Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 235
Filter
1.
World J Clin Cases ; 12(18): 3395-3402, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38983409

ABSTRACT

BACKGROUND: Hepatectomy is the first choice for treating liver cancer. However, inflammatory factors, released in response to pain stimulation, may suppress perioperative immune function and affect the prognosis of patients undergoing hepatectomies. AIM: To determine the short-term efficacy of microwave ablation in the treatment of liver cancer and its effect on immune function. METHODS: Clinical data from patients with liver cancer admitted to Suzhou Ninth People's Hospital from January 2020 to December 2023 were retrospectively analyzed. Thirty-five patients underwent laparoscopic hepatectomy for liver cancer (liver cancer resection group) and 35 patients underwent medical image-guided microwave ablation (liver cancer ablation group). The short-term efficacy, complications, liver function, and immune function indices before and after treatment were compared between the two groups. RESULTS: One month after treatment, 19 patients experienced complete remission (CR), 8 patients experienced partial remission (PR), 6 patients experienced stable disease (SD), and 2 patients experienced disease progression (PD) in the liver cancer resection group. In the liver cancer ablation group, 21 patients experienced CR, 9 patients experienced PR, 3 patients experienced SD, and 2 patients experienced PD. No significant differences in efficacy and complications were detected between the liver cancer ablation and liver cancer resection groups (P > 0.05). After treatment, total bilirubin (41.24 ± 7.35 vs 49.18 ± 8.64 µmol/L, P < 0.001), alanine aminotransferase (30.85 ± 6.23 vs 42.32 ± 7.56 U/L, P < 0.001), CD4+ (43.95 ± 5.72 vs 35.27 ± 5.56, P < 0.001), CD8+ (20.38 ± 3.91 vs 22.75 ± 4.62, P < 0.001), and CD4+/CD8+ (2.16 ± 0.39 vs 1.55 ± 0.32, P < 0.001) were significantly different between the liver cancer ablation and liver cancer resection groups. CONCLUSION: The short-term efficacy and safety of microwave ablation and laparoscopic surgery for the treatment of liver cancer are similar, but liver function recovers quickly after microwave ablation, and microwave ablation may enhance immune function.

2.
Mol Divers ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012566

ABSTRACT

A large series of 2-arylchromen-4-ones containing from 1 to 3 fluorine atoms or a trifluoromethyl group in the structure was synthesized by condensation of fluorinated 2-hydroxyacetophenones with benzaldehydes in an alkaline medium and subsequent oxidative cyclization of the resulting 2'-hydroxychalcones by action of I2 in DMSO. The cytotoxicity of the obtained compounds was studied in glioblastoma cell line, SNB19, and in a monkey-derived normal kidney epithelium cell line, Vero. In addition, antiglycation activity of the obtained compounds was evaluated. The inhibitory activity of some fluorinated 2-arylchromen-4-ones against acetylcholinesterase, butyrylcholinesterase and carboxylesterase as well their primary antioxidant activity in ABTS and FRAP tests were investigated. Screening of the synthesized compounds for their inhibitory activity against influenza A virus A/Puerto Rico/8/34 (H1N1) in the MDCK cell culture revealed that fluorinated compounds 32, 31 and 39 showed manifest antiviral effects (with IS = 57, 38 and 25 correspondingly) that makes this series of new biologically attractive fluorinated heterocycles promising for further development and in-depth study.

3.
J Med Chem ; 67(13): 10530-10547, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38988222

ABSTRACT

The PI3K/AKT/mTOR pathway plays critical roles in a wide array of biological processes. Phosphatidylinositol 3-kinase gamma (PI3Kγ), a class IB PI3K family member, represents a potential therapeutic opportunity for the treatment of cancer, inflammation, and autoimmunity. In this Perspective, we provide a comprehensive overview of the structure, biological function, and regulation of PI3Kγ. We also focus on the development of PI3Kγ inhibitors over the past decade and emphasize their binding modes, structure-activity relationships, and pharmacological activities. The application of computational technologies and artificial intelligence in the discovery of novel PI3Kγ inhibitors is also introduced. This review aims to provide a timely and updated overview on the strategies for targeting PI3Kγ.


