Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.311
1.
Cell Biochem Biophys ; 2024 May 09.
Article En | MEDLINE | ID: mdl-38724756

The steroid hormone 17ß-estradiol (E2) has a significant impact on the development and progression of tumors. E2 stimulates tumor cell growth and metabolism, leading to an increase in reactive oxygen species (ROS) production. However, the rise in ROS levels is not sufficient to cause severe harm to cancer cells. and the mechanisms that regulate ROS are not well understood. Since FOXM1 plays a crucial role in the production of ROS, we aimed to investigate the impact of E2 on oxidative stress and the involvement of FOXM1 in the Ishikawa endometrial cancer cell line. Our research revealed that E2 controls the levels of ROS inside cells and safeguards them from apoptosis by promoting the expression of FOXM1. We observed a decrease in the expression of FOXM1 alongside an increase in oxidative damage. Moreover, cells demonstrated elevated levels of FOXM1 and ERα upon E2 treatment. Overall, our findings suggest that E2 prevents apoptosis induced by oxidative stress in endometrial cancer cells by encouraging the expression of FOXM1, potentially affecting ERα.

2.
Cell Mol Immunol ; 2024 May 28.
Article En | MEDLINE | ID: mdl-38806624

Psoriasis is a common chronic inflammatory skin disease driven by the aberrant activation of dendritic cells (DCs) and T cells, ultimately leading to increased production of cytokines such as interleukin (IL)-23 and IL-17A. It is established that the cGAS-STING pathway is essential for psoriatic inflammation, however, the specific role of cGAS-STING signaling in DCs within this context remains unclear. In this study, we demonstrated the upregulation of cGAS-STING signaling in psoriatic lesions by analyzing samples from both clinical patients and imiquimod (IMQ)-treated mice. Using a conditional Sting-knockout transgenic mouse model, we elucidated the impact of cGAS-STING signaling in DCs on the activation of IL-17- and IFN-γ-producing T cells in psoriatic inflammation. Ablation of the Sting hampers DC activation leads to decreased numbers of IL-17-producing T cells and Th1 cells, and thus subsequently attenuates psoriatic inflammation in the IMQ-induced mouse model. Furthermore, we explored the therapeutic potential of the STING inhibitor C-176, which reduces psoriatic inflammation and enhances the anti-IL-17A therapeutic response. Our results underscore the critical role of cGAS-STING signaling in DCs in driving psoriatic inflammation and highlight a promising psoriasis treatment.

3.
Anal Chem ; 2024 May 21.
Article En | MEDLINE | ID: mdl-38773697

Sensitive identification and effective inactivation of the virus are paramount for the early diagnosis and treatment of viral infections to prevent the risk of secondary transmission of viruses in the environment. Herein, we developed a novel two-step fluorescence immunoassay using antibody/streptavidin dual-labeled polystyrene nanobeads and biotin-labeled G-quadruplex/hemin DNAzymes with peroxidase-mimicking activity for sensitive quantitation and efficient inactivation of living Zika virus (ZIKV). The dual-labeled nanobeads can specifically bind ZIKV through E protein targeting and simultaneously accumulate DNAzymes, leading to the catalytic oxidation of Amplex Red indicators and generation of intensified aggregation-induced emission fluorescence signals, with a detection limit down to 66.3 PFU/mL and 100% accuracy. Furthermore, robust reactive oxygen species generated in situ by oxidized Amplex Red upon irradiation can completely kill the virus. This sensitive and efficient detection-inactivation integrated system will expand the viral diagnostic tools and reduce the risk of virus transmission in the environment.

