Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 317
Filter
1.
Mater Horiz ; 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39381851

ABSTRACT

Noncentrosymmetric (NCS) compounds are particularly important for modern optoelectronic technology, yet their rational structural design remains a great challenge. Herein, assisted by the idea of bottom-up reticular chemistry, seven new NCS selenites, AM3[SeO3]2[Se2O5]3 (A = K+/Rb+/Cs+; M = Al3+/Ga3+/In3+), have been successfully designed and synthesized by assembling main-group metal octahedral units and SeO3 units, to construct honeycomb layers with regular channels to accommodate a variety of cations, and using planar hexagonal shapes to orientate the groups within the network. Based on this strategy, the overall symmetry of the solid-state compounds was effectively controlled, and by modifying locally connected atoms or groups, without disrupting the overall prototypical framework, a series of iso-reticular analogues have been obtained, which greatly increases the probability of NCS structures. Three of these compounds, CsM3[SeO3]2[Se2O5]3 were characterized experimentally and theoretically. The results show that they all have moderate second harmonic generation (SHG) responses, which are as large as that of commercial KH2PO4, and wide band gaps. Our study confirms the feasibility of reticular chemistry-assisted strategy in designing nonlinear optical materials with stable frameworks and good performance.

2.
Inorg Chem ; 63(38): 17362-17366, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39264114

ABSTRACT

Nonlinear-optical (NLO) crystals capable of controlling and manipulating light to generate coherent radiation at challenging wavelengths are of significant interest. However, designing a new UV NLO crystal remains difficult due to the rigid requirements for structure and properties. Herein, we have successfully designed and synthesized a novel noncentrosymmetric (NCS) rare-earth borate UV NLO crystal, K3Y3(BO3)4, through the heterovalence substitution of YAl3(BO3)4. K3Y3(BO3)4 (KYBO) crystallizes in the NCS and polar space group of P63mc, with the structure formed by the interconnectioned BO3 triangles and YO8 polyhedra through corner-sharing and edge-sharing. The property measurements indicate that KYBO is second-harmonic-generation-active with a moderate response, ∼2 × KDP. Meanwhile, KYBO can exhibit a short UV cutoff edge (λcutoff < 190 nm), indicating its potential as a new UV or deep-UV NLO crystal.

3.
Inorg Chem ; 63(40): 19023-19029, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39306767

ABSTRACT

A new deep-ultraviolet (DUV) nonlinear optical (NLO) material K0.9Rb2.1B8PO16 (KRBPO) has been designed and synthesized by adjusting the B/P molar ratio to 8:1. The KRBPO crystals were synthesized by a flux method and crystallized in noncentrosymmetric (NCS) and polar space group Cc. This compound exhibits a double-layer structure in which the A layer is composed of [B2O5] and [BO4] units and the B layer is formed by interconnected [B3O7] and [BO3] groups, and the two layers are connected by [PO4] tetrahedron. The theoretical calculations and experiments show that the synergistic interaction of π-conjugated and non-π-conjugated units leads to relatively well-balanced NLO properties of the title compound, including moderated SHG (0.7 × KDP), short UV cutoff edge (λcutoff < 190 nm), and a large band gap of 6.16 eV. Specifically, the coplanar arrangement of B-O groups in double-layer makes the KRBPO display a large birefringence (0.075@532 nm) and enables the shortest phase-matched wavelength to reach an important laser output wavelength of 266 nm.

