Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Signal Transduct Target Ther ; 9(1): 218, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39174522

ABSTRACT

Obesity is a global issue that warrants the identification of more effective therapeutic targets and a better understanding of the pivotal molecular pathogenesis. Annexin A1 (ANXA1) is known to inhibit phospholipase A2, exhibiting anti-inflammatory activity. However, the specific effects of ANXA1 in obesity and the underlying mechanisms of action remain unclear. Our study reveals that ANXA1 levels are elevated in the adipose tissue of individuals with obesity. Whole-body or adipocyte-specific ANXA1 deletion aggravates obesity and metabolic disorders. ANXA1 levels are higher in stromal vascular fractions (SVFs) than in mature adipocytes. Further investigation into the role of ANXA1 in SVFs reveals that ANXA1 overexpression induces lower numbers of mature adipocytes, while ANXA1-knockout SVFs exhibit the opposite effect. This suggests that ANXA1 plays an important role in adipogenesis. Mechanistically, ANXA1 competes with MYC binding protein 2 (MYCBP2) for interaction with PDZ and LIM domain 7 (PDLIM7). This exposes the MYCBP2-binding site, allowing it to bind more readily to the SMAD family member 4 (SMAD4) and promoting its ubiquitination and degradation. SMAD4 degradation downregulates peroxisome proliferator-activated receptor gamma (PPARγ) transcription and reduces adipogenesis. Treatment with Ac2-26, an active peptide derived from ANXA1, inhibits both adipogenesis and obesity through the mechanism. In conclusion, the molecular mechanism of ANXA1 inhibiting adipogenesis was first uncovered in our study, which is a potential target for obesity prevention and treatment.


Subject(s)
Adipocytes , Adipogenesis , Annexin A1 , Obesity , PPAR gamma , Annexin A1/genetics , Annexin A1/metabolism , Adipogenesis/genetics , Animals , Obesity/genetics , Obesity/metabolism , Obesity/pathology , Humans , Mice , PPAR gamma/genetics , PPAR gamma/metabolism , Adipocytes/metabolism , Adipocytes/pathology , Smad4 Protein/genetics , Smad4 Protein/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , 3T3-L1 Cells , Peptides
2.
Article in English | MEDLINE | ID: mdl-39085587

ABSTRACT

Previous studies examining conflict processing within the context of a color-word Stroop task have focused on both stimulus and response conflicts. However, it has been unclear whether conflict can emerge independently of stimulus conflict. In this study, a novel arrow-gaze mental-rotation Stroop task was introduced to explore the interplay between conflict processing and mental rotation. A modelling approach was utilized to provide a process-level account of the findings. The results of our Stroop task indicate that conflict can emerge from mental rotation in the absence of stimulus conflict. The strength of this imagery conflict effect decreases and even reverses as mental rotation angles increase. Additionally, it was observed that participants responded more quickly and with greater accuracy to small rather than large face orientations. A comparison of three conflict diffusion models-the diffusion model for conflict tasks (DMC), the dual-stage two-phase model (DSTP), and the shrinking spotlight model (SSP)-yielded consistent support for the DSTP over the DMC and SSP in the majority of instances. The DSTP account of the experimental results revealed an increased nondecision time with increasing mental rotation, a reduction in interference from incompatible stimuli, and an improved drift rate in response selection phase, which suggests enhanced cognitive control. The findings from the model-based analysis provide evidence for a novel interaction between cognitive control and mental rotation.

3.
Biomed Chromatogr ; 38(9): e5900, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38937935

ABSTRACT

Bailing capsule (BLC), a drug that is clinically administered to modulate the autoimmune system, exhibits promising therapeutic potential in the treatment of thyroiditis. This study elucidates the chemical profile of BLC and its potential therapeutic mechanism in thyroiditis, leveraging network pharmacology and molecular docking techniques. Utilizing ultra-high-performance liquid chromatography coupled with linear trap-Orbitrap mass spectrometry (UHPLC-LTQ-Orbitrap MS), 58 compounds were identified, the majority of which were nucleosides and amino acids. Utilizing the ultra-high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (UHPLC QqQ MS/MS) strategy, 16 representative active components from six batches of BLCs were simultaneously determined. Network pharmacology analysis further revealed that the active components included 5'-adenylate, guanosine, adenosine, cordycepin, inosine, 5'-guanylic acid, and l-lysine. Targets with higher connectivity included AKT1, MAPK3, RAC1, and PIK3CA. The signaling pathways primarily focused on thyroid hormone regulation and the Ras, PI3K/AKT, and MAPK pathways, all of which were intricately linked to inflammatory immunity and hormonal regulation. Molecular docking analysis corroborated the findings from network pharmacology, revealing that adenosine, guanosine, and cordycepin exhibited strong affinity toward AKT1, MAPK3, PIK3CA, and RAC1. Overall, this study successfully elucidated the material basis and preliminary mechanism underlying BLC's intervention in thyroiditis, thus laying a solid basis for further exploration of its in-depth mechanisms.