4.
ACS Chem Neurosci ; 2024 May 22.
Article En | MEDLINE | ID: mdl-38776461

Neuroinflammation plays an important role in Alzheimer's disease and primary tauopathies. The aim of the current study was to map [18F]GSK1482160 for imaging of purinergic P2X7R in Alzheimer's disease and primary tauopathy mouse models. Small animal PET was performed using [18F]GSK1482160 in widely used mouse models of Alzheimer's disease (APP/PS1, 5×FAD, and 3×Tg), 4-repeat tauopathy (rTg4510) mice, and age-matched wild-type mice. Increased uptake of [18F]GSK1482160 was observed in the brains of 7-month-old rTg4510 mice compared to wild-type mice and compared to 3-month-old rTg4510 mice. A positive correlation between hippocampal tau [18F]APN-1607 and [18F]GSK1482160 uptake was found in rTg4510 mice. No significant differences in the uptake of [18F]GSK1482160 was observed for APP/PS1 mice, 5×FAD mice, or 3×Tg mice. Immunofluorescence staining further indicated the distribution of P2X7Rs in the brains of 7-month-old rTg4510 mice with accumulation of tau inclusion. These findings provide in vivo imaging evidence for an increased level of P2X7R in the brains of tauopathy mice.

5.
J Med Virol ; 96(6): e29687, 2024 Jun.
Article En | MEDLINE | ID: mdl-38783821

Pregnancy heightens susceptibility to influenza A virus (IAV) infection, thereby increasing the risk of severe pneumonia and maternal mortality. It also raises the chances of adverse outcomes in offspring, such as fetal growth restriction, preterm birth, miscarriage, and stillbirth in offsprings. However, the underlying mechanisms behind these effects remain largely unknown. Syncytiotrophoblast cells, crucial in forming the placental barrier, nutrient exchange and hormone secretion, have not been extensively studied for their responses to IAV. In our experiment, we used Forskolin-treated BeWo cells to mimic syncytiotrophoblast cells in vitro, and infected them with H1N1, H5N1 and H7N9 virus stains. Our results showed that syncytiotrophoblast cells, with their higher intensity of sialic acid receptors, strongly support IAV infection and replication. Notably, high-dose viral infection and prolonged exposure resulted in a significant decrease in fusion index, as well as gene and protein expression levels associated with trophoblast differentiation, ß-human chorionic gonadotropin secretion, estrogen and progesterone biosynthesis, and nutrient transport. In pregnant BALB/c mice infected with the H1N1 virus, we observed significant decreases in trophoblast differentiation and hormone secretion gene expression levels. IAV infection also resulted in preterm labor, fetal growth restriction, and increased maternal and fetal morbidity and mortality. Our findings indicate that IAV infection in syncytiotrophoblastic cells can result in adverse pregnancy outcomes by altering trophoblast differentiation, suppressing of ß-hCG secretion, and disrupting placental barrier function.


Influenza A Virus, H1N1 Subtype , Mice, Inbred BALB C , Orthomyxoviridae Infections , Pregnancy Outcome , Trophoblasts , Female , Trophoblasts/virology , Pregnancy , Animals , Humans , Influenza A Virus, H1N1 Subtype/physiology , Mice , Orthomyxoviridae Infections/virology , Influenza, Human/virology , Cell Line , Influenza A Virus, H5N1 Subtype/physiology , Influenza A Virus, H7N9 Subtype/physiology , Influenza A Virus, H7N9 Subtype/pathogenicity , Pregnancy Complications, Infectious/virology , Placenta/virology , Virus Replication
6.
Int J Biol Macromol ; 270(Pt 2): 132524, 2024 May 20.
Article En | MEDLINE | ID: mdl-38777017

The interaction mode between persimmon leaf polyphenols (PLP) and corn starch with different amylose content and its effect on starch digestibility was studied. Results of iodine binding test, TGA, and DSC revealed that PLP interacted with starch and reduced the iodine binding capacity and thermal stability of starch. High amylopectin corn starch (HAPS) interacted with PLP mainly via hydrogen bonds, since the FT-IR of HAPS-PLP complex showed higher intensity at 3400 cm-1 and an obvious shift of 21 cm-1 to shorter wavelength, and the chemical shifts of protons in 1H NMR and the shift of C-6 peak in 13C NMR of HAPS moved to low field with the addition of PLP. Results of 1H NMR also showed the preferential formation of hydrogen bonds between PLP and OH-3 of HAPS. Different from HAPS, PLP formed V-type inclusion complex with high amylose corn starch (HAS) because XRD of HAS-PLP complex showed characteristic feature peaks of V-type inclusion complex and C-1 signal in 13C NMR of PLP-complexed HAS shifted to low field. Interaction with PLP reduced starch digestibility and HAS-PLP complex resulted in more resistant starch production than HAPS-PLP complex. To complex PLP with starch might be a potential way to prepare functional starch with slower digestion.