4.
Front Aging Neurosci ; 16: 1466089, 2024.
Article in English | MEDLINE | ID: mdl-39328244

ABSTRACT

Background and aims: The association between blood pressure (BP) and dementia in older adults remains unclear, prompting this study to investigate the relationship between various BP indicators and dementia in this population. Methods: A cross-sectional survey was conducted in 2019, including 3,599 participants aged 65 years or older. The basic demographic characteristics of participants were collected. BP measurements and neuropsychological assessments were performed. From the systolic BP (SBP) and diastolic BP (DBP) values, mean arterial pressure (MAP), pulse pressure (PP) and blood pressure index (BPI) were calculated. Generalized additive models and logistic regression models were used to analyze the association between BP indicators and dementia. Results: Generalized additive models identified a U-shaped relationship between DBP and dementia, which was more significant in males and people 70 years of age and older. The optimal DBP associated with the lowest dementia risk was 85 mmHg. Logistic regression models revealed that compared to the DBP subgroup (80-89 mmHg), participants in the DBP < 80 mmHg subgroup and the DBP ≥100 mmHg subgroup had OR for dementia of 1.611 (95% CI: 1. 252-2.073, P < 0.001) and 1.423 (95% CI: 0.999-2.028, p = 0.050), respectively. A significant association was observed between BPI and dementia (OR:1.746 95% CI: 1.142-2.668, p = 0.010). Conclusion: In older adults, we found a U-shaped relationship between DBP and dementia, and a linear relationship between BPI and dementia. These results underscore the importance of considering DBP and BPI in BP management strategies for older adults to potentially prevent or delay dementia onset.

5.
J Am Chem Soc ; 146(38): 26081-26094, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39283331

ABSTRACT

The heteroanionic materials (HAMs) have attracted more and more attention because they can better balance the functional properties of materials. However, their rational structural design is still a great challenge. Here, by using the antiperovskite Ba3S[GeS4] as a template and calculating the tolerance factor (t) as a reference, eight heteroanionic oxychalcogenides with balanced properties were finally synthesized by a partially group-substitution method. Among them, Ba3[CO3][MQ4] (M = Ge, Sn; Q = S, Se) are centrosymmetric (CS) crystals and realize optimization of band gaps and birefringence. For Ae3[TO3][SnOQ3] (Ae = Sr, Ba; T = Si, Ge; Q = S, Se), thanks to the novel [TO4SnQ3] polyanionic groups for the regulation to the antiperovskite structures and the contributions to the nonlinear optical (NLO) properties, they achieve the structural transition from CS to noncentrosymmetry and accomplish an excellent balance among the critical performance parameters as the potential candidates for the infrared NLO materials, including phase-matchable behavior, wide band gaps (Eg = 3.26-3.95 eV), high laser damage threshold (LDT = 3.2-4.4 × AgGaS2), suitable birefringence (Δn = 0.065-0.098@2090 nm) and sufficiently strong second-harmonic generation responses (about 0.6-0.9 × AgGaS2). Moreover, benefiting from crystallization in the polar space groups, they exhibit ferroelectricity and piezoelectricity at room temperature. As far as we know, this is the first reported fully inorganic antiperovskite ferroelectric. These demonstrate that our strategy is desirable and can provide some unique insights into the development of HAMs or antiperovskite materials with specific functions or structures.

6.
Inorg Chem ; 63(35): 16507-16514, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39165176

ABSTRACT

Rational chemical substitution is an effective way to regulate structure and enrich property. Herein, a new noncentrosymmetric borosilicate, Ba2ScBSi2O9, was successfully synthesized by substituting CaO6 units in Ba2CaB2Si4O14 with ScO6 octahedra, with comparatively strong covalency. This substitution not only effectively prevents polymerization of the B-O groups, resulting in an intriguing structural transformation from tetrahedral-coordinated borosilicate of Ba2CaB2Si4O14 to mixed-coordinated borosilicate Ba2ScBSi2O9, but also enhances its second harmonic generation response (2 × KDP), that is nearly four times higher than its parent structure while keeping a short ultraviolet (UV) cutoff edge (λcutoff < 190 nm). In addition, the polar space group of Pca21 for Ba2ScBSi2O9 achieves its ferroelectric polarization reversal capability, which makes quasi-phase-matching technology possible to counteract the nonphase-matching caused by small birefringence of silicates. This work indicates the unique role of heterovalent substitution in regulating structure and performance, providing new insights for exploring borosilicate with versatile functionality.