Subject(s)
Class Ib Phosphatidylinositol 3-Kinase , Drug Design , Phosphoinositide-3 Kinase Inhibitors , Humans , Class Ib Phosphatidylinositol 3-Kinase/metabolism , Class Ib Phosphatidylinositol 3-Kinase/chemistry , Structure-Activity Relationship , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors/chemistry , Phosphoinositide-3 Kinase Inhibitors/chemical synthesis , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Animals , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Molecular Structure
4.
Brain Res ; 1843: 149133, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39084451

ABSTRACT

The progress in neuroimaging and electrophysiological techniques has shown substantial promise in improving the clinical assessment of disorders of consciousness (DOC). Through the examination of both stimulus-induced and spontaneous brain activity, numerous comprehensive investigations have explored variations in brain activity patterns among patients with DOC, yielding valuable insights for clinical diagnosis and prognostic purposes. Nonetheless, reaching a consensus on precise neuroimaging biomarkers for patients with DOC remains a challenge. Therefore, in this review, we begin by summarizing the empirical evidence related to neuroimaging biomarkers for DOC using various paradigms, including active, passive, and resting-state approaches, by employing task-based fMRI, resting-state fMRI (rs-fMRI), electroencephalography (EEG), and positron emission tomography (PET) techniques. Subsequently, we conducted a review of studies examining the neural correlates of consciousness in patients with DOC, with the findings holding potential value for the clinical application of DOC. Notably, previous research indicates that neuroimaging techniques have the potential to unveil covert awareness that conventional behavioral assessments might overlook. Furthermore, when integrated with various task paradigms or analytical approaches, this combination has the potential to significantly enhance the accuracy of both diagnosis and prognosis in DOC patients. Nonetheless, the stability of these neural biomarkers still needs additional validation, and future directions may entail integrating diagnostic and prognostic methods with big data and deep learning approaches.

5.
Mar Biotechnol (NY) ; 26(4): 741-753, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38969905

ABSTRACT

Large yellow croaker (L. crocea) is a productive species in marine aquaculture with great economic value in China. However, the sustainable development of large yellow croaker is hampered by various diseases including cryptocaryonosis caused by Cryptocaryon irritans. The genetic regulation processes for cryptocaryonosis in large yellow croaker are still unclear. In this present study, we analyzed differential alternative splicing events between a C. irritans resistance strain (RS) and a commercial strain (CS). We identified 678 differential alternative splicing (DAS) events from 453 genes in RS and 719 DAS events from 500 genes in CS. A set of genes that are specifically alternatively spliced in RS was identified including mfap5, emp1, and trim33. Further pathway analysis revealed that the specifically alternative spliced genes in RS were involved in innate immune responses through the PRR pathway and the Toll and Imd pathway, suggesting their important roles in the genetic regulation processes for cryptocaryonosis in large yellow croaker. This study would be helpful for the studies of the pathogenesis of cryptocaryonosis and dissection of C. irritans resistance for L. crocea.


Subject(s)
Alternative Splicing , Ciliophora Infections , Disease Resistance , Fish Diseases , Perciformes , Animals , Perciformes/genetics , Perciformes/parasitology , Disease Resistance/genetics , Ciliophora Infections/veterinary , Ciliophora Infections/genetics , Ciliophora Infections/immunology , Ciliophora Infections/parasitology , Fish Diseases/parasitology , Fish Diseases/genetics , Fish Diseases/immunology , Immunity, Innate/genetics , Fish Proteins/genetics , Ciliophora/genetics , Aquaculture
6.
Int J Oncol ; 65(2)2024 Aug.
Article in English | MEDLINE | ID: mdl-38873997

