Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.648
Filter
1.
J Environ Sci (China) ; 147: 462-473, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003062

ABSTRACT

Lake Baiyangdian is one of China's largest macrophyte - derived lakes, facing severe challenges related to water quality maintenance and eutrophication prevention. Dissolved organic matter (DOM) was a huge carbon pool and its abundance, property, and transformation played important roles in the biogeochemical cycle and energy flow in lake ecosystems. In this study, Lake Baiyangdian was divided into four distinct areas: Unartificial Area (UA), Village Area (VA), Tourism Area (TA), and Breeding Area (BA). We examined the diversity of DOM properties and sources across these functional areas. Our findings reveal that DOM in this lake is predominantly composed of protein - like substances, as determined by excitation - emission matrix and parallel factor analysis (EEM - PARAFAC). Notably, the exogenous tyrosine-like component C1 showed a stronger presence in VA and BA compared to UA and TA. Ultrahigh - resolution mass spectrometry (FT - ICR MS) unveiled a similar DOM molecular composition pattern across different functional areas due to the high relative abundances of lignan compounds, suggesting that macrophytes significantly influence the material structure of DOM. DOM properties exhibited specific associations with water quality indicators in various functional areas, as indicated by the Mantel test. The connections between DOM properties and NO3N and NH3N were more pronounced in VA and BA than in UA and TA. Our results underscore the viability of using DOM as an indicator for more precise and scientific water quality management.


Subject(s)
Environmental Monitoring , Lakes , Lakes/chemistry , China , Environmental Monitoring/methods , Eutrophication , Humic Substances/analysis , Water Quality , Mass Spectrometry/methods , Water Pollutants, Chemical/analysis , Ecosystem
2.
Neural Regen Res ; 20(4): 1164-1177, 2025 Apr 01.
Article in English | MEDLINE | ID: mdl-38989954

ABSTRACT

JOURNAL/nrgr/04.03/01300535-202504000-00031/figure1/v/2024-07-06T104127Z/r/image-tiff Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia. Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia. Currently, studies have reported increased oscillation power in cases of levodopa-induced dyskinesia. However, little is known about how the other electrophysiological parameters of gamma oscillations are altered in levodopa-induced dyskinesia. Furthermore, the role of the dopamine D3 receptor, which is implicated in levodopa-induced dyskinesia, in movement disorder-related changes in neural oscillations is unclear. We found that the cortico-striatal functional connectivity of beta oscillations was enhanced in a model of Parkinson's disease. Furthermore, levodopa application enhanced cortical gamma oscillations in cortico-striatal projections and cortical gamma aperiodic components, as well as bidirectional primary motor cortex (M1) ↔ dorsolateral striatum gamma flow. Administration of PD128907 (a selective dopamine D3 receptor agonist) induced dyskinesia and excessive gamma oscillations with a bidirectional M1 ↔ dorsolateral striatum flow. However, administration of PG01037 (a selective dopamine D3 receptor antagonist) attenuated dyskinesia, suppressed gamma oscillations and cortical gamma aperiodic components, and decreased gamma causality in the M1 → dorsolateral striatum direction. These findings suggest that the dopamine D3 receptor plays a role in dyskinesia-related oscillatory activity, and that it has potential as a therapeutic target for levodopa-induced dyskinesia.

3.
J Colloid Interface Sci ; 677(Pt A): 459-469, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39098279

ABSTRACT

High working voltage, large theoretical capacity and cheapness render Mn3O4 promising cathode candidate for aqueous zinc ion batteries (AZIBs). Unfortunately, poor electrochemical activity and bad structural stability lead to low capacity and unsatisfactory cycling performance. Herein, Mn3O4 material was fabricated through a facile precipitation reaction and divalent copper ions were introduced into the crystal framework, and ultra-small Cu-doped Mn3O4 nanocrystalline cathode materials with mixed valence states of Mn2+, Mn3+ and Mn4+ were obtained via post-calcination. The presence of Cu acts as structural stabilizer by partial substitution of Mn, as well as enhance the conductivity and reactivity of Mn3O4. Significantly, based on electrochemical investigations and ex-situ XPS characterization, a synergistic effect between copper and manganese was revealed in the Cu-doped Mn3O4, in which divalent Cu2+ can catalyze the transformation of Mn3+ and Mn4+ to divalent Mn2+, accompanied by the translation of Cu2+ to Cu0 and Cu+. Benefitting from the above advantages, the Mn3O4 cathode doped with moderate copper (abbreviated as CMO-2) delivers large discharge capacity of 352.9 mAh g-1 at 100 mA g-1, which is significantly better than Mn3O4 (only 247.8 mAh g-1). In addition, CMO-2 holds 203.3 mAh g-1 discharge capacity after 1000 cycles at 1 A g-1 with 98.6 % retention, and after 1000 cycles at 5 A g-1, it still performs decent discharge capacity of 104.2 mAh g-1. This work provides new ideas and approaches for constructing manganese-based AZIBs with long lifespan and high capacity.