7.
Int Immunopharmacol ; 138: 112527, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38950457

ABSTRACT

BACKGROUND: Sepsis-associated acute kidney injury (SA-AKI) represents a frequent complication of in critically ill patients. The objective of this study is to illuminate the potential protective activity of Micheliolide (MCL) and its behind mechanism against SA-AKI. METHODS: The protective potential of MCL on SA-AKI was investigated in lipopolysaccharide (LPS) treated HK2 cells and SA-AKI mice model. The mitochondrial damage was determined by detection of reactive oxygen species and membrane potential. The Nrf2 silencing was achieved by transfection of Nrf2-shRNA in HK2 cells, and Nrf2 inhibitor, ML385 was employed in SA-AKI mice. The mechanism of MCL against SA-AKI was evaluated through detecting hallmarks related to inflammation, mitophagy and Nrf2 pathway via western blotting, immunohistochemistry, and enzyme linked immunosorbent assay. RESULTS: MCL enhanced viability, suppressed apoptosis, decreased inflammatory cytokine levels and improved mitochondrial damage in LPS-treated HK2 cells, and ameliorated renal injury in SA-AKI mice. Moreover, MCL could reduce the activation of NLRP3 inflammasome via enhancing mitophagy. Additionally, Nrf2 deficiency reduced the suppression effect of MCL on NLRP3 inflammasome activation and blocked the facilitation effect of MCL on mitophagy in LPS-treated HK2 cells, the consistent is true for ML385 treatment in SA-AKI mice. CONCLUSIONS: MCL might target Nrf2 and further reduce the NLRP3 inflammasome activation via enhancing mitophagy, which alleviated SA-AKI.


Subject(s)
Acute Kidney Injury , Mitophagy , NF-E2-Related Factor 2 , NLR Family, Pyrin Domain-Containing 3 Protein , Protein Kinases , Sesquiterpenes, Guaiane , Ubiquitin-Protein Ligases , Animals , Humans , Male , Mice , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/chemically induced , Cell Line , Disease Models, Animal , Inflammasomes/metabolism , Kidney/pathology , Kidney/drug effects , Kidney/metabolism , Lipopolysaccharides , Mice, Inbred C57BL , Mitophagy/drug effects , NF-E2-Related Factor 2/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Protein Kinases/metabolism , Sepsis/drug therapy , Sepsis/complications , Sesquiterpenes, Guaiane/pharmacology , Signal Transduction/drug effects , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics
8.
J Clin Immunol ; 44(6): 131, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775840

ABSTRACT

RHOH, an atypical small GTPase predominantly expressed in hematopoietic cells, plays a vital role in immune function. A deficiency in RHOH has been linked to epidermodysplasia verruciformis, lung disease, Burkitt lymphoma and T cell defects. Here, we report a novel germline homozygous RHOH c.245G > A (p.Cys82Tyr) variant in a 21-year-old male suffering from recurrent, invasive, opportunistic infections affecting the lungs, eyes, and brain. His sister also succumbed to a lung infection during early adulthood. The patient exhibited a persistent decrease in CD4+ T, B, and NK cell counts, and hypoimmunoglobulinemia. The patient's T cell showed impaired activation upon in vitro TCR stimulation. In Jurkat T cells transduced with RHOHC82Y, a similar reduction in activation marker CD69 up-regulation was observed. Furthermore, the C82Y variant showed reduced RHOH protein expression and impaired interaction with the TCR signaling molecule ZAP70. Together, these data suggest that the newly identified autosomal-recessive RHOH variant is associated with T cell dysfunction and recurrent opportunistic infections, functioning as a hypomorph by disrupting ZAP70-mediated TCR signaling.


