Lactams, Macrocyclic/therapeutic use , Drug Resistance, Neoplasm/genetics
11.
Foods ; 12(21)2023 Nov 04.
Article in English | MEDLINE | ID: mdl-37959147

ABSTRACT

Preserved egg white (PEW) has excellent gelling properties but is susceptible to the freshness of raw eggs. In this study, the correlation between the comprehensive freshness index (CFI) of raw eggs and the gelling properties of alkali-induced egg white gel (EWG) was elucidated. Results showed that the CFI, established by a principal component analysis (PCA) and stepwise regression analysis (SRA) methods, can be used to predict the freshness of duck eggs under storage conditions of 25 °C and 4 °C. A correlation analysis demonstrated that the CFI showed a strong negative correlation with the hardness and chewiness of alkali-induced EWG and a strong positive correlation with resilience within 12 days of storage at 25 °C and 20 days at 4 °C (p < 0.01). It might be due to the decrease in α-helix and disulfide bonds, as well as the hydrophobic interactions showing a first decrease and then an increase within the tested days. This study can provide an important theoretical basis for preserved egg pickling.

12.
Genomics ; 115(6): 110737, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37926353

ABSTRACT

BACKGROUND: Acute-on-chronic liver failure (ACLF) is a major challenge in the field of hepatology. While mesenchymal stem cell (MSC) therapy can improve the prognosis of patients with ACLF, the molecular mechanisms through which MSCs attenuate ACLF remain poorly understood. We performed global miRNA and mRNA expression profiling via next-generation sequencing of liver tissues from MSC-treated ACLF mice to identify important signaling pathways and major factors implicated in ACLF alleviation by MSCs. METHODS: Carbon tetrachloride-induced ACLF mice were treated with saline or mouse bone marrow-derived MSCs. Mouse livers were subjected to miRNA and mRNA sequencing. Related signal transduction pathways were obtained through Gene Set Enrichment Analysis. Functional enrichment, protein-protein interaction, and immune infiltration analyses were performed for the differentially expressed miRNA target genes (DETs). Hub miRNA and mRNA associated with liver injury were analyzed using LASSO regression. The expression levels of hub genes were subjected to Pearson's correlation analysis and verified using RT-qPCR. The biological functions of hub genes were verified in vitro. RESULTS: The tricarboxylic acid cycle and peroxisome proliferator-activated receptor pathways were activated in the MSC-treated groups. The proportions of liver-infiltrating NK resting cells, M2 macrophages, follicular helper T cells, and other immune cells were altered after MSC treatment. The expression levels of six miRNAs and 10 transcripts correlated with the degree of liver injury. miR-27a-5p was downregulated in the mouse liver after MSC treatment, while its target gene E2f2 was upregulated. miR-27a-5p inhibited E2F2 expression, suppressed G1/S phase transition and proliferation of hepatocytes, in addition to promoting their apoptosis. CONCLUSIONS: This is the first comprehensive analysis of miRNA and mRNA expression in the liver tissue of ACLF mice after MSC treatment. The results revealed global changes in hepatic pathways and immune subpopulations. The miR-27a-5p/E2F2 axis emerged as a central regulator of the MSC-induced attenuation of ACLF. The current findings improve our understanding of the molecular mechanisms through which MSCs alleviate ACLF.


Subject(s)
Acute-On-Chronic Liver Failure , Mesenchymal Stem Cells , MicroRNAs , Humans , Mice , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Acute-On-Chronic Liver Failure/genetics , Acute-On-Chronic Liver Failure/therapy , Acute-On-Chronic Liver Failure/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Mesenchymal Stem Cells/metabolism
14.
Stem Cells ; 41(12): 1171-1184, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-37659098

ABSTRACT

Acute-on-chronic liver failure (ACLF) is a severe disease with a high mortality. Macrophage-related inflammation plays a crucial role in ACLF development. Mesenchymal stem cells (MSCs) treatment was demonstrated to be beneficial in ACLF in our previous study; however, the underlying mechanisms remain unknown. Therefore, mouse bone marrow-derived MSCs were used to treat an ACLF mouse model or cocultured with RAW264.7/J774A.1 macrophages that were stimulated with LPS. Histological and serological parameters and survival were analyzed to evaluate efficacy. We detected changes of Mer tyrosine kinase (Mertk), JAK1/STAT6, inflammatory cytokines, and markers of macrophage polarization in vitro and in vivo. In ACLF mice, MSCs improved liver function and 48-h survival of ACLF mice and alleviated inflammatory injury by promoting M2 macrophage polarization and elevated Mertk expression levels in macrophages. This is significant, as Mertk regulates M2 macrophage polarization via the JAK1/STAT6 signaling pathway.