5.
Biol Direct ; 19(1): 62, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095871

ABSTRACT

BACKGROUND: High glucose levels are key factors and key contributors to several cardiovascular diseases associated with cardiomyocyte injury. Ferroptosis, which was identified in recent years, is a mode of cell death caused by the iron-mediated accumulation of lipid peroxides. Neuregulin-4 (Nrg4) is an adipokine that has protective effects against metabolic disorders and insulin resistance. Our previous study revealed that Nrg4 has a protective effect against diabetic myocardial injury, and the aim of this study was to investigate whether Nrg4 could attenuate the occurrence of high glucose-induced ferroptosis in cardiomyocytes. METHODS: We constructed an in vivo diabetic myocardial injury model in which primary cardiomyocytes were cultured in vitro and treated with Nrg4. Changes in ferroptosis-related protein levels and ferroptosis-related indices in cardiomyocytes were observed. In addition, we performed back-validation and explored signalling pathways that regulate ferroptosis in primary cardiomyocytes. RESULTS: Nrg4 attenuated cardiomyocyte ferroptosis both in vivo and in vitro. Additionally, the AMPK/NRF2 signalling pathway was activated during this process, and when the AMPK/NRF2 pathway was inhibited, the beneficial effects of Nrg4 were attenuated. CONCLUSION: Nrg4 antagonizes high glucose-induced ferroptosis in cardiomyocytes via the AMPK/NRF2 signalling pathway.


Subject(s)
AMP-Activated Protein Kinases , Ferroptosis , Glucose , Myocytes, Cardiac , NF-E2-Related Factor 2 , Neuregulins , Signal Transduction , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Neuregulins/metabolism , Neuregulins/genetics , Animals , Ferroptosis/drug effects , Glucose/metabolism , Signal Transduction/drug effects , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Mice , Male , Rats
6.
Opt Lett ; 49(15): 4282-4285, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090914

ABSTRACT

In this Letter, we demonstrate a micro-displacement sensor based on a balloon-shaped fiber surface nanoscale axial photonic (SNAP) microresonator. The SNAP microresonator is fabricated by fiber bending to introduce nanoscale effective radius variations (ERVs) on the fiber surface. Displacement measurement based on the balloon-shaped SNAP microresonator is realized based on the ERV modulation resulting from the change in the bending radius of the balloon-shaped structure. An advantage of this approach is that the displacement measurement range is not limited to the axial length of the SNAP region. The experimental results show that the displacement measurement range of the balloon-shaped fiber SNAP microresonator can reach 2500 µm and that the minimum measurement resolution is 0.1 µm. This large-range, high-resolution, and low-cost micro-displacement sensor has the potential to be a promising candidate in high-precision displacement measurement applications.

7.
J Am Chem Soc ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39092859

ABSTRACT

Searching for high energy-density electrode materials for sodium ion batteries has revealed Na-deficient intercalation compounds with lattice oxygen redox as promising high-capacity cathodes. However, anionic redox reactions commonly encountered poor electrochemical reversibility and unfavorable structural transformations during dynamic (de)sodiation processes. To address this issue, we employed lithium orbital hybridization chemistry to create Na-O-Li configuration in a prototype P2-layered Na43/60Li1/20Mg7/60Cu1/6Mn2/3O2 (P2-NaLMCM') cathode material. That Li+ ions, having low electronegativity, reside in the transition metal slabs serves to stimulate unhybridized O 2p orbitals to facilitate the stable capacity contribution of oxygen redox at high state of charge. The prismatic-type structure evolving to an intergrowth structure of the Z phase at high charging state could be simultaneously alleviated by reducing the electrostatic repulsion of O-O layers. As a consequence, P2-NaLMCM' delivers a high specific capacity of 183.8 mAh g-1 at 0.05 C and good cycling stability with a capacity retention of 80.2% over 200 cycles within the voltage range of 2.0-4.5 V. Our findings provide new insights into both tailoring oxygen redox chemistry and stabilizing dynamic structural evolution for high-energy battery cathode materials.