Subject(s)
Homozygote , Opportunistic Infections , Humans , Male , Young Adult , Jurkat Cells , Lymphocyte Activation/genetics , Opportunistic Infections/genetics , Opportunistic Infections/immunology , Pedigree , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Recurrence , T-Lymphocytes/immunology , ZAP-70 Protein-Tyrosine Kinase/genetics , ZAP-70 Protein-Tyrosine Kinase/metabolism
9.
Angew Chem Int Ed Engl ; 63(30): e202406318, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38715104

ABSTRACT

Achieving the extreme balance of the key performance requirements is the crucial to breakthrough the application bottleneck for nonlinear optical (NLO) materials. Herein, by assembly of the π-conjugated [B3O6] functional species with the aid of structure-directing property of mer-isomer [YO3F3] octahedra, a new ultraviolet (UV) NLO material, Cs2YB3O6F2 with aligned arrangement of coplanar [B3O6] groups has been synthesized. The polar material exhibits the rare coexistence of the largest second harmonic generation response of 5.6×KDP, the largest birefringence of 0.091 at 532 nm, the shortest Type I phase-matching down to 200.5 nm and deep-ultraviolet transparency among reported acentric rare-earth borates with [B3O6] groups. Remarkably, benefiting from the enhanced bonding force among functional units [B3O6], a firm three-dimensional framework is constructed, which facilitates the growth of large crystals. This can be proved by a block shape crystal with dimensional of 6×5×4 mm3, indicating that it was a promising UV NLO crystal. This work provides a powerful strategy to design UV NLO materials with good performances.

10.
Nat Commun ; 15(1): 2959, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580636

ABSTRACT

Divalent lanthanide inorganic compounds can exhibit unique electronic configurations and physicochemical properties, yet their synthesis remains a great challenge because of the weak chemical stability. To the best of our knowledge, although several lanthanide monoxides epitaxial thin films have been reported, there is no chemically stable crystalline divalent lanthanide chalcogenide synthesized up to now. Herein, by using octahedra coupling tetrahedra single/double chains to construct an octahedral crystal field, we synthesized the stable crystalline La(II)-chalcogenide, LaMg6Ga6S16. The nature of the divalent La2+ cations can be identified by X-ray photoelectron spectroscopy, X-ray absorption near-edge structure and electron paramagnetic resonance, while the stability is confirmed by the differential thermal scanning, in-situ variable-temperature powder X-ray diffraction and a series of solid-state reactions. Owing to the particular electronic characteristics of La2+(5d1), LaMg6Ga6S16 displays an ultrabroad-band green emission at 500 nm, which is the inaugural instance of La(II)-based compounds demonstrating luminescent properties. Furthermore, as LaMg6Ga6S16 crystallizes in the non-centrosymmetric space group, P-6, it is the second-harmonic generation (SHG) active, possessing a comparable SHG response with classical AgGaS2. In consideration of its wider band gap (Eg = 3.0 eV) and higher laser-induced damage threshold (5×AgGaS2), LaMg6Ga6S16 is also a promising nonlinear optical material.

11.
BMC Pulm Med ; 24(1): 163, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570751

ABSTRACT

BACKGROUND: Observational studies have shown that smoking is related to the diffusing capacity of the lungs for carbon monoxide (DLCO) in individuals with idiopathic pulmonary fibrosis (IPF). Nevertheless, further investigation is needed to determine the causal effect between these two variables. Therefore, we conducted a study to investigate the causal relationship between smoking and DLCO in IPF patients using two-sample Mendelian randomization (MR) analysis. METHODS: Large-scale genome-wide association study (GWAS) datasets from individuals of European descent were analysed. These datasets included published lifetime smoking index (LSI) data for 462,690 participants and DLCO data for 975 IPF patients. The inverse-variance weighting (IVW) method was the main method used in our analysis. Sensitivity analyses were performed by MR‒Egger regression, Cochran's Q test, the leave-one-out test and the MR-PRESSO global test. RESULTS: A genetically predicted increase in LSI was associated with a decrease in DLCO in IPF patients [ORIVW = 0.54; 95% CI 0.32-0.93; P = 0.02]. CONCLUSIONS: Our study suggested that smoking is associated with a decrease in DLCO. Patients diagnosed with IPF should adopt an active and healthy lifestyle, especially by quitting smoking, which may be effective at slowing the progression of IPF.