7.
Sleep Med ; 119: 179-186, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38692219

OBJECTIVE: This study aimed to examine the association between past/current sleep duration and macro-/micro-structural brain outcomes and explore whether hypertension or social activity plays a role in such association. METHODS: Within the UK Biobank, 40 436 dementia-free participants (age 40-70 years) underwent a baseline assessment followed by a brain magnetic resonance imaging (MRI) scan 9 years later. Past (baseline) and current (MRI scans) sleep duration (hours/day) were recorded and classified as short (≤5), intermediate (6-8), and long (≥9). Brain structural volumes and diffusion markers were assessed by MRI scans. RESULTS: Compared with past intermediate sleep, past short sleep was related to smaller cortex volumes (standardized ß [95 % CI]: -0.04 [-0.07, -0.02]) and lower regional fractional anisotropy (FA) (-0.08 [-0.13, -0.03]), while past long sleep was related to smaller regional subcortical volumes (standardized ß: -0.04 to -0.07 for thalamus, accumbens, and hippocampus). Compared to current intermediate sleep, current short sleep was associated with smaller cortex volumes (-0.03 [-0.05, -0.01]), greater white matter hyperintensities (WMH) volumes (0.04 [0.01, 0.08]), and lower regional FA (-0.07 [-0.11, -0.02]). However, current long sleep was related to smaller total brain (-0.03 [-0.05, -0.02]), grey matter (-0.05 [-0.07, -0.03]), cortex (-0.05 [-0.07, -0.03]), regional subcortical volumes [standardized ß: -0.05 to -0.09 for putamen, thalamus, hippocampus, and accumbens]), greater WMH volumes (0.06 [0.03, 0.09]), as well as lower regional FA (-0.05 [-0.09, -0.02]). The association between current long sleep duration and poor brain health was stronger among people with hypertension or low frequency of social activity (all Pinteraction <0.05). CONCLUSIONS: Both past and current short/long sleep are associated with smaller brain volume and poorer white matter health in the brain, especially in individuals with hypertension and low frequency of social activity. Our findings highlight the need to maintain 6-8 h' sleep duration for healthy brain aging.

8.
J Exp Clin Cancer Res ; 43(1): 139, 2024 May 09.
Article En | MEDLINE | ID: mdl-38725030

BACKGROUND: LncRNAs regulate tumorigenesis and development in a variety of cancers. We substantiate for the first time that LINC00606 is considerably expressed in glioblastoma (GBM) patient specimens and is linked with adverse prognosis. This suggests that LINC00606 may have the potential to regulate glioma genesis and progression, and that the biological functions and molecular mechanisms of LINC00606 in GBM remain largely unknown. METHODS: The expression of LINC00606 and ATP11B in glioma and normal brain tissues was evaluated by qPCR, and the biological functions of the LINC00606/miR-486-3p/TCF12/ATP11B axis in GBM were verified through a series of in vitro and in vivo experiments. The molecular mechanism of LINC00606 was elucidated by immunoblotting, FISH, RNA pulldown, CHIP-qPCR, and a dual-luciferase reporter assay. RESULTS: We demonstrated that LINC00606 promotes glioma cell proliferation, clonal expansion and migration, while reducing apoptosis levels. Mechanistically, on the one hand, LINC00606 can sponge miR-486-3p; the target gene TCF12 of miR-486-3p affects the transcriptional initiation of LINC00606, PTEN and KLLN. On the other hand, it can also regulate the PI3K/AKT signaling pathway to mediate glioma cell proliferation, migration and apoptosis by binding to ATP11B protein. CONCLUSIONS: Overall, the LINC00606/miR-486-3p/TCF12/ATP11B axis is involved in the regulation of GBM progression and plays a role in tumor regulation at transcriptional and post-transcriptional levels primarily through LINC00606 sponging miR-486-3p and targeted binding to ATP11B. Therefore, our research on the regulatory network LINC00606 could be a novel therapeutic strategy for the treatment of GBM.