ABSTRACT

Non­small cell lung cancer (NSCLC) is one of the major causes of cancer­related death worldwide. Cisplatin is a front­line chemotherapeutic agent in NSCLC. Nevertheless, subsequent harsh side effects and drug resistance limit its further clinical application. Polydatin (PD) induces apoptosis in various cancer cells by generating reactive oxygen species (ROS). However, underlying molecular mechanisms of PD and its effects on cisplatin­mediated antitumor activity in NSCLC remains unknown. MTT, colony formation, wound healing analyses and flow cytometry was employed to investigate the cell phenotypic changes and ROS generation. Relative gene and protein expressions were evaluated by reverse transcription­quantitative PCR and western blot analyses. The antitumor effects of PD, cisplatin and their combination were evaluated by mouse xenograft model. In the present study, it was found that PD in combination with cisplatin synergistically enhances the antitumor activity in NSCLC by stimulating ROS­mediated endoplasmic reticulum stress, and the C­Jun­amino­terminal kinase and p38 mitogen­activated protein kinase signaling pathways. PD treatment elevated ROS generation by promoting expression of NADPH oxidase 5 (NOX5), and NOX5 knockdown attenuated ROS­mediated cytotoxicity of PD in NSCLC cells. Mice xenograft model further confirmed the synergistic antitumor efficacy of combined therapy with PD and cisplatin. The present study exhibited a superior therapeutic strategy for some patients with NSCLC by combining PD and cisplatin.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Cisplatin , Drug Synergism , Glucosides , Lung Neoplasms , NADPH Oxidase 5 , Oxidative Stress , Reactive Oxygen Species , Stilbenes , Xenograft Model Antitumor Assays , Cisplatin/pharmacology , Cisplatin/therapeutic use , Glucosides/pharmacology , Glucosides/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Animals , Humans , Stilbenes/pharmacology , Stilbenes/therapeutic use , Mice , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Apoptosis/drug effects , A549 Cells , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cell Proliferation/drug effects , Endoplasmic Reticulum Stress/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Male
7.
Water Sci Technol ; 89(11): 3021-3034, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38877628

ABSTRACT

Drainage modeling that accurately captures urban storm inundation serves as the foundation for flood warning and drainage scheduling. In this paper, we proposed a novel coupling ideology that, by integrating 2D-1D and 1D-2D unidirectional processes, overcomes the drawback of the conventional unidirectional coupling approach that fails to properly represent the rainfall surface catchment dynamics, and provides more coherent hydrological implications compared to the bidirectional coupling concept. This paper first referred to a laboratory experimental case from the literature, applied and analyzed the coupling scheme proposed in this paper and the bidirectional coupling scheme that has been widely studied in recent years, compared the two coupling solutions in terms of the resulting accuracy and applicability, and discussed their respective strengths and weaknesses to validate the reliability of the proposed method. The verified proposed coupling scheme was then applied to the modeling of a real drainage system in a region of Nanjing, China, and the results proved that the coupling mechanism proposed in this study is of practical application value.


Subject(s)
Cities , Floods , Hydrodynamics , Models, Theoretical , China , Sewage , Drainage, Sanitary
8.
Foods ; 13(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38890922

ABSTRACT

Hydroxytyrosol (HT), a plant-derived phenolic compound, is recognized for its potent antioxidant capabilities alongside a spectrum of pharmacological benefits, including anti-inflammatory, anti-cancer, anti-bacterial, and anti-viral properties. These attributes have propelled HT into the spotlight as a premier nutraceutical and food additive, heralding a new era in health and wellness applications. Traditional methods for HT production, encompassing physico-chemical techniques and plant extraction, are increasingly being supplanted by biotechnological approaches. These modern methodologies offer several advantages, notably environmental sustainability, safety, and cost-effectiveness, which align with current demands for green and efficient production processes. This review delves into the biosynthetic pathways of HT, highlighting the enzymatic steps involved and the pivotal role of genetic and metabolic engineering in enhancing HT yield. It also surveys the latest progress in the biotechnological synthesis of HT, examining innovative strategies that leverage both genetically modified and non-modified organisms. Furthermore, this review explores the burgeoning potential of HT as a nutraceutical, underscoring its diverse applications and the implications for human health. Through a detailed examination of both the biosynthesis and biotechnological advances in HT production, this review contributes valuable insights to the field, charting a course towards the sustainable and scalable production of this multifaceted compound.

9.
Int J Mol Sci ; 25(11)2024 May 26.
Article in English | MEDLINE | ID: mdl-38891989

ABSTRACT

Negeviruses are insect-specific enveloped RNA viruses that exhibit a wide geographic distribution. A novel nege-like virus, tentatively named Aphis gossypii nege-like virus (AGNLV, GenBank: OR880429.1), was isolated from aphids (Aphis gossypii) in Lijiang City, Yunnan, China. AGNLV has a genome sequence of 9258 nt (excluding the polyA tail) encoding three open reading frames (ORFs). ORF1 (7149 nt) encodes a viral methyltransferase, a viral RNA helicase, and an RNA-dependent RNA polymerase. ORF2 (1422 nt) encodes a DiSB-ORF2_chro domain and ORF3 encodes an SP24 domain. The genome sequence of AGNLV shares the highest nucleotide identity of 60.0% and 59.5% with Wuhan house centipede virus 1 (WHCV1) and Astegopteryx formosana nege-like virus (AFNLV), respectively. Phylogenetic analysis based on the RNA-dependent RNA polymerase shows that AGNLV is clustered with other negeviruses and nege-like viruses discovered in aphids, forming a distinct "unclassified clade". Interestingly, AGNLV only encodes three ORFs, whereas AFNLV and WHCV1 have four ORFs. Structure and transmembrane domain predictions show the presence of eight alpha helices and five transmembrane helices in the AGNLV ORF3. Translational enhancement of the AGNLV 5' UTR was similar to that of the 5' UTR of plant viruses. Our findings provide evidence of the diversity and structure of nege-like viruses and are the first record of such a virus from a member of the genus Aphis.


