Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Int Immunopharmacol ; 142(Pt A): 113103, 2024 Dec 05.
Article in English | MEDLINE | ID: mdl-39243554

ABSTRACT

No approved effective therapy for non-alcoholic steatohepatitis (NASH) is currently available. Trichinella spiralis (T. spiralis) infection and their products have positive impact on several metabolic diseases. Considering, we firstly investigated the effects of the T. spiralis-derived Excretory-Secretory antigens (ESA) on high fat diet (HFD)-induced NASH mouse models. To further elucidate the mechanism of action, HepG2 cells were incubated with palmitic acid (PA) to construct NASH-like cell model, and then the culture medium supernatant collected from ESA-treated macrophages was applied to intervene the cell model in vitro. In NASH mouse models, ESA significantly alleviated hepatic steatosis and hepatic inflammation, as reflected by reducing pro-inflammatory cytokines and inactivating TLR4/MYD88/NF-κB pathway and NLRP3 inflammasome. Meanwhile, the HFD-induced oxidative stress was restored by ESA through lessening the level of MDA, increasing the activity of T-SOD and enhancing Nrf2 signaling-related proteins, including p-Nrf2, NQO1, HO-1, GPX4, and p-AMPK. Notably, ESA preferentially promoted macrophages polarization toward M2 anti-inflammatory phenotype in vivo and vitro. Moreover, in vitro, intervention of PA-treated HepG2 cells with medium supernatant of ESA-treated macrophages attenuated lipid accumulation, inflammation, as well as oxidative stress. In conclusion, T. spiralis-derived ESA may serve as a novel promising candidate for the treatment of NASH via its properties of driving macrophage anti-inflammatory activity.


Subject(s)
Antigens, Helminth , Diet, High-Fat , Macrophages , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease , Trichinella spiralis , Animals , Trichinella spiralis/immunology , Non-alcoholic Fatty Liver Disease/immunology , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Humans , Antigens, Helminth/immunology , Mice , Hep G2 Cells , Macrophages/immunology , Macrophages/drug effects , Male , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Larva/immunology , RAW 264.7 Cells , Cytokines/metabolism , Liver/immunology , Liver/parasitology , Liver/drug effects , Liver/pathology , Liver/metabolism , Oxidative Stress/drug effects , Signal Transduction/drug effects , Disease Models, Animal , Helminth Proteins/pharmacology , Helminth Proteins/immunology , Helminth Proteins/therapeutic use
2.
J Virol ; 98(9): e0068524, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39162435

ABSTRACT

MIL77-3 is one component of antibody cocktail that is produced in our lab and represents an effective regimen for animals suffering from Zaire Ebolavirus (EBOV) infection. MIL77-3 is engineered to increase its affinity for the FcγRIIIa (CD16a) by deleting the fucose in the framework region. The potential effects of this modification on host immune responses, however, remain largely unknown. Herein, we demonstrated that MIL77-3 recognized secreted glycoproptein (sGP), produced by EBOV, and formed the immunocomplex to potently augment antibody-dependent cytotoxicity of human peripheral blood-derived natural killer cells (pNKs), including CD56dim and CD56bright subpopulations, in contrast to the counterparts (Mab114, rEBOV548, fucosylated MIL77-3). Intriguingly, this effect was not observed when NK92-CD16a cell line was utilized and restored by the addition of beads-coupled or membrane-anchored sGP in combination with MIL77-3. Furthermore, sGP bound to unrecognized receptors on T cells contaminated in pNKs rather than NK92-CD16a cells. Administration of beads-coupled sGP/MIL77-3 complex in mice elicited NK activation. Overall, this work reveals an immune-stimulating function of sGP/MIL77-3 complex by triggering cytotoxic activity of NK cells, highlighting the necessity to evaluate the potential impact of MIL77-3 on host immune reaction in clinical trials. IMPORTANCE: Zaire Ebolavirus (EBOV) is highly lethal and causes sporadic outbreaks. The passive administration of monoclonal antibodies (mAbs) represents a promising treatment regimen against EBOV. Mounting evidence has shown that the efficacy of a subset of therapeutic mAbs in vivo is intimately associated with its capacity to trigger NK activity, supporting glycomodification of Fc region of anti-EBOV mAbs as a putative strategy to enhance Fc-mediated immune effector function as well as protection in vivo. Our work here uncovers the potential harmful influence of this modification on host immune responses, especially for mAbs with cross-reactivity to secreted glycoproptein (sGP) (e.g., MIL77-3), and highlights it is necessary to evaluate the NK-stimulating activity of a fucosylated mAb engaged with sGP when a new candidate is developed.


Subject(s)
Antibodies, Viral , Antibody-Dependent Cell Cytotoxicity , Ebolavirus , Hemorrhagic Fever, Ebola , Killer Cells, Natural , Receptors, IgG , Killer Cells, Natural/immunology , Humans , Animals , Ebolavirus/immunology , Receptors, IgG/immunology , Receptors, IgG/metabolism , Mice , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/virology , Antibodies, Viral/immunology , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Fucose , Cell Line
3.
Heliyon ; 10(9): e30551, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38756565

ABSTRACT

Natural killer (NK) cells represent key player in immune surveillance to eliminate transformed or malignant cells. One of mechanisms of action of NK cells is antibody-dependent cell-mediated cytotoxicity (ADCC) by recognizing tumor antigens on the surface of cancer cells. However, the heterogeneity of tumor antigens and the scarcity of membrane surface targets significantly restrict this strategy. Recently, we constructed a new cargo by tethering a low pH insertion peptide (pHLIP) to the C terminus of the ectodomain of programed death ligand-1 (PD-L1) and demonstrated its ability to modulate immune responses. Herein, the potential application of PD-L1-pHLIP in cancer therapy was determined. pHLIP tethering had no effect on the binding capacity of PD-L1 protein to an anti-PD-L1 antibody (i.e. avelumab). Association of pHLIP rendered PD-L1 segment display on the surface of cellular membrane in the acidic buffer instead of the neutral solution. Importantly, plate-coated or beads-coupled PD-L1-pHLIP enable robust activation and expression of cytotoxic mediators of NK cells via engaging avelumab. Overall, this work provides proof of concept that recombinant PD-L1 protein decorated on the cellular membrane driven by pHLIP in combination with appropriate monoclonal antibody has potentials to elicit NK cytotoxicity, which may represent a novel and promising therapeutic avenue in cancer.

SELECTION OF CITATIONS
SEARCH DETAIL