Glioblastoma , MicroRNAs , RNA, Long Noncoding , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Animals , Mice , Disease Progression , Cell Line, Tumor , Cell Proliferation , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Male , Female , Gene Expression Regulation, Neoplastic , Cell Movement , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics , Mice, Nude , Apoptosis
9.
J Agric Food Chem ; 72(19): 10944-10957, 2024 May 15.
Article En | MEDLINE | ID: mdl-38710505

Isoflavones, the major secondary metabolites of interest due to their benefits to both human and plant health, are exclusively produced by legumes. In this study, we profiled the isoflavone content in dry seeds from 211 soybean [Glycine max (L.) Merr.] accessions grown across five environments. Broad and discernible phenotypic variations were observed among accessions, regions, and years of growth. Twenty-six single-nucleotide polymorphisms (SNPs) associated with the sum of glycitein (GLE), glycitin (GL), 6″-O-acetylglycitin (AGL), and 6″-O-malonylglycitin (MGL) contents were detected in multiple environments via a genome-wide association study (GWAS). These SNPs were located on chromosome 11 (8,148,438 bp to 8,296,956 bp, renamed qGly11-01). Glyma.11g108300 (GmGLY1), a gene that encodes a P450 family protein, was identified via sequence variation analysis, functional annotation, weighted gene coexpression network analysis (WGCNA), and expression profile analysis of candidate gene, and hairy roots transformation in soybean. Overexpression of GmGLY1 increased the glycitein content (GLC) in soybean hairy roots and transgenic seeds, while CRISPR/Cas9-generated mutants exhibited decreased GLC and increased daidzein content (DAC). Haplotype analysis revealed that GmGLY1 allelic variations significantly affect the GLC accumulation. These findings enhance our understanding of genes influencing GLC in soybean and may guide breeding for lines with high and stable GLC.


Genome-Wide Association Study , Glycine max , Isoflavones , Plant Proteins , Polymorphism, Single Nucleotide , Seeds , Glycine max/metabolism , Glycine max/genetics , Glycine max/chemistry , Isoflavones/metabolism , Isoflavones/biosynthesis , Plant Proteins/genetics , Plant Proteins/metabolism , Seeds/metabolism , Seeds/genetics , Seeds/chemistry , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Gene Expression Regulation, Plant
10.
J Photochem Photobiol B ; 255: 112923, 2024 Jun.
Article En | MEDLINE | ID: mdl-38692166

Accurately visualizing the intracellular trafficking of upconversion nanoparticles (UCNPs) loaded with phthalocyanines and achieving precise photodynamic therapy (PDT) using near-infrared (NIR) laser irradiation still present challenges. In this study, a novel NIR laser-triggered upconversion luminescence (UCL) imaging-guided nanoparticle called FA@TPA-NH-ZnPc@UCNPs (FTU) was developed for PDT. FTU consisted of UCNPs, folic acid (FA), and triphenylamino-phenylaniline zinc phthalocyanine (TPA-NH-ZnPc). Notably, TPA-NH-ZnPc showcases aggregation-induced emission (AIE) characteristic and NIR absorption properties at 741 nm, synthesized initially via molybdenum-catalyzed condensation reaction. The UCL emitted by FTU enable real-time visualization of their subcellular localization and intracellular trafficking within ovarian cancer HO-8910 cells. Fluorescence images revealed that FTU managed to escape from lysosomes due to the "proton sponge" effect of TPA-NH-ZnPc. The FA ligands on the surface of FTU further directed their transport and accumulation within mitochondria. When excited by a 980 nm laser, FTU exhibited UCL and activated TPA-NH-ZnPc, consequently generating cytotoxic singlet oxygen (1O2), disrupted mitochondrial function and induced apoptosis in cancer cells, which demonstrated great potential for tumor ablation.