Subject(s)
Aphids , Genome, Viral , Open Reading Frames , Phylogeny , Animals , Aphids/virology , China , RNA Viruses/genetics , RNA Viruses/isolation & purification , RNA Viruses/classification , RNA-Dependent RNA Polymerase/genetics , Viral Proteins/genetics , Viral Proteins/chemistry , Insect Viruses/genetics , Insect Viruses/isolation & purification , Insect Viruses/classification , RNA, Viral/genetics
10.
Appl Opt ; 63(14): D7-D13, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38856327

ABSTRACT

3D printing technologies have distinguished advantages in manufacturing arbitrary shapes and complex structures that have attracted us to use digital light processing (DLP) technology for specialty silica optical fiber preforms. One of the main tasks is to develop an appropriate recipe for DLP resin that is UV sensitive and loaded with silica nanoparticles. In this work, the effects of a UV absorber in highly silica-loaded resin on DLP printing are experimentally investigated. Spot tests and DLP printing are carried out on resins with varying dosages of a typical UV absorber, Sudan Orange G. Based on the experimental results, the UV absorber can significantly improve the resolution of DLP printed green bodies while requiring a larger exposure dose.

12.
PLoS One ; 19(6): e0305010, 2024.
Article in English | MEDLINE | ID: mdl-38843124

ABSTRACT

OBJECTIVE: This study aims to examine the association between the Weight-adjusted Waist Circumference Index (WWI) and the prevalence of periodontitis, providing novel evidence on the link between central obesity and periodontal health. METHODS: A cross-sectional study was conducted with 10,289 participants enrolled from NHANES 2009 to 2014. WWI was calculated by dividing waist circumference by the square root of weight. We employed a multivariate logistic regression model and smoothed curve fitting method to evaluate the relationship between WWI and periodontitis. We also compared different subgroups and analyzed the interaction effects. RESULTS: A significant positive association between WWI and periodontitis was observed in 10,289 participants aged ≥30 (OR: 1.20, 95% CI: 1.12-1.28). Upon categorizing WWI into quartiles, the top quartile group exhibited a 27% increased prevalence of periodontitis compared to the bottom quartile (OR: 1.27, 95% CI: 1.10-1.46; P for trend = 0.001). Among individuals aged 30 to 60, the strength of this positive correlation is more pronounced than in those aged 60 and above. CONCLUSIONS: WWI demonstrates a positive correlation with periodontitis with a particularly pronounced impact on moderate periodontitis, suggesting its potential to improve periodontitis prevention in a broad population.


Subject(s)
Periodontitis , Waist Circumference , Humans , Male , Female , Middle Aged , Adult , Periodontitis/epidemiology , Cross-Sectional Studies , Prevalence , Nutrition Surveys , Body Weight , Aged , Risk Factors
13.
Mar Biotechnol (NY) ; 26(4): 732-740, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38926241