Subject(s)
Acute-On-Chronic Liver Failure , Mesenchymal Stem Cells , Mice , Animals , Acute-On-Chronic Liver Failure/metabolism , Protein-Tyrosine Kinases/metabolism , Macrophages/metabolism , Signal Transduction , Mesenchymal Stem Cells/metabolism , c-Mer Tyrosine Kinase/genetics , c-Mer Tyrosine Kinase/metabolism
15.
Sci Rep ; 13(1): 15005, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37696930

ABSTRACT

The myocardial single photon emission computed tomography (SPECT) is a good study due to its clinical significance in the diagnosis of myocardial disease and the requirement for improving image quality. However, SPECT imaging faces challenges related to low spatial resolution and significant statistical noise, which concerns patient radiation safety. In this paper, a novel reconstruction system combining multi-detector elliptical SPECT (ME-SPECT) and computer tomography (CT) is proposed to enhance spatial resolution and sensitivity. The hybrid imaging system utilizes a slit-slat collimator and elliptical orbit to improve sensitivity and signal-to-noise ratio (SNR), obtains accurate attenuation mapping matrices, and requires prior information from integrated CT. Collimator parameters are corrected based on CT reconstruction results. The SPECT imaging system employs an iterative reconstruction algorithm that utilizes prior knowledge. An iterative reconstruction algorithm based on prior knowledge is applied to the SPECT imaging system, and a method for prioritizing the reconstruction of regions of interest (ROI) is introduced to deal with severely truncated data from ME-SPECT. Simulation results show that the proposed method can significantly improve the system's spatial resolution, SNR, and image fidelity. The proposed method can effectively suppress distortion and artifacts with the higher spatial resolution ordered subsets expectation maximization (OSEM); slit-slat collimation.


Subject(s)
Cardiac Imaging Techniques , Orbit , Humans , Tomography, Emission-Computed, Single-Photon , Tomography, X-Ray Computed , Computers
16.
Cancer Treat Rev ; 120: 102605, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37703723

ABSTRACT

The advent of targeted therapies for oncogenic mutations has led to a major paradigm shift in the management of non-small cell lung cancer (NSCLC). Molecular targets, such as epidermal growth factor receptor (EGFR)-activating mutations in the region of exons 18 through 21 are the most common oncogenic driver in NSCLC. Classical activating mutations, such as in-frame deletions in exon 19 and point mutations in exon 21 (L858R), are strong predictors for good clinical response to the approved EGFR-tyrosine kinase inhibitors (EGFR-TKIs). However, low frequency mutations occurring within exon 20 (ex20ins) have poorer responses to first/second generation EGFR-TKIs. Moreover, patients with NSCLC harboring EGFR ex20ins are known to have poorer prognosis than those with other EGFR-TKI sensitive mutations, leading to unmet clinical need of novel specific therapeutic options. Rapid changes in molecular diagnostics identifying specific causes have hastened the translation of diagnostic recommendations into clinical practice. Emergence of treatment strategies targeting EGFR ex20ins, such as newer EGFR-TKIs with increased specificity and novel approaches using bispecific monoclonal antibodies, may hold promising therapeutic options in the near future. In this review, we describe the structural, molecular characteristics, and detection strategies of EGFR ex20ins mutations and summarize the latest clinical data on approved treatments and emerging therapies for patients with NSCLC harboring EGFR ex20ins mutations. Further, we will discuss the response heterogeneity of ex20ins mutations to new drugs and acquired drug resistance mechanisms.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mutagenesis, Insertional , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Mutation , ErbB Receptors/genetics
17.
MedComm (2020) ; 4(5): e385, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37750088

ABSTRACT

[This corrects the article DOI: 10.1002/mco2.237.].