Subject(s)
Genome-Wide Association Study , Idiopathic Pulmonary Fibrosis , Humans , Smoking/adverse effects , Smoking/genetics , Tobacco Smoking , Idiopathic Pulmonary Fibrosis/genetics , Carbon Monoxide
12.
Inorg Chem ; 63(11): 4807-4812, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38446174

ABSTRACT

Two new congruently melting Pb-containing halogen silicates, Pb3[O10Pb20](SiO4)4X10 (X = Cl, Br), have been synthesized using a high-temperature solution method. Their crystal structures were determined by single-crystal X-ray diffraction, and both compounds crystallize in the orthorhombic space group Cmca. In both structures, the mirror-symmetric bilayer composed of Pb-O polyhedra is observed for the first time in Pb-containing silicates and belongs to α-PbO derivatives and is related to the Aurivillius phase. Thermal behavior analysis, UV-vis diffuse-reflectance spectroscopy, and IR spectroscopy were also performed. The Pb3[O10Pb20](SiO4)4Cl10 matrix was doped with Eu3+ ions as a dopant, and its potential application in fluorescence was confirmed from the resulting orange-red emission.

13.
ACS Appl Mater Interfaces ; 16(8): 10325-10334, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38358397

ABSTRACT

In modern society, the investigation of highly efficient photoluminescent bulk materials with excitation-induced tunable multicolor luminescence and multiexciton generation (MEG) is of great significance to information security and the application of optoelectronic devices. In this study, two bulk Cu-based halide crystals of (C4H10NO)4Cu2Br5·Br and (C4H10NO)4Cu2I5·I·H2O, respectively, with one-dimensional structures were grown by a solvent evaporation method. Unexpectedly, (C4H10NO)4Cu2I5·I·H2O displayed excitation-induced tunable dual-color luminescence; one band is a brilliant green-yellow emission centered at 547 nm with a high photoluminescence quantum yield (PLQY) of up to 169.67%, and the other is a red emission at 695 nm with a PLQY of 75.76%. Just as importantly, (C4H10NO)4Cu2Br5·Br exhibits a strong broadband green-yellow emission at 561 nm under broad band excitation ranging from 252 to 350 nm, a long PL decay lifetime of 106.9 µs, and an ultrahigh PLQY of 198.22%. These materials represent the first two examples of 1D bulk crystals and Cu(I)-based halides that have a PLQY exceeding 100%. Combining the unusual luminescence characteristics with theoretical calculations reveals that MEG contributes to the green-yellow emission with ultrahigh PLQY > 100%, and that the red emission can be ascribed to [Cu2I5]3- cluster-centered emission. Additionally, an information encryption method was designed based on the Morse Code. The high luminescence characteristics of LED devices fabricated using the (C4H10NO)4Cu2Br5·Br and (C4H10NO)4Cu2I5·I·H2O crystals appear to lead to promising applications in solid-state lighting. This work extends the catalog of high-performance luminescent materials and also promotes application prospects of low-dimensional copper-based halides in optoelectronics.

14.
Angew Chem Int Ed Engl ; 63(15): e202400892, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38302689

ABSTRACT

Non-centrosymmetric (NCS) and polar materials capable of exhibiting many important functional properties are indispensable for electro-optical technologies, yet their rational structural design remains a significant challenge. Here, we report a "group grafting" strategy for designing the first multi-chromophore selenophosphate, Cs3In(In4Se7)(P2Se6), that crystallizes in a NCS and polar space group of Cm. The structure features a unique basic building unit (BBU) [In(In4Se10)(P2Se6)], formed through "grafting [In4Se10] supertetrahedra on the root of [In(P2Se6)2] groups". Theoretical calculations confirm that this [In(In4Se10)(P2Se6)] BBU can achieve a "1+1>2" combination of properties from two chromophores, [In4Se10] supertetrahedron and ethane-like [P2Se6] dimer. That makes Cs3In(In4Se7)(P2Se6) exhibit excellent linear and nonlinear optical (NLO) properties, including a strong second harmonic generation (SHG) response (~6×AgGaS2), a large band gap (2.45 eV), broad infrared (IR) transmission (up to 19.5 µm), a significant birefringence (0.26 @1064 nm) as well as the congruently-melting property at ~700 °C. Therefore, Cs3In(In4Se7)(P2Se6) will be a promising NLO crystal, especially in the IR region, and this research also demonstrates that "group grafting" will be an effective strategy for constructing novel polar BBUs with multi-chromophore to design NCS structures and high-performance IR NLO materials.