ABSTRACT

Fishmeal is over-represented in the diets of large yellow croaker (Larimichthys crocea), and this farming mode, which relies heavily on fishmeal, is highly susceptible to the price of fishmeal and is unsustainable. Therefore, more and more studies on the large yellow croaker tend to replace fishmeal with land-based animal or plant proteins, but few studies have considered it from the genomic selection. In this study, we evaluated the survival rate (SR), final body weight (FBW), body weight gain (BWG), weight gain rate (WGR), and specific growth rate (SGR) of the large yellow croaker GS7 strain, which was obtained through genomic selection for tolerance to plant proteins and analyzed the differences in plant protein utilization between the GS7 strain and unselected commercial large yellow croaker (control group). The results of separate feeding for 60 days showed that although there was no significant difference in SR between the control and GS7 strains (P > 0.05), the BWG, WGR, and SGR of the control were significantly lower (P < 0.05) than those of the GS7 group. Results of mixed feeding after PIT marking showed that compared to the control fish, the GS7 strain had significantly higher BWG, WGR, and SGR (P < 0.0001). To make the experimental results more precise, we compared fishes with equivalent initial body weight (IBW) in the GS7 strain and the control group. The final fish body weight (FBW) of Ctrl-2 (IBW 300-399 g) and Ctrl-4 (IBW 500-599 g) was significantly lower than those of the corresponding GS7-2 and GS7-4 (P < 0.05), while the FBW of Ctrl-1 (IBW 200-299 g) and Ctrl-3 (IBW 400-499 g) was much significantly lower than the corresponding GS7-1 and GS7-3 (P < 0.01). The BWG, WGR, and SGR of Ctrl-1 and Ctrl-4 were more significantly lower than those of the corresponding GS7-1 and GS7-4 (P < 0.01), while the BWG, WGR, and SGR of Ctrl-2 and Ctrl-3 were more significantly different from the corresponding GS7-2 and GS7-3 (P < 0.0001). Our results seem to point toward the same conclusion that the GS7 strain is better adapted to high plant protein diets than the unselected commercial large yellow croaker. These results will provide a reference for the low-fishmeal culture industry of large yellow croakers and the selection and breeding of strains tolerant to a high percentage of plant proteins in other marine fishes.


Subject(s)
Animal Feed , Diet , Perciformes , Animals , Perciformes/growth & development , Perciformes/genetics , Perciformes/metabolism , Animal Feed/analysis , Diet/veterinary , Aquaculture , Weight Gain , Body Weight , Plant Proteins/genetics , Plant Proteins/metabolism , Selection, Genetic
14.
Food Sci Biotechnol ; 33(8): 1751-1758, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38752125

ABSTRACT

Auricularia auricular (A. auricula), a nutritious fungus and traditional medicinal resource, is known for melanin. This review aims to summarize the research progress on melanin in A. auricula, specifically focusing on biosynthesis, fermentation production, extraction processes, physicochemical characterization, biological functions, and applications. The biosynthesis of melanin in A. auricula primarily involves the oxidative polymerization reaction of phenolic compounds. To enhance melanin production, strategies such as deep fermentation culture, selection of optimal fermentation materials, and optimization of the culture medium have been employed. Various extraction processes have been compared to determine their impact on the physicochemical properties and stability of melanin. Moreover, the antioxidant and antibiofilm activities of A. auricula melanin, as well as its potential beneficial effects on the human body through in vivo experiments, have been investigated. These findings provide valuable insights into the application of A. auricula melanin and serve as a reference for future research in this field.

15.
Acta Pharmacol Sin ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789495

ABSTRACT

Paclitaxel (PTX) serves as a primary chemotherapy agent against diverse solid tumors including breast cancer, lung cancer, head and neck cancer and ovarian cancer, having severe adverse effects including PTX-induced peripheral neuropathy (PIPN) and hypersensitivity reactions (HSR). A recommended anti-allergic agent diphenhydramine (DIP) has been used to alleviate PTX-induced HSR. Desloratadine (DLT) is a third generation of histamine H1 receptor antagonist, but also acted as a selective antagonist of 5HTR2A. In this study we investigated whether DLT ameliorated PIPN-like symptoms in mice and the underlying mechanisms. PIPN was induced in male mice by injection of PTX (4 mg/kg, i.p.) every other day for 4 times. The mice exhibited 50% reduction in mechanical threshold, paw thermal response latency and paw cold response latency compared with control mice. PIPN mice were treated with DLT (10, 20 mg/kg, i.p.) 30 min before each PTX administration in the phase of establishing PIPN mice model and then administered daily for 4 weeks after the model was established. We showed that DLT administration dose-dependently elevated the mechanical, thermal and cold pain thresholds in PIPN mice, whereas administration of DIP (10 mg/kg, i.p.) had no ameliorative effects on PIPN-like symptoms. We found that the expression of 5HTR2A was selectively elevated in the activated spinal astrocytes of PIPN mice. Spinal cord-specific 5HTR2A knockdown by intrathecal injection of AAV9-5Htr2a-shRNA significantly alleviated the mechanical hyperalgesia, thermal and cold hypersensitivity in PIPN mice, while administration of DLT (20 mg/kg) did not further ameliorate PIPN-like symptoms. We demonstrated that DLT administration alleviated dorsal root ganglion neuronal damage and suppressed sciatic nerve destruction, spinal neuron apoptosis and neuroinflammation in the spinal cord of PIPN mice. Furthermore, we revealed that DLT administration suppressed astrocytic neuroinflammation via the 5HTR2A/c-Fos/NLRP3 pathway and blocked astrocyte-neuron crosstalk by targeting 5HTR2A. We conclude that spinal 5HTR2A inhibition holds promise as a therapeutic approach for PIPN and we emphasize the potential of DLT as a dual-functional agent in ameliorating PTX-induced both PIPN and HSR in chemotherapy. In summary, we determined that spinal 5HTR2A was selectively activated in PIPN mice and DLT could ameliorate the PTX-induced both PIPN- and HSR-like pathologies in mice. DLT alleviated the damages of DRG neurons and sciatic nerves, while restrained spinal neuronal apoptosis and CGRP release in PIPN mice. The underlying mechanisms were intensively investigated by assay against the PIPN mice with 5HTR2A-specific knockdown in the spinal cord by injection of adeno-associated virus 9 (AAV9)-5Htr2a-shRNA. DLT inhibited astrocytic NLRP3 inflammasome activation-mediated spinal neuronal damage through 5HTR2A/c-FOS pathway. Our findings have supported that spinal 5HTR2A inhibition shows promise as a therapeutic strategy for PIPN and highlighted the potential advantage of DLT as a dual-functional agent in preventing against PTX-induced both PIPN and HSR effects in anticancer chemotherapy.