Subject(s)
Drugs, Chinese Herbal , Molecular Docking Simulation , Tandem Mass Spectrometry , Thyroiditis , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/analysis , Thyroiditis/drug therapy , Tandem Mass Spectrometry/methods , Network Pharmacology , Signal Transduction/drug effects , Humans
4.
Anal Bioanal Chem ; 416(19): 4409-4415, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38864917

ABSTRACT

We present a novel approach for iodide sensing based on the heavy-atom effect to quench the green fluorescent emission of organosilicon nanoparticles (OSiNPs). The fluorescence of OSiNPs was significantly quenched (up to 97.4% quenching efficiency) in the presence of iodide ions (I-) through oxidation by hydrogen peroxide. Therefore, OSiNPs can serve as a fluorescent probe to detect I- with high selectivity and sensitivity. The highly selective response is attributed to the hydrophilic surface enabling good dispersion in aqueous solutions and the lipophilic core allowing the generated liposoluble I2 to approach and quench the fluorescence of OSiNPs. The linear working range for I- was from 0 to 50 µM, with a detection limit of 0.1 µM. We successfully applied this nanosensor to determine iodine content in edible salt. Furthermore, the fluorescent OSiNPs can be utilized for the determination of total antioxidant capacity (TAC). Antioxidants reduce I2 to I-, and the extent of quenching by the remaining I2 on the OSiNPs indicates the TAC level. The responses to ascorbic acid, pyrogallic acid, and glutathione were investigated, and the detection limit for ascorbic acid was as low as 0.03 µM. It was applied to the determination of TAC in ascorbic acid tablets and fruit juices, indicating the potential application of the OSiNP-based I2 sensing technique in the field of food analysis.


Subject(s)
Antioxidants , Fluorescent Dyes , Iodides , Limit of Detection , Nanoparticles , Iodides/analysis , Iodides/chemistry , Nanoparticles/chemistry , Antioxidants/analysis , Antioxidants/chemistry , Fluorescent Dyes/chemistry , Organosilicon Compounds/chemistry , Spectrometry, Fluorescence/methods , Ascorbic Acid/analysis , Fruit and Vegetable Juices/analysis
5.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2783-2797, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812179

ABSTRACT

Dihuang Baoyuan Granules is a prescription endorsed by HU Tianbao, a renowned and elderly Chinese medicine practitioner from Beijing, and has demonstrated definite clinical efficacy. The composition of this prescription is intricate as it includes 7 distinct herbal medicines. This study aims to analyze the chemical composition of Dihuang Baoyuan Granules, evaluate its efficacy in the treatment of diabetes and analyze the distribution of the drug components in the plasma, liver, and kidney after administration. The findings will serve as a reference for future research on pharmacodynamic substances of this prescription. UHPLC-LTQ-Orbitrap MS was employed to analyze the main chemical components of Dihuang Baoyuan Granules. A Waters ACQUITY Premier HSS T3 column(2.1 mm×100 mm, 1.8 µm) was used for chromatographic separation with 0.1% formic acid(A)-acetonitrile(B) as the mobile phases in a gradient elution at a flow rate of 0.3 mL·min~(-1). Electrospray ionization(ESI) source was used to acquire data in positive and negative ion modes. Furthermore, a rat model of diabetes mellitus was established by feeding with a high-sugar high-fat diet, and injection with streptozocin at a dose of 35 mg·kg~(-1), and the modeled rats were then administrated with Dihuang Baoyuan Granules. The fasting blood glucose, hemoglobin A1c, and other relevant indicators were measured, and the substances present in the plasma, liver, and kidney were identified. By reference to quasi-molecular ions, MS/MS fragment ions, MS spectra of reference substances, and compound information in available reports, 191 components were identified in Dihuang Baoyuan Granules, including 29 alkaloids, 24 flavonoids, 22 organic acids, 16 amino acids, 12 terpenes, 11 steroid saponins, 9 sugars, 8 phenylethanoid glycosides, 8 nucleosides, 2 phenylpropanoids, and 49 others compounds. Eighty-three chemical components were identified in rat plasma, 109 in the liver, and 98 in the kidney. Component identification and characterization of Dihuang Baoyuan Granules in vitro and in vivo provide efficacy information and guidance for the basic research on the pharmacodynamic substances and further clinical application of this prescription.