15.
Inorg Chem ; 63(6): 3173-3180, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38301606

ABSTRACT

Currently, organic-inorganic hybrid cuprous-based halides are receiving substantial attention for their eco-friendliness, distinctive structures, and outstanding photophysical properties. Nevertheless, most of the reported cuprous-based halides demand deep ultraviolet excitation with a narrow excitation range that can meet the commercial requirement. Herein, zero-dimensional (0D) cuprous-based halide (C4H10N)4Cu4I8 single crystals (SCs) were synthesized, with an ultrabroad band excitation ranging 260-450 nm and a greenish-yellow emission band peaking at 560 nm. Excitingly, (C4H10N)4Cu4I8 also features a large Stokes shift of 300 nm, a high photoluminescence quantum yield (PLQY) of up to 84.66%, and a long lifetime of 137 µs. Furthermore, density functional theory calculations were performed to explore the relationship between structure and photophysical properties, and the photoluminescence performance of (C4H10N)4Cu4I8 originates from the electron interactions in [Cu2I4]2- clusters. Taking advantage of broad band excitation and excellent photoluminescent performances, a high luminescence characteristic UV-pumped light-emitting diode (LED) device with remarkable color stability was fabricated by employing the as-synthesized (C4H10N)4Cu4I8 SCs, which present the promising applications of low-dimensional cuprous-based halides in solid-state lighting.

16.
Inorg Chem ; 63(2): 1404-1413, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38163854

ABSTRACT

Introducing F- anions or substituting F- anions with IO3- groups has been proven to be ideal strategies for designing novel noncentrosymmetric (NCS) and polar materials, yet systematic investigation into the effect of F- anions or the substitution of IO3- for F- anions on structures and properties remains rarely explored. Herein, two new gallium iodates, NaGa(IO3)2F2 (1) and NaGa(IO3)4 (2), were successfully designed and synthesized based on NaGa(IO3)3F by introducing more F- anions and replacing F- anions with IO3 groups, respectively. Structurally, in compound 1, the adjacent [GaF3(IO3)3]3- polyanions are connected in an antiparallel manner, resulting in a complete cancellation of local polarity. While in compound 2, all IO3 groups in 2D [Ga(IO3)4]∞- layers are aligned, leading to large macroscopic polarization. Additionally, chemical substitution also results in a qualitative improvement in the functional properties of compound 2. It possesses strong SHG response (12 × KDP @1064 nm) and broad optical transparency, coupled with large birefringence (0.21 @1064 nm), showcasing its promise as a promising nonlinear optical (NLO) crystal. The effects of chemical substitution between F- anions and IO3- groups on the structures and properties are discussed in detail.