Indoles , Infrared Rays , Isoindoles , Lysosomes , Mitochondria , Nanoparticles , Organometallic Compounds , Photochemotherapy , Zinc Compounds , Zinc Compounds/chemistry , Mitochondria/metabolism , Mitochondria/drug effects , Indoles/chemistry , Indoles/pharmacology , Lysosomes/metabolism , Humans , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Nanoparticles/chemistry , Cell Line, Tumor , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Singlet Oxygen/metabolism , Female , Folic Acid/chemistry
11.
Article En | MEDLINE | ID: mdl-38788061

OBJECTIVE: To investigate the role of Pink1/Parkin-mediated mitochondrial autophagy in exertional heat stroke-induced acute lung injury in rats. METHODS: Sixty SD rats were divided into four groups: normal group (CON group), normal Parkin overexpression group (CON + Parkin group), exertional heat stroke group (EHS group), and exertional heat stroke Parkin overexpression group (EHS + Parkin group). Adeno-associated virus carrying the Parkin gene was intravenously injected into the rats to overexpress Parkin in the lung tissue. An exertional heat stroke rat model was established, and survival curves were plotted. Lung micro-CT was performed, and lung coefficient and pulmonary microvascular permeability were measured. RESULTS: Compared with the EHS group, the survival rate of rats in the EHS + Parkin overexpression group was significantly increased, lung coefficient and pulmonary microvascular permeability were reduced, and pathological changes such as exudation and consolidation were significantly reduced. The levels of inflammatory factors IL-6, IL-1ß, TNF- α, and ROS were significantly decreased; the degree of mitochondrial swelling in type II alveolar epithelial cells was reduced, and no vacuolization was observed. Lung tissue apoptosis was reduced, and the colocalization fluorescence of Pink1 and Parkin, as well as LC3 and Tom20, were increased. The expression of Parkin and LC3-II/LC3-I ratio in lung tissue were both increased, while the expression of P62, Pink1, MFN2, and PTEN-L was decreased. CONCLUSION: Impairment of Pink1/Parkin-mediated mitochondrial autophagy function is one of the mechanisms of exertional heat stroke-induced acute lung injury in rats. Activation of the Pink1/Parkin pathway can alleviate acute lung injury caused by exertional heat stroke.

12.
Heliyon ; 10(9): e29992, 2024 May 15.
Article En | MEDLINE | ID: mdl-38756587

The current study presents a comprehensive investigation on the precipitation reaction and supramolecular interactions between berberine hydrochloride (BBR) and baicalin (BA) in an aqueous system. Utilizing a combination of multi-spectral analytical techniques and molecular dynamic simulations, we elucidated the mechanism of the complexion process. The precipitate formation was observed within a drug concentration range of 0.1-1.0 mM, and a 1:1 stoichiometry ratio of BBR to BA was established by the Job's plot method. Morphological and structural characterizations of the precipitates were conducted using DSC, FTIR and PXRD. Additionally, UV-Vis absorption and 1H NMR spectroscopy were employed to compare the spectral characteristics of the precipitates with those of individual drug solution. Molecular dynamic simulations further dissected the intermolecular interactions and self-assembly mechanisms. The precipitates formed were amorphous microparticles with an average diameter of approximately 20 µm, primarily stabilized by hydrogen bonding and π-π stacking. This study contributes foundational insights into the supramolecular interactions between BBR and BA, therefore facilitated a better understanding of the precipitation process involving flavonoid-alkaloid pairs in mixed aqueous solutions.