Subject(s)
Drugs, Chinese Herbal , Rats, Sprague-Dawley , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacokinetics , Chromatography, High Pressure Liquid/methods , Animals , Rats , Male , Humans , Liver/drug effects , Liver/chemistry , Liver/metabolism , Mass Spectrometry/methods , Kidney/drug effects , Kidney/chemistry , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus/drug therapy
6.
Chem Commun (Camb) ; 60(37): 4942-4945, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38629242

ABSTRACT

We present a triple-mode nanosensor platform for nucleic acid detection utilizing fluorescence anisotropy and Förster resonance energy transfer (FRET) strategies. The self-assembled nanoprobes serve as mass amplifiers, nanoquenchers, or nanodonors, exhibiting high FRET efficiencies (64.4-86.5%) and demonstrating excellent detection capabilities in DNA and microRNA analysis.


Subject(s)
DNA , Fluorescence Resonance Energy Transfer , MicroRNAs , Polymers , DNA/chemistry , Polymers/chemistry , MicroRNAs/analysis , Fluorescent Dyes/chemistry , Fluorescence Polarization , Fluorescence , Biosensing Techniques/methods
7.
Small ; 20(25): e2309146, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38372004

ABSTRACT

It is deemed as a tough yet profound project to comprehensively cope with a range of detrimental problems of lithium-sulfur batteries (LSBs), mainly pertaining to the shuttle effect of lithium polysulfides (LiPSs) and sluggish sulfur conversion. Herein, a Co2P-Fe2P@N-doped carbon (Co2P-Fe2P@NC) Mott-Schottky catalyst is introduced to enable bidirectionally stimulated sulfur conversion. This catalyst is prepared by simple carbothermal reduction of spent LiFePO4 cathode and LiCoO2. The experimental and theoretical calculation results indicate that thanks to unique surface/interface properties derived from the Mott-Schottky effect, full anchoring of LiPSs, mediated Li2S nucleation/dissolution, and bidirectionally expedited "solid⇌liquid⇌solid" kinetics can be harvested. Consequently, the S/Co2P-Fe2P@NC manifests high reversible capacity (1569.9 mAh g-1), superb rate response (808.9 mAh g-1 at 3C), and stable cycling (a low decay rate of 0.06% within 600 cycles at 3C). Moreover, desirable capacity (5.35 mAh cm-2) and cycle stability are still available under high sulfur loadings (4-5 mg cm-2) and lean electrolyte (8 µL mg-1) conditions. Furthermore, the as-proposed universal synthetic route can be extended to the preparation of other catalysts such as Mn2P-Fe2P@NC from spent LiFePO4 and MnO2. This work unlocks the potential of carbothermal reduction phosphating to synthesize bidirectional catalysts for robust LSBs.

8.
Commun Med (Lond) ; 4(1): 31, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38418628

ABSTRACT

BACKGROUND: Long-term monitoring of Electrocardiogram (ECG) recordings is crucial to diagnose arrhythmias. Clinicians can find it challenging to diagnose arrhythmias, and this is a particular issue in more remote and underdeveloped areas. The development of digital ECG and AI methods could assist clinicians who need to diagnose arrhythmias outside of the hospital setting. METHODS: We constructed a large-scale Chinese ECG benchmark dataset using data from 272,753 patients collected from January 2017 to December 2021. The dataset contains ECG recordings from all common arrhythmias present in the Chinese population. Several experienced cardiologists from Shanghai First People's Hospital labeled the dataset. We then developed a deep learning-based multi-label interpretable diagnostic model from the ECG recordings. We utilized Accuracy, F1 score and AUC-ROC to compare the performance of our model with that of the cardiologists, as well as with six comparison models, using testing and hidden data sets. RESULTS: The results show that our approach achieves an F1 score of 83.51%, an average AUC ROC score of 0.977, and 93.74% mean accuracy for 6 common arrhythmias. Results from the hidden dataset demonstrate the performance of our approach exceeds that of cardiologists. Our approach also highlights the diagnostic process. CONCLUSIONS: Our diagnosis system has superior diagnostic performance over that of clinicians. It also has the potential to help clinicians rapidly identify abnormal regions on ECG recordings, thus improving efficiency and accuracy of clinical ECG diagnosis in China. This approach could therefore potentially improve the productivity of out-of-hospital ECG diagnosis and provides a promising prospect for telemedicine.