8.
Proc Natl Acad Sci U S A ; 121(33): e2407012121, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39102537

ABSTRACT

Water resources are indispensable basic resources and important environmental carriers; the presence of organic contaminants in wastewater poses considerable risks to the health of both humans and ecosystems. Although the Fenton-like reactions using H2O2 as the oxidant to destroy organic pollutants are attractive, there are still challenges in improving reaction activity under neutral or even alkaline conditions. Herein, we designed a H2O2 activation pathway with O2•- as the main active species and elucidated that the spin interaction between Fe sites and coordinated O atoms effectively promotes the generation of the key intermediate Fe-*OOH. Furthermore, we successfully captured and analyzed the Fe-*OOH intermediate by in situ Raman spectroscopy. When applying FBOB to a continuous-flow reactor, CIP removal efficiency remained at around 90% within 600 min of continuous operation, achieving excellent efficiency, stability, and pH tolerance in removing pollutants.

9.
Rev Sci Instrum ; 95(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39105601

ABSTRACT

The discharge arc of a high-current gas spark switch has a strong mechanical effect on the electrode and adjacent objects. The measurement of this mechanical effect on the electrode plays a very important role in switch design and the theoretical study of spark discharge. However, in traditional stress measurement systems, the spatial electromagnetic interference caused by the discharge and the high electrode voltage affects the measurement accuracy and can even damage the experimental instrument. In this paper, an electrode impact stress measurement system based on PVDF piezoelectric film is designed to measure the electrode stress under a strong spatial electromagnetic field and high voltage. The experimental results show that the system can measure the impact pressure of high-voltage and high-current gas spark switch electrodes. The starting time of the stress measurement waveform shows that the shock to the electrode is formed in the initial stage of current buildup. The measured results clearly show the high magnetic field force component in the electrode impact pressure waveform. The shock waveforms induced by different pulse capacitor values, breakdown voltages, and loads are examined. It is found that the shock stress waveforms applied to the electrodes are affected by the peak value of the current, dI/dt, and the discharge duration.

10.
J Ophthalmol ; 2024: 3684626, 2024.
Article in English | MEDLINE | ID: mdl-38957378

ABSTRACT

Objective: To assess repeatability and agreement of central vault for implantable collamer lens (ICL) measured by the Tomey OA-2000 biometry and Spectralis optical coherence tomography (OCT). Methods: In this prospective study, the central vault was measured by the Tomey OA-2000 biometer and Spectralis OCT in 84 eyes (43 patients) after ICL implantation at six month follow-up. Three consecutive scans were obtained by one experienced technician using Tomey OA-2000 and the Spectralis OCT in the same day. The coefficient of variation (CoV), intraclass correlation coefficient (ICC), within-subject standard deviation (Sw), and 2.77 Sw were calculated to assess the repeatability and reproducibility. The paired t-test and Bland-Altman plots were used to analyze the differences and agreements of central vault measured by two devices. Results: Repeatability of the central vault measured by Tomey OA-2000 biometer and Spectralis OCT showed that the CoV was 2.71% and 1.66%, respectively. The ICC for both devices was 0.996 and 0.999, respectively. The paired t-test showed that central vault measured by Tomey OA-2000 biometer was -7.25 ± 23.57 microns lower than that measured by Spectralis OCT (P = 0.006). The mean difference between measurements for Tomey OA-2000 and ASM-OCT with 95% limits of agreement (LoAs) was -38.94 to 53.44 µm. Conclusion: Both Tomey OA-2000 biometer and Spectralis OCT displayed good repeatability for the measurement of central vault of ICL. Good reliability and agreement were observed between Tomey OA-2000 biometer and Spectralis OCT. Both instruments are useful but not replaced each other for central vault measurements.