13.
Phytomedicine ; 130: 155705, 2024 May 03.
Article En | MEDLINE | ID: mdl-38761776

BACKGROUND: Senolytic combination of dasatinib and quercetin (DQ) is the most studied senolytics drugs used to treat various age-related diseases. However, its protective activity against diabetic kidney disease (DKD) and underlying mechanisms are uncertain. PURPOSE: To investigate the functions and potential mechanisms of the senolytics DQ on DKD. METHODS: Diabetic db/db mice were administrated DQ or transfected with over-expressed PPARα or shPPARα vector. The positive control group was administered irbesartan. Renal function and fibrotic changes in kidney tissue were tested. Single-cell RNA-seq (scRNA-seq) was conducted to analyze the differential transcriptome between the diabetic and control mice. Molecular docking simulation was used to assess the combination of DQ and potential factors. Moreover, tubular epithelial cells under high-glucose (HG) conditions were incubated with DQ and transfected with or without over-expressed PPARα/siPPARα vector. RESULTS: DQ significantly improved renal function, histopathological and fibrotic changes, alleviated lipid deposition, and increased ATP levels in mice with DKD. DQ reduced multiple fatty acid oxidation (FAO) pathway-related proteins and up-regulated PPARα in db/db mice. Overexpression of PPARα upregulated the expression of PPARα-targeting downstream FAO pathway-related proteins, restored renal function, and inhibited renal fibrosis in vitro and in vivo. Moreover, molecular docking and dynamics simulation analyses indicated the nephroprotective effect of DQ via binding to PPARα. Knockdown of PPARα reversed the effect of DQ on the FAO pathway and impaired the protective effect of DQ during DKD. CONCLUSION: For the first time, DQ was found to exert a renal protective effect by binding to PPARα and attenuating renal damage through the promotion of FAO in DKD.

14.
Mikrochim Acta ; 191(5): 260, 2024 04 12.
Article En | MEDLINE | ID: mdl-38607575

Isoniazid and streptomycin are vital drugs for treating tuberculosis, which are utilized as efficient anti-tuberculosis agents. This paper presents a novel visible-light-driven composite photocatalyst Ti3C2/Bi/BiOI, which was built from Ti3C2 nanosheets and Bi/BiOI microspheres. Photoelectrochemical (PEC) sensors based on Ti3C2/Bi/BiOI were synthesized for isoniazid identification, which showed a linear concentration range of 0.1-125 µM with a detection limit of 0.05 µM (S/N = 3). Moreover, we designed a PEC aptasensors based on aptamer/Ti3C2/Bi/BiOI to detect streptomycin in 0.1 M PBS covering the electron donor isoniazid, because the isoniazid consumes photogenerated holes thus increasing the photocurrent effectively and preventing photogenerated electron-hole pairs from being recombined. Furthermore, PEC aptasensors based on aptamer/Ti3C2/Bi/BiOI were synthesized for streptomycin identification, which exhibited a linear concentration range of 0.01-1000 nM with a detection limit of 2.3 × 10-3 nM (S/N = 3), and are well stable in streptomycin sensing.


Isoniazid , Streptomycin , Microspheres , Titanium , Books , Metals , Oligonucleotides
15.
Expert Rev Anti Infect Ther ; 22(5): 297-306, 2024 May.
Article En | MEDLINE | ID: mdl-38676422

INTRODUCTION: Strong clinical data demonstrate that inflammatory bowel disease (IBD) is an independent risk factor for Clostridiodes difficile infection (CDI) and suggest a globally increased prevalence and severity of C. difficile coinfection in IBD patients (CDI-IBD). In addition to elderly individuals, children are also at higher risk of CDI-IBD. Rapid diagnosis is essential since the clinical manifestations of active IBD and CDI-IBD are indistinguishable. Antibiotics have been well established in the treatment of CDI-IBD, but they do not prevent recurrence. AREAS COVERED: Herein, the authors focus on reviewing recent research advances on the new therapies of CDI-IBD. The novel therapies include gut microbiota restoration therapies (such as prebiotics, probiotics and FMT), immunotherapy (such as vaccines and monoclonal antibodies) and diet strategies (such as groningen anti-inflammatory diet and mediterranean diet). Future extensive prospective and placebo-controlled studies are required to evaluate their efficacy and long-term safety. EXPERT OPINION: Available studies show that the prevalence of CDI-IBD is not optimistic. Currently, potential treatment options for CDI-IBD include a number of probiotics and novel antibiotics. This review updates the knowledge on the management of CDI in IBD patients, which is timely and important for GI doctors and scientists.