Arrhythmia, also known as an irregular heartbeat, is a common cardiovascular disease. Sometimes the presence of an arrhythmia can increase the risk of more serious heart conditions. Long-term monitoring of the heartbeat enables arrhythmia to be more easily diagnosed. To accurately detect arrhythmia, we developed a computational model that was able to detect six common types of arrhythmias from readings of the heart rate obtained using a device connected to a mobile phone. We showed that our model could diagnose these arrhythmias in over 270,000 people living in China. Our diagnostic system could enable arrhythmias to be diagnosed more easily outside of hospitals and therefore improve access to healthcare, particularly for those in remote settings.

9.
Clin Immunol ; 258: 109861, 2024 01.
Article in English | MEDLINE | ID: mdl-38065370

ABSTRACT

With increasing stress in daily life and work, subhealth conditions induced by "Shi-Re Shanghuo" syndrome was gradually universal. "Huanglian Jiedu Wan" (HLJDW) was the first new syndrome Chinese medicine approved for the treatment of "Shi-Re Shanghuo" with promising clinical efficacy. Preliminary small-sample clinical studies have identified some notable biomarkers (succinate, 4-hydroxynonenal, etc.). However, the correlation and underlying mechanism between these biomarkers of HLJDW intervention on "Shi-Re Shanghuo" syndrome remained ambiguous. Therefore, this study was designed as a randomized, double-blind, multicenter, placebo-controlled Phase II clinical trial, employing integrated analysis techniques such as non-targeted and targeted metabolomics, salivary microbiota, proteomics, parallel peaction monitoring, molecular docking and surface plasmon resonance (SPR). The results of the correlation analysis indicated that HLJDW could mediate the balance between inflammation and immunity through succinate produced via host and microbial source to intervene "Shi-Re Shanghuo" syndrome. Further through the HIF1α/MMP9 pathway, succinate regulated downstream arachidonic acid metabolism, particularly the lipid peroxidation product 4-hydroxynonenal. Finally, an animal model of recurrent oral ulcers induced by "Shi-Re Shang Huo" was established and HLJDW was used for intervention, key essential indicators (succinate, glutamine, 4-hydroxynonenal, arachidonic acid metabolism) essential in the potential pathway HIF1α/MMP9 discovered in clinical practice were validated. The results were found to be consistent with our clinical findings. Taken together, succinate was observed as an important signal that triggered immune responses, which might serve as a key regulatory metabolic switch or marker of "Shi-Re Shanghuo" syndrome treated with HLJDW.


Subject(s)
Drugs, Chinese Herbal , Matrix Metalloproteinase 9 , Animals , Arachidonic Acid , Biomarkers , Molecular Docking Simulation , Succinates/therapeutic use , Succinic Acid , Humans
10.
Zhongguo Zhong Yao Za Zhi ; 48(21): 5898-5907, 2023 Nov.
Article in Chinese | MEDLINE | ID: mdl-38114186

ABSTRACT

This study aims to reveal the endogenous metabolic characteristics of acteoside in the young rat model of purinomycin aminonucleoside nephropathy(PAN) by non-targeted urine metabolomics and decipher the potential mechanism of action. Biochemical indicators in the urine of rats from each group were determined by an automatic biochemical analyzer. The potential biomarkers and related core metabolic pathways were identified by ultra-high performance liquid chromatography coupled with linear ion trap-Orbitrap mass spectrometry(UHPLC-LTQ-Orbitrap MS) combined with principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA). MetaboAnalyst 5.0 was used to establish the receiver operating characteristic(ROC) curve for evaluating the clinical diagnostic performance of core metabolites. The results showed that acteoside significantly decreased urinary protein-to-creatinine ratio in PAN young rats. A total of 17 differential metabolites were screened out by non-targeted urine metabolomics in PAN young rats and they were involved in phenylalanine metabolism and phenylalanine, tyrosine and tryptophan biosynthesis. Thirtten differential metabolites were screened by acteoside intervention in PAN young rats, and they were involved in phenylalanine metabolism and arginine and proline metabolism. Among them, leucylproline and acetophenone were the differential metabolites that were significantly recovered after acteoside treatment. These pathways suggest that acteoside treats PAN in young rats by regulating amino acid metabolism. The area under the curve of two core biomarkers, leucylproline and acetophenone, were both greater than 0.9. In summary, acteoside may restore amino acid metabolism by regulating endogenous differential metabolites in PAN young rats, which will help to clarify the mechanism of acteoside in treating chronic glomerulonephritis in children. The characteristic biomarkers screened out have a high diagnostic value for evaluating the treatment of chronic glomerulonephritis in children with acteoside.