17.
Blood Adv ; 8(7): 1667-1682, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38286463

ABSTRACT

ABSTRACT: Congenital neutropenia (CN) is a genetic disorder characterized by persistent or intermittent low peripheral neutrophil counts, thus increasing susceptibility to bacterial and fungal infections. Various forms of CN, caused by distinct genetic mutations, exhibit differential responses to granulocyte colony-stimulating factor (G-CSF) therapy, with the underlying mechanisms not fully understood. This study presents an in-depth comparative analysis of clinical and immunological features in 5 CN patient groups (severe congenital neutropenia [SCN]1, SCN3, cyclic neutropenia [CyN], warts, hypogammaglobulinaemia, infections and myelokathexis [WHIM], and Shwachman-Bodian-Diamond Syndrome [SBDS]) associated with mutations in ELANE, HAX1, CXCR4, and SBDS genes. Our analysis led to the identification of 11 novel mutations in ELANE and 1 each in HAX1, CXCR4, and G6PC3 genes. Investigating bone marrow (BM) granulopoiesis and blood absolute neutrophil count after G-CSF treatment, we found that SCN1 and SCN3 presented with severe early-stage disruption between the promyelocyte and myelocyte, leading to a poor response to G-CSF. In contrast, CyN, affected at the late polymorphonuclear stage of neutrophil development, showed a strong G-CSF response. WHIM, displaying normal neutrophil development, responded robustly to G-CSF, whereas SBDS, with moderate disruption from the early myeloblast stage, exhibited a moderate response. Notably, SCN1 uniquely impeded neutrophil development, whereas SCN3, CyN, WHIM, and SBDS also affected eosinophils and basophils. In addition, SCN1, SCN3, and CyN presented with elevated serum immunoglobulins, increased BM plasma cells, and higher A Proliferation-Inducing Ligand levels. Our study reveals a strong correlation between the stage and severity of granulocyte development disruption and the efficacy of G-CSF therapy.


Subject(s)
Congenital Bone Marrow Failure Syndromes , Eosinophils , Granulocyte Colony-Stimulating Factor , Neutropenia/congenital , Humans , Granulocyte Colony-Stimulating Factor/pharmacology , Granulocyte Colony-Stimulating Factor/therapeutic use , Mutation , Adaptor Proteins, Signal Transducing
18.
Adv Sci (Weinh) ; 11(7): e2306825, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38064125

ABSTRACT

Chirality and polarity are the two most important and representative symmetry-dependent properties. For polar structures, all the twofold axes perpendicular to the principal axis of symmetry should be removed. For chiral structures, all the mirror-related symmetries and inversion axes should be removed. Especially for duality (polarity and chirality), all of the above symmetries should be broken and that also represents the highest-level challenge. Herein, a new symmetry-breaking strategy that employs heteroanionic groups to construct hourglass-like [Sr3 OGeS3 ]2+ and [Sr3 SGeS3 ]2+ groups to design and synthesize a new oxychalcogenide Sr18 Ge9 O5 S31 with chiral-polar duality is proposed. The presence of two enantiomers of Sr18 Ge9 O5 S31 is confirmed by the single-crystal X-ray diffraction. Its optical activity and ferroelectricity are also studied by solid-state circular dichroism spectroscopy and piezoresponse force microscopy, respectively. Further property measurements show that Sr18 Ge9 O5 S31 possesses excellent nonlinear optical properties, including the strong second harmonic generation efficiency (≈2.5 × AGS), large bandgap (3.61 eV), and wide mid-infrared transparent region (≈15.3 µm). These indicate that the unique microstructure groups of heteroanionic materials are conducive to realizing symmetry-breaking and are able to provide some inspiration for exploring the chiral-polar duality materials.

20.
Small ; 20(3): e2306459, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37679055

ABSTRACT

Nonlinear optical (NLO) crystals are indispensable for the solid-state lasers for their ability to expand wavelength spectral to the regions where the directing lasing is difficult or even impossible, yet the rational design of a high-performance NLO crystal remains a great challenge owing to the severe structural and properties' requirements. Herein, a new noncentrosymmetric (NCS) and polar gallium iodate, LiGa(IO3 )4 , with a novel 2D anionic layer, is successfully designed and synthesized by the aliovalent substitution strategy based on classic α-LiIO3 . The 2D [Ga(IO3 )4 ]∞ - layer in LiGa(IO3 )4 is built from the GaO6 octahedra and highly polarizable units IO3 . Compared with its parent compound, the partial replacement of A-site Li+ cation with main group Ga3+ cation facilitates LiGa(IO3 )4 to possess excellent NLO properties, including the large second-harmonic generation (SHG) response (14 × KH2 PO4 (KDP) @ 1064 nm), wide bandgap (4.25 eV), large birefringence (0.23 @ 1064 nm), and wide optical transparency from UV to mid-IR. These reveal that LiGa(IO3 )4 will be a promising NLO crystal.

SELECTION OF CITATIONS
SEARCH DETAIL