Anti-Bacterial Agents , Clostridium Infections , Inflammatory Bowel Diseases , Probiotics , Humans , Clostridium Infections/therapy , Clostridium Infections/microbiology , Inflammatory Bowel Diseases/complications , Inflammatory Bowel Diseases/therapy , Inflammatory Bowel Diseases/microbiology , Probiotics/administration & dosage , Anti-Bacterial Agents/administration & dosage , Risk Factors , Fecal Microbiota Transplantation , Clostridioides difficile/isolation & purification , Gastrointestinal Microbiome , Prebiotics/administration & dosage , Coinfection , Immunotherapy/methods , Child , Prevalence , Severity of Illness Index , Age Factors , Aged
16.
Angew Chem Int Ed Engl ; 63(23): e202405761, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38587998

Vitrimers offer a unique combination of mechanical performance, reprocessability, and recyclability that makes them highly promising for a wide range of applications. However, achieving dynamic behavior in vitrimeric materials at their intended usage temperatures, thus combining reprocessability with adaptivity through associative dynamic covalent bonds, represents an attractive but formidable objective. Herein, we couple boron-nitrogen (B-N) dative bonds and B-O covalent bonds to generate a new class of vitrimers, boron-nitrogen vitrimers (BNVs), to endow them with dynamic features at usage temperatures. Compared with boron-ester vitrimers (BEVs) without B-N dative bonds, the BNVs with B-N dative bonds showcase enhanced mechanical performance. The excellent mechanical properties come from the synergistic effect of the dative B-N supramolecular polymer and covalent boron-ester networks. Moreover, benefiting from the associative exchange of B-O dynamic covalent bonds above their topological freezing temperature (Tv), the resultant BNVs also possess the processability. This study leveraged the structural characteristics of a boron-based vitrimer to achieve material reinforcement and toughness enhancement, simultaneously providing novel design concepts for the construction of new vitrimeric materials.

17.
Acta Pharmacol Sin ; 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38689095

Endothelial senescence, aging-related inflammation, and mitochondrial dysfunction are prominent features of vascular aging and contribute to the development of aging-associated vascular disease. Accumulating evidence indicates that DNA damage occurs in aging vascular cells, especially in endothelial cells (ECs). However, the mechanism of EC senescence has not been completely elucidated, and so far, there is no specific drug in the clinic to treat EC senescence and vascular aging. Here we show that various aging stimuli induce nuclear DNA and mitochondrial damage in ECs, thus facilitating the release of cytoplasmic free DNA (cfDNA), which activates the DNA-sensing adapter protein STING. STING activation led to a senescence-associated secretory phenotype (SASP), thereby releasing pro-aging cytokines and cfDNA to further exacerbate mitochondrial damage and EC senescence, thus forming a vicious circle, all of which can be suppressed by STING knockdown or inhibition. Using next-generation RNA sequencing, we demonstrate that STING activation stimulates, whereas STING inhibition disrupts pathways associated with cell senescence and SASP. In vivo studies unravel that endothelial-specific Sting deficiency alleviates aging-related endothelial inflammation and mitochondrial dysfunction and prevents the development of atherosclerosis in mice. By screening FDA-approved vasoprotective drugs, we identified Cilostazol as a new STING inhibitor that attenuates aging-related endothelial inflammation both in vitro and in vivo. We demonstrated that Cilostazol significantly inhibited STING translocation from the ER to the Golgi apparatus during STING activation by targeting S162 and S243 residues of STING. These results disclose the deleterious effects of a cfDNA-STING-SASP-cfDNA vicious circle on EC senescence and atherogenesis and suggest that the STING pathway is a promising therapeutic target for vascular aging-related diseases. A proposed model illustrates the central role of STING in mediating a vicious circle of cfDNA-STING-SASP-cfDNA to aggravate age-related endothelial inflammation and mitochondrial damage.