Subject(s)
Glomerulonephritis , Puromycin Aminonucleoside , Humans , Child , Rats , Animals , Metabolomics/methods , Biomarkers/urine , Chromatography, High Pressure Liquid/methods , Acetophenones , Phenylalanine , Amino Acids
11.
Zhongguo Zhong Yao Za Zhi ; 48(22): 6066-6074, 2023 Nov.
Article in Chinese | MEDLINE | ID: mdl-38114213

ABSTRACT

This study comprehensively analyzed the active components of Sanhan Huashi Formula using qualitative and quantitative mass spectrometry techniques, laying the foundation for understanding its pharmacological substance basis. UHPLC-LTQ-Orbitrap-MS and GC-MS technologies were used to analyze and identify the volatile and non-volatile components in Sanhan Huashi Formula. UHPLC-QQQ-MS/MS technology was used to simultaneously determine the content of 27 major active components in the formula. The results showed that 308 major chemical components were identified in Sanhan Huashi Formula, among which 60 compounds were identified by comparing with reference standards, mainly including alkaloids, flavonoids, coumarins, triterpenoid saponins, amino acids, and nucleosides. GC-MS technology preliminarily identified 52 volatile compounds, with γ-eudesmol and ß-eudesmol as the main components. The quantitative results demonstrated good linearity(r>0.99) for the 27 active components, indicating the stability, simplicity, and reliability of the established method. Among them, amygdalin, nodakenin, arecoline, ephedrine, and pseudoephedrine had relatively high content and were presumably the main pharmacologically active substances. In conclusion, this study systematically and comprehensively characterized the major chemical components and patterns in Sanhan Huashi Formula, providing a basis for understanding its pharmacological mechanisms and clinical applications.


Subject(s)
Drugs, Chinese Herbal , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Gas Chromatography-Mass Spectrometry , Reproducibility of Results , Drugs, Chinese Herbal/chemistry
12.
Biomed Pharmacother ; 168: 115640, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37806086

ABSTRACT

NASH is a highly prevalent metabolic syndrome that has no specific approved agents up to now. BBBP, which mainly contains bile acids, possess various pharmacological properties and some bile acids are available for NASH treatment. Herein, the therapeutic effects and underlying mechanisms of BBBP against NASH were systemically evaluated. In this study, mice received an HFHS diet over a 20-week period to induce NASH with or without BBBP intervention were used to evaluate the effect and underlying mechanisms of BBBP against NASH. Our results demonstrated that BBBP attenuated hepatic steatosis, reduced body weight gain and lipid concentrations, and improved sensitivity to insulin and tolerance to glucose in mice fed an HFHS diet. Metabolomics and transcriptomic analysis revealed that BBBP suppressed the arginine biosynthesis by up-regulating NOS3 expression and the PI3K-Akt signaling pathway was also regulated by BBBP, as indicated by 55 DEGs. Bioinformatic analysis predicted the regulatory effect of the FXR/PXR-PI3K-AKT-NOS3 axis on arginine biosynthesis-related metabolites. These results were further confirmed by the significantly increased mRNA and protein levels of NOS3, PI3K (Pik3r2), and AKT1. And the increased levels of arginine biosynthesis related-metabolites, such as urea, aspartic acid, glutamic acid, citrulline, arginine, and ornithine, were confirmed accurately based on targeted metabolomics analysis. Together, our study uncoded the complicated mechanisms of anti-NASH activities of BBBP, and provided critical evidence inspiring the discovery of innovative therapies based on BBBP in the treatment of NASH.


Subject(s)
Non-alcoholic Fatty Liver Disease , Ursidae , Animals , Mice , Bile/metabolism , Bile Acids and Salts/metabolism , Diet , Liver , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Powders/pharmacology , Powders/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism
13.
Front Neural Circuits ; 17: 1252759, 2023.
Article in English | MEDLINE | ID: mdl-37645568