16.
J Agric Food Chem ; 72(23): 13186-13195, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38814711

ABSTRACT

Ketopantoate hydroxymethyltransferase (KPHMT) plays a pivotal role in d-pantothenic acid biosynthesis. Most KPHMTs are homodecamers with low thermal stability, posing challenges for protein engineering and limiting output enhancement. Previously, a high-enzyme activity KPHMT mutant (K25A/E189S) from Corynebacterium glutamicum was screened as mother strain (M0). Building upon this strain, our study focused on interface engineering modifications, employing a multifaceted approach including integrating folding-free energy calculation, B-factor analysis, and conserved site analysis. Preliminary screening led to the selection of five mutants in the interface─E106S, E98T, E98N, S247I, and S247D─showing improved thermal stability, culminating in the double-site mutant M8 (M0-E98N/S247D). M8 exhibited a T1/2 value of 288.79 min at 50 °C, showing a 3.29-fold increase compared to M0. Meanwhile, the Tm value of M8 was elevated from 53.2 to 59.6 °C. Investigations of structural and molecular dynamics simulations revealed alterations in surface electrostatic charge distribution and the formation of increased hydrogen bonds between subunits, contributing to enhanced thermal stability. This investigation corroborates the efficacy of interface engineering modifications in bolstering KPHMT stability while showing its potential for positively impacting industrial d-pantothenic acid synthesis.


Subject(s)
Bacterial Proteins , Corynebacterium glutamicum , Enzyme Stability , Protein Engineering , Corynebacterium glutamicum/enzymology , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Molecular Dynamics Simulation , Kinetics , Hot Temperature
17.
Clin Transl Sci ; 17(4): e13787, 2024 04.
Article in English | MEDLINE | ID: mdl-38558535

ABSTRACT

The purpose of this study was to evaluate the safety, pharmacokinetics (PK), and pharmacodynamics (PD) of frunexian (formerly known as EP-7041 and HSK36273) injection, a small molecule inhibitor of activated coagulation factor XI (FXIa), in healthy Chinese adult volunteers. This study was a randomized, placebo- and positive-controlled, sequential, ascending-dose (0.3/0.6/1.0/1.5/2.25 mg/kg/h) study of 5-day continuous intravenous infusions of frunexian. Frunexian administration exhibited an acceptable safety profile with no bleeding events. Steady state was rapidly reached with a median time ranging from 1.02 to 1.50 h. The mean half-life ranged from 1.15 to 1.43 h. Frunexian plasma concentration at a steady state and area under the concentration-time curve exhibited dose-proportional increases. The dose-escalation study of frunexian demonstrated its progressively enhanced capacities to prolong activated partial thromboplastin time (aPTT) and inhibit FXIa activity. The correlations between PK and PD biomarkers (aPTT/baseline and FXI clotting activity/baseline) were described by the two Emax models, with the EC50 values of 8940 and 1300 ng/mL, respectively. Frunexian exhibits good safety and PK/PD properties, suggesting it is a promising candidate for anticoagulant drug.