18.
J Mol Graph Model ; 130: 108783, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38677034

Drug repurposing is an effective method to reduce the time and cost of drug development. Computational drug repurposing can quickly screen out the most likely associations from large biological databases to achieve effective drug repurposing. However, building a comprehensive model that integrates drugs, proteins, and diseases for drug repurposing remains challenging. This study proposes a drug repurposing method based on the ternary heterogeneous graph attention network (DRTerHGAT). DRTerHGAT designs a novel protein feature extraction process consisting of a large-scale protein language model and a multi-task autoencoder, so that protein features can be extracted accurately and efficiently from amino acid sequences. The ternary heterogeneous graph of drug-protein-disease comprehensively considering the relationships among the three types of nodes, including three homogeneous and three heterogeneous relationships. Based on the graph and the extracted protein features, the deep features of the drugs and the diseases are extracted by graph convolutional networks (GCN) and heterogeneous graph node attention networks (HGNA). In the experiments, DRTerHGAT is proven superior to existing advanced methods and DRTerHGAT variants. DRTerHGAT's powerful ability for drug repurposing is also demonstrated in Alzheimer's disease.

19.
Behav Brain Res ; 466: 114979, 2024 May 28.
Article En | MEDLINE | ID: mdl-38582409

OBJECTIVE: Reward anticipation is important for future decision-making, possibly due to re-evaluation of prior decisions. However, the exact relationship between reward anticipation and prior effort-expenditure decision-making, and its neural substrates are unknown. METHOD: Thirty-three healthy participants underwent fMRI scanning while performing the Effort-based Pleasure Experience Task (E-pet). Participants were required to make effort-expenditure decisions and anticipate the reward. RESULTS: We found that stronger anticipatory activation at the posterior cingulate cortex was correlated with slower reaction time while making decisions with a high-probability of reward. Moreover, the substantia nigra was significantly activated in the prior decision-making phase, and involved in reward-anticipation in view of its strengthened functional connectivity with the mammillary body and the putamen in trial conditions with a high probability of reward. CONCLUSIONS: These findings support the role of reward anticipation in re-evaluating decisions based on the brain-behaviour correlation. Moreover, the study revealed the neural interaction between reward anticipation and decision-making.


Anticipation, Psychological , Decision Making , Magnetic Resonance Imaging , Reaction Time , Reward , Humans , Male , Decision Making/physiology , Anticipation, Psychological/physiology , Female , Young Adult , Adult , Reaction Time/physiology , Gyrus Cinguli/physiology , Gyrus Cinguli/diagnostic imaging , Brain Mapping , Brain/physiology , Brain/diagnostic imaging , Substantia Nigra/physiology , Substantia Nigra/diagnostic imaging
20.
BMC Public Health ; 24(1): 1097, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38643079

BACKGROUND: To analyse the association among the simultaneous effects of dietary intake, daily life behavioural factors, and frailty outcomes in older Chinese women, we predicted the probability of maintaining physical robustness under a combination of different variables. METHODS: The Fried frailty criterion was used to determine the three groups of "frailty", "pre-frailty", and "robust", and a national epidemiological survey was performed. The three-classification decision tree model was fitted, and the comprehensive performance of the model was evaluated to predict the probability of occurrence of different outcomes. RESULTS: Among the 1,044 participants, 15.9% were frailty and 50.29% were pre-frailty; the overall prevalence first increased and then decreased with age, reaching a peak at 70-74 years of age. Through univariate analysis, filtering, and embedded screening, eight significant variables were identified: staple food, spices, exercise (frequency, intensity, and time), work frequency, self-feeling, and family emotions. In the three-classification decision tree, the values of each evaluation index of Model 3 were relatively average; the accuracy, recall, specificity, precision, and F1 score range were between 75% and 84%, and the AUC was also greater than 0.800, indicating excellent performance and the best interpretability of the results. Model 3 takes exercise time as the root node and contains 6 variables and 10 types, suggesting the impact of the comprehensive effect of these variables on robust and non-robust populations (the predicted probability range is 6.67-93.33%). CONCLUSION: The combined effect of these factors (no exercise or less than 0.5 h of exercise per day, occasional exercise, exercise at low intensity, feeling more tired at work, and eating too many staple foods (> 450 g per day) are more detrimental to maintaining robustness.


Frailty , Humans , Female , Aged , Frailty/diagnosis , Frail Elderly , Diet , Exercise , Life Style
...