ABSTRACT

Fundamental properties of neurons and glia are distinctively different. Neurons are excitable cells that transmit information, whereas glia have long been considered as passive bystanders. Recently, the concept of tripartite synapse is proposed that glia are structurally and functionally incorporated into the synapse, the basic unit of information processing in the brains. It has then become intriguing how glia actively communicate with the presynaptic and postsynaptic compartments to influence the signal transmission. Here we present a thorough analysis at the transcriptional level on how glia respond to different types of neurotransmitters. Adult fly glia were purified from brains incubated with different types of neurotransmitters ex vivo. Subsequent RNA-sequencing analyses reveal distinct and overlapping patterns for these transcriptomes. Whereas Acetylcholine (ACh) and Glutamate (Glu) more vigorously activate glial gene expression, GABA retains its inhibitory effect. All neurotransmitters fail to trigger a significant change in the expression of their synthesis enzymes, yet Glu triggers increased expression of neurotransmitter receptors including its own and nAChRs. Expressions of transporters for GABA and Glutamate are under diverse controls from DA, GABA, and Glu, suggesting that the evoked intracellular pathways by these neurotransmitters are interconnected. Furthermore, changes in the expression of genes involved in calcium signaling also functionally predict the change in the glial activity. Finally, neurotransmitters also trigger a general metabolic suppression in glia except the DA, which upregulates a number of genes involved in transporting nutrients and amino acids. Our findings fundamentally dissect the transcriptional change in glia facing neuronal challenges; these results provide insights on how glia and neurons crosstalk in a synaptic context and underlie the mechanism of brain function and behavior.


Subject(s)
Neuroglia , Neurons , Glutamic Acid , gamma-Aminobutyric Acid , RNA
14.
J Clin Hypertens (Greenwich) ; 25(9): 868-879, 2023 09.
Article in English | MEDLINE | ID: mdl-37602974

ABSTRACT

Sodium intake shows a positive correlation with blood pressure, resulting in an increased risk for cardiovascular diseases (CVD). Salt reduction is a key step toward the WHO's goal of 25% reduction in mortality from non-communicable diseases (NCDs) by 2025. This study aims to assess the current condition and temporal changes of the global CVD burden due to high sodium intake (HSI). We extracted data from the Global Burden of Disease (GBD) study 2019. The numbers and age-standardized rates of mortality and disability-adjusted life-years (DALYs), stratified by location, sex, and socio-demographic Index (SDI), were used to assess the high sodium intake attributable CVD burden from 1990 to 2019. The relationship between the DALYs rates and related factors was evaluated by stepwise multiple linear regression analysis. Globally, in 2019, the deaths and DALYs of HSI-related CVD were 1.72 million and 40.54 million, respectively, increasing by 41.08% and 33.06% from 1990. Meanwhile, the corresponding mortality and DALYs rates dropped by 35.1% and 35.2%, respectively. The high-middle and middle SDI quintiles bore almost two-thirds of CVD burden caused by HSI. And the leading cause of HSI attributable CVD burden was ischemic heart disease. Universal health coverage (UHC) was associated with the DALYs rates after adjustment. From 1990 to 2019, the global CVD burden attributable to HSI has declined with spatiotemporal and sexual heterogeneity. However, it remains a major public health challenge because of the increasing absolute numbers. Improving UHC serves as an effective strategy to reduce the HSI-related CVD burden.


Subject(s)
Cardiovascular Diseases , Hypertension , Humans , Cardiovascular Diseases/epidemiology , Blood Pressure , Global Burden of Disease , Sodium Chloride, Dietary/adverse effects
15.
J Inflamm Res ; 16: 3259-3269, 2023.
Article in English | MEDLINE | ID: mdl-37564954

ABSTRACT

Purpose: This study aimed to prospectively investigate the association between mean platelet volume (MPV) levels and risk of benign prostatic hyperplasia (BPH) in a general Chinese adult male population, and assessed this association in metabolic syndrome (MetS) patients. Patients and methods: This study included a total of 14,923 male participants free from BPH at baseline. MPV was measured by the method of laser-based flow cytometric impedance according to the complete blood sample. BPH was defined as total prostate volume (TPV) ≥ 30 mL, TPV was determined by transabdominal ultrasonography. Multivariable Cox proportional hazards models were fitted to calculate hazards ratios (HRs) and corresponding 95% confidence intervals (CIs) for BPH risk with NLR levels. Results: During a median follow-up of 2.7 years, 4848 BPH cases were documented in total male participants, and 1787 BPH cases were documented in MetS participants. After adjusting for age, body mass index, smoking, alcohol and personal and family history of disease, the multivariable-adjusted HRs of BPH were 1.00 (reference), 1.03 (95% CIs 0.96, 1.11), 1.00 (95% CIs 0.92, 1.08) and 0.98 (95% CIs 0.90, 1.06), respectively, for participants with MPV in the 1st, 2nd, 3rd and 4th quartiles (P for trend = 0.47). In MetS patients, the multivariable-adjusted HRs of BPH were 1.00 (reference), 1.03 (95% CIs 0.90, 1.16), 0.99 (95% CIs 0.87, 1.14) and 1.01 (95% CIs 0.89, 1.15) (P for trend= 0.98), respectively. Conclusion: A non-significant association was observed between MPV levels and risk of BPH, and no association in this association in MetS patients. Our findings support the notion that MPV levels may not be a target for BPH prevention and intervention.