Subject(s)
Anticoagulants , Blood Coagulation , Adult , Humans , Partial Thromboplastin Time , Healthy Volunteers , China , Double-Blind Method , Dose-Response Relationship, Drug
18.
Langmuir ; 40(19): 10393-10404, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38666366

ABSTRACT

Nitrous oxide (N2O), recognized as a significant greenhouse gas, has received insufficient research attention in the past. In view of their low energy consumption and cost-effectiveness, the application of porous materials in adsorption is increasingly regarded as a potent strategy to reduce N2O pollution. In this study, a series of microporous porous carbons with a preeminent specific surface area (244.54-2018.08 m2 g-1), which are derived from the fast-growing eucalyptus bark, were synthesized by KOH activation at high temperatures. The obtained materials demonstrated a relatively fine N2O capture capability (0.19-0.68 mmol g-1) at normal temperature and pressure. More importantly, the optimal pore size affecting N2O adsorption (0.8 and 1.0 nm) has been detected, which is a meaningful view that has never been put forward in previous studies. The rationality of the N2O adsorption mechanism was also validated by combining the experimental analysis and Grand Canonical Monte Carlo (GCMC) simulation. The calculated results showed that 0.8 and 1.0 nm of the porous carbon were the preferred pore sizes for N2O adsorption, and the interaction force between N2O and the pore wall decreased with the increase of distance. This study provides a significant theoretical basis for the preparation of biomass porous carbon with excellent N2O adsorption performance and practical adsorption application.

19.
Hortic Res ; 11(4): uhae039, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38623074

ABSTRACT

Chrysanthemum × morifolium has great ornamental and economic value on account of its exquisite capitulum. However, previous studies have mainly focused on the corolla morphology of the capitulum. Such an approach cannot explain the variable inflorescence architecture of the chrysanthemum. Previous research from our group has shown that NO APICAL MERISTEM (ClNAM) is likely to function as a hub gene in capitulum architecture in the early development stage. In the present study, ClNAM was used to investigate the function of these boundary genes in the capitulum architecture of Chrysanthemum lavandulifolium, a closely related species of C. × morifolium in the genus. Modification of ClNAM in C. lavandulifolium resulted in an advanced initiation of the floral primordium at the capitulum. As a result, the receptacle morphology was altered and the number of florets decreased. The ray floret corolla was shortened, but the disc floret was elongated. The number of capitula increased significantly, arranged in more densely compounded corymbose synflorescences. The yeast and luciferase reporter system revealed that ClAP1, ClRCD2, and ClLBD18 target and activate ClNAM. Subsequently, ClNAM targets and activates ClCUC2a/c, which regulates the initiation of floral and inflorescence in C. lavandulifolium. ClNAM was also targeted and cleaved by cla-miR164 in this process. In conclusion, this study established a boundary gene regulatory network with cla-miR164-ClNAM as the hub. This network not only influences the architecture of capitulum, but also affects compound corymbose synflorescences of the C. lavandulifolium. These results provide new insights into the mechanisms regulating inflorescence architecture in chrysanthemum.

20.
Sci Rep ; 14(1): 9461, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658587

ABSTRACT

Average windward area is an important index for calculating the trajectory, velocity attenuation and terminal effect of explosive fragments. In order to solve the problems that existing theoretical method cannot calculate windward area of irregular fragment and experiment method is not convenient for automatic calculation and has low accuracy, a Monte Carlo subdivision projection simulation algorithm is proposed. The average windward area of arbitrary shaped fragments can be obtained with coordinate translation, random rotation, plane projection, convex-hull triangulation, concave boundary searching and sorting with maximum edge length constraint, subdivision area calculation, and averaging by thousands of cycles. Results show that projection area obtained by the subdivision projection algorithm is basically the same as that obtained by software method of computer aided design. Moreover, the maximum calculation error of the algorithm is less than 7%, and its accuracy is much higher than that of the equivalent ellipsoid method. The average windward area calculated by the Monte Carlo subdivision projection simulation algorithm is consistent with theoretical formula for prefabricated fragments, and the error is less than 3%. The convergence and accuracy of the Monte Carlo subdivision projection algorithm are better than those of the icosahedral uniform orientation method.

SELECTION OF CITATIONS
SEARCH DETAIL