18.
IEEE J Biomed Health Inform ; 27(12): 5827-5836, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37751334

ABSTRACT

Research on orthodontic treatment monitoring from oralscan video is a new direction in dental digitalization. We designed an approach to reconstruct, segment, and estimate the pose of individual teeth to measure orthodontic treatment. To handle the semantic gap in heterogeneous data on the condition that they are combined linearly, we present a multimedia interaction network (MIN) to combine heterogeneous information in point cloud segmentation by extending the graph attention mechanism. Moreover, a structure-aware quadruple loss is designed to explore the relation between multiple and diverse unmatched points in point cloud registration. The performance of our approach is evaluated on multiple tooth registration datasets, and extensive experiments show that our approach improves the accuracy by a margin of 1.4% in the inlier ratio on the Aoralscan3 dataset when it is compared with prevailing approaches.


Subject(s)
Orthodontics , Tooth , Video Recording , Humans , Tooth/diagnostic imaging
19.
Adv Clin Exp Med ; 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37540157

ABSTRACT

BACKGROUND: Anastomotic leakage (AL) is a severe complication of colorectal cancer (CRC) surgery and is associated with the immune and nutritional status. OBJECTIVES: This study aimed to investigate the role of the prognostic nutritional index (PNI) in AL in CRC patients after surgery. MATERIAL AND METHODS: A retrospective case-control study was designed in a single center. The clinicopathological features and preoperative laboratory data of 124 CRC patients and 120 non-cancer patients who underwent surgery were collected and examined. Among the CRC patients, 24 had AL. RESULTS: Nutritional indicators were lower in CRC patients than in non-cancer patients (p < 0.05), but the clinical parameters analysis showed that only metastasis (M) stage, albumin, carcinoembryonic antigen (CEA), CA153, and PNI were associated with AL in CRC after surgery (p < 0.05). Prognostic nutritional index had a moderate predictive value for AL, with an area under the curve (AUC) of 0.625. Using the median value as a cutoff point, a high PNI was associated with a longer survival time in CRC patients (p = 0.033), and AL showed marginal significance (p = 0.048). The nomogram showed that PNI has a better prognostic value than tumor-node-metastasis (TNM) staging in CRC patients who underwent surgery. CONCLUSIONS: Prognostic nutritional index is a useful supplement for predicting AL in CRC patients after colorectal surgery. It also helps predict the prognosis of CRC patients.

20.
J Cancer ; 14(9): 1607-1622, 2023.
Article in English | MEDLINE | ID: mdl-37325053

ABSTRACT

Objective: The main purpose of this study is to perform a comprehensive investigation of the prognostic value and molecular mechanism of syntaxin binding protein 5 antisense RNA 1 (STXBP5-AS1) through the whole genome RNA sequencing data of the The Cancer Genome Atlas (TCGA) colon adenocarcinoma (COAD) cohort. Methods: There were 438 COAD patients were fit into current study for survival analysis. Gene expression profiling interactive analysis 2.0, Database for Annotation, Visualization and Integrated Discovery v6.8, gene set enrichment analysis (GSEA) and connectivity map (CMap) are used to investigate the molecular mechanisms and targeted drugs of STXBP5-AS1 in COAD. Results: By comparing the expression level of tumor and non-tumor tissues, we found that STXBP5-AS1 was notablely down-regulated in COAD tumor tissues. Survival analysis suggested that low STXBP5-AS1 expression was significantly related to poor overall survival (OS) of COAD (log-rank P=0.035, adjusted P=0.005, HR=0.545, 95%CI=0.356-0.836). The enrichment analysis of STXBP5-AS1 co-expressed genes, GSEA and differentially expressed genes suggests that STXBP5-AS1 may play a part in COAD by regulating the following biological processes or pathways: cell junction, DNA replication, apoptosis, cell cycle, metastasis, tumor protein 53, Wnt, mTORC1, MCM, notch receptor 4, transforming growth factor beta receptor, and cGMP-PKG signaling pathway. CMap analysis was screened out four small molecule drugs (anisomycin, cephaeline, NU-1025 and quipazine) that may be used as STXBP5-AS1 targeted therapy drugs in COAD. The co-expression analysis of STXBP5-AS1 and immune cell gene signature indicated that STXBP5-AS1 was significantly related to immune cell gene set in normal intestinal tissues, but not in COAD tumor tissues. Conclusion: Our results revealed that STXBP5-AS1 is notablely down-regulated in COAD tumor tissues, and may act as a novel prognostic biomarker for COAD.

SELECTION OF CITATIONS
SEARCH DETAIL