16.
Clin Chim Acta ; 548: 117514, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37567435

ABSTRACT

OBJECTIVES: This study aimed to compare the performance of enzyme-linked immunosorbent assay (ELISA) and magnetic particle chemiluminescence immunoassay (MP-CLIA) for detecting anti-phospholipase A2 receptor (PLA2R) antibody and their clinical significance in idiopathic membranous nephropathy (IMN) patients. METHODS: Serum samples from 448 patients with different types of nephropathy, including 222 with IMN, were tested using both methods. Sensitivity, specificity, and prognostic significance of PLA2R antibody levels were evaluated. RESULTS: Similar sensitivity and specificity of ELISA and MP-CLIA in identifying IMN patients was found. However, MP-CLIA performed better than ELISA in predicting the prognosis of IMN patients. Adjusting the cutoff value reduced the false-negative rate in both methods. Logistic regression analysis identified six variables, including MP-CLIA-PLA2R levels, eGFR, lymphocyte count, B lymphocyte count, NK cell count, and complement 4, as predictors of renal function outcomes in IMN patients. CONCLUSIONS: Both ELISA and MP-CLIA are reliable methods for detecting anti-PLA2R antibodies in IMN patients. However, MP-CLIA is more accurate in predicting the prognosis of IMN. Combining MP-CLIA-PLA2R with other variables can help predict renal function outcomes in IMN patients. Our study emphasizes the importance of considering both analytical performance and clinical utility when selecting a PLA2R antibody assay kit.


Subject(s)
Glomerulonephritis, Membranous , Receptors, Phospholipase A2 , Humans , Glomerulonephritis, Membranous/diagnosis , Prognosis , Enzyme-Linked Immunosorbent Assay/methods , Sensitivity and Specificity , Autoantibodies
17.
Proc Natl Acad Sci U S A ; 120(29): e2301002120, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37428930

ABSTRACT

Autophagy is a major means for the elimination of protein inclusions in neurons in neurodegenerative diseases such as Parkinson's disease (PD). Yet, the mechanism of autophagy in the other brain cell type, glia, is less well characterized and remains largely unknown. Here, we present evidence that the PD risk factor, Cyclin-G-associated kinase (GAK)/Drosophila homolog Auxilin (dAux), is a component in glial autophagy. The lack of GAK/dAux increases the autophagosome number and size in adult fly glia and mouse microglia, and generally up-regulates levels of components in the initiation and PI3K class III complexes. GAK/dAux interacts with the master initiation regulator UNC-51like autophagy activating kinase 1/Atg1 via its uncoating domain and regulates the trafficking of Atg1 and Atg9 to autophagosomes, hence controlling the onset of glial autophagy. On the other hand, lack of GAK/dAux impairs the autophagic flux and blocks substrate degradation, suggesting that GAK/dAux might play additional roles. Importantly, dAux contributes to PD-like symptoms including dopaminergic neurodegeneration and locomotor function in flies. Our findings identify an autophagy factor in glia; considering the pivotal role of glia under pathological conditions, targeting glial autophagy is potentially a therapeutic strategy for PD.


Subject(s)
Drosophila Proteins , Parkinson Disease , Animals , Mice , Drosophila/metabolism , Auxilins/metabolism , Autophagy-Related Protein-1 Homolog/genetics , Autophagy-Related Protein-1 Homolog/metabolism , Autophagy , Cyclins/metabolism , Neuroglia/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Autophagy-Related Proteins/metabolism , Membrane Proteins/metabolism
18.
PLOS Glob Public Health ; 3(6): e0002043, 2023.
Article in English | MEDLINE | ID: mdl-37347760

ABSTRACT

In this paper, we examine the cost effectiveness of investment in personal protective equipment (PPE) for protecting health care workers (HCWs) against two infectious diseases: Ebola virus and methicillin-resistant Staphylococcus aureus (MRSA). This builds on similar work published for COVID-19 in 2020. We developed two separate decision-analytic models using a payer perspective to compare the costs and effects of multiple PPE use scenarios for protection of HCW against Ebola and MRSA. Bayesian multivariate sensitivity analyses were used to consider the uncertainty surrounding all key parameters for both diseases. We estimate the cost to provide adequate PPE for a HCW encounter with an Ebola patient is $13.04, which is associated with a 97% risk reduction in infections. The mean incremental cost-effectiveness ratio (ICER) is $3.98 per disability-adjusted life year (DALY) averted. Because of lowered infection and disability rates, this investment is estimated to save $132.27 in averted health systems costs, a financial ROI of 1,014%. For MRSA, the cost of adequate PPE for one HCW encounter is $0.88, which is associated with a 53% risk reduction in infections. The mean ICER is $362.14 per DALY averted. This investment is estimated to save $20.18 in averted health systems costs, a financial ROI of 2,294%. In terms of total health savings per death averted, investing in adequate PPE is the dominant strategy for Ebola and MRSA, suggesting that it is both more costly and less clinically optimal to not fully invest in PPE for these diseases. There are many compelling reasons to invest in PPE to protect HCWs. This analysis examines the economic case, building on previous evidence that protecting HCWs with PPE is cost-effective for COVD-19. Ebola and MRSA scenarios were selected to allow assessment of both endemic and epidemic infectious diseases. While PPE is cost-effective for both conditions, compared to our analysis for COVID-19, PPE is relatively more cost-effective for Ebola and relatively less so for MRSA. Further research is needed to assess shortfalls in the PPE supply chain identified during the COVID-19 pandemic to ensure an efficient and resilient supply in the face of future pandemics.

19.
Vet Microbiol ; 284: 109820, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37364454

ABSTRACT

Duck Tembusu virus (DTMUV) causes severe reduction in egg production and neurological symptoms in ducklings. Vaccination is the primary measure used to prevent DTMUV infections. In this study, self-assembled nanoparticles with the E protein domain III of DTMUV, using ferritin as a carrier (EDⅢ-RFNp), were prepared using a prokaryotic expression system. Ducks were intramuscularly vaccinated with EDⅢ-RFNp, EDⅢ protein, an inactivated vaccine HB strain (InV-HB), and PBS. At 0, 4, and 6 weeks post-primary vaccination, the EDIII protein-specific antibody titre, IL-4, and IFN-γ concentrations in serum were determined by ELISA, and neutralising antibodies titres in sera were determined by virus neutralising assay. Peripheral blood lymphocytes proliferation was determined by CCK-8 kit. Following challenge with the virulent DTMUV strain, the clinical signals and survival rate of the vaccinated ducks were recorded, and DTMUV RNA levels in the blood and tissues of the surviving ducks were determined by real-time quantitative RT-PCR. The near-spherical EDⅢ-RFNp nanoparticles with 13.29 ± 1.43 nm diameter were observed by transmission electron microscope. At 4 and 6 weeks post-primary vaccination, special and Virus neutralisation (VN) antibodies, lymphocyte proliferation (stimulator index, SI), and concentrations of IL-4 and IFN-γ in the EDⅢ-RFNp group were significantly higher than in the EDⅢ and PBS groups. In the DTMUV virulent strain challenge test, the EDⅢ-RFNp-vaccinated ducks showed milder clinical signs and higher survival rates than EDⅢ- and PBS-vaccinated ducks. The DTMUV RNA levels in the blood and tissues of EDⅢ-RFNp-vaccinated ducks were significantly lower than those in EDⅢ- and PBS-vaccinated ducks. Additionally, the EDⅢ protein-special and VN antibodies, SI value, and concentration of IL-4 and IFN-γ in the InV-HB group was significantly higher than that of the PBS group at 4 and 6 weeks post-primary vaccination. InV-HB provided more efficient protection than PBS based on a higher survival rate, milder signals, and lower levels of the DTMUV virus in the blood and tissues. These results indicated that EDⅢ-RFNp effectively protected ducks against DTMUV challenge and could be a vaccine candidate to prevent DTMUV infection.


Subject(s)
Flavivirus Infections , Flavivirus , Poultry Diseases , Animals , Ducks , Flavivirus Infections/veterinary , Ferritins , Interleukin-4 , Protein Domains , Antibodies, Viral , Flavivirus/genetics , Immunity
20.
MethodsX ; 10: 102066, 2023.
Article in English | MEDLINE | ID: mdl-36875345

ABSTRACT

Surveys are widely used to assess hospital management with the aim of understanding differences in management practices. However, survey measures with prior notice can make hospitals change their routine practices and are unable to reflect the actual hospital management level. The World Management Survey (WMS) methodology has been developed to ameliorate these issues. It uses a double-blinded method and open-ended question design. The Chinese Hospital Management Survey (CHMS) project is the first to adapt the WMS methodology in China, which it uses to measure hospital management level in 510 hospitals. This paper provides an instrument to better measure actual management practices, which makes it possible to compare the management level of hospitals in China and other countries.

SELECTION OF CITATIONS
SEARCH DETAIL