11.
Environ Geochem Health ; 46(9): 349, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073492

ABSTRACT

Given environmental persistence, potential for bioaccumulation, and toxicity of Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), the scientific community has increasingly focused on researching their toxicology and degradation methods. This paper presents a survey of recent research advances in the toxicological effects and degradation methods of PFOA and PFOS. Their adverse effects on the liver, nervous system, male reproductive system, genetics, and development are detailed. Additionally, the degradation techniques of PFOA and PFOS, including photochemical, photocatalytic, and electrochemical methods, are analyzed and compared, highlighted the potential of these technologies for environmental remediation. The biotransformation pathways and mechanisms of PFOA and PFOS involving microorganisms, plants, and enzymes are also presented. As the primary green degradation pathway for PFOA and PFOS, Biodegradation uses specific microorganisms, plants or enzymes to remove PFOA and PFOS from the environment through redox reactions, enzyme catalysis and other pathways. Currently, there has been a paucity of research conducted on the biodegradation of PFOA and PFOS. However, this degradation technology is promising owing to its specificity, cost-effectiveness, and ease of implementation. Furthermore, novel materials/methods for PFOA and PFOS degradation are presented in this paper. These novel materials/methods effectively improve the degradation efficiency of PFOA and PFOS and provide new ideas and tools for the degradation of PFOA and PFOS. This information can assist researchers in identifying flaws and gaps in the field, which can facilitate the formulation of innovative research ideas.


Subject(s)
Alkanesulfonic Acids , Biodegradation, Environmental , Caprylates , Fluorocarbons , Fluorocarbons/metabolism , Caprylates/metabolism , Alkanesulfonic Acids/metabolism , Alkanesulfonic Acids/toxicity , Environmental Pollutants/metabolism , Environmental Pollutants/toxicity , Animals , Green Chemistry Technology/methods
12.
Sensors (Basel) ; 24(14)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39066087

ABSTRACT

A weld is the main connection form of special equipment, and a weld is also the most vulnerable part of special equipment. Therefore, an effective detection of a weld is of great significance to improve the safety of special equipment. The traditional inspection method is not only time-consuming and labor-intensive, but also expensive. The welding seam tracking and inspection robot can greatly improve the inspection efficiency and save on inspection costs. Therefore, this paper proposes a welding seam tracking and inspection robot based on YOLOv8s-seg. Firstly, the MobileNetV3 lightweight backbone network is used to replace the backbone part of YOLOv8s-seg to reduce the model parameters. Secondly, we reconstruct C2f and prune the number of output channels of the new building module C2fGhost. Finally, in order to make up for the precision loss caused by the lightweight model, we add an EMA attention mechanism after each detection layer in the neck part of the model. The experimental results show that the accuracy of weld recognition reaches 97.8%, and the model size is only 4.88 MB. The improved model is embedded in Jetson nano, a robot control system for seam tracking and detection, and TensorRT is used to accelerate the reasoning of the model. The total reasoning time from image segmentation to path fitting is only 54 ms, which meets the real-time requirements of the robot for seam tracking and detection, and realizes the path planning of the robot for inspecting the seam efficiently and accurately.

13.
Dev Cell ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38981469

ABSTRACT

Mitochondria and endoplasmic reticulum contacts (MERCs) control multiple cellular processes, including cell survival and differentiation. Based on the observations that MERCs were specifically enriched in the CD4-CD8- double-negative (DN) stage, we studied their role in early mouse thymocyte development. We found that T cell-specific knockout of Hspa9, which encodes GRP75, a protein that mediates MERC formation by assembling the IP3R-GRP75-VDAC complex, impaired DN3 thymocyte viability and resulted in thymocyte developmental arrest at the DN3-DN4 transition. Mechanistically, GRP75 deficiency induced mitochondrial stress, releasing mitochondrial DNA (mtDNA) into the cytosol and triggering the type I interferon (IFN-I) response. The IFN-I pathway contributed to both the impairment of cell survival and DN3-DN4 transition blockage, while increased lipid peroxidation (LPO) played a major role downstream of IFN-I. Thus, our study identifies the essential role of GRP75-dependent MERCs in early thymocyte development and the governing facts of cell survival and differentiation in the DN stage.

14.
Front Plant Sci ; 15: 1291693, 2024.
Article in English | MEDLINE | ID: mdl-38984157

ABSTRACT

Introduction: Peach (Prunus persica) has a high nutritional and economic value. However, its overgrowth can lead to yield loss. Regulating the growth of peach trees is challenging. The small auxin-up RNA (SAUR) gene family is the largest family of auxin-responsive genes, which play important roles in plant growth and development. However, members of this gene family are rarely reported in peach. Methods: In this study, we measured leaf area, chlorophyll and lignin content to detect the role of PpSAUR5 on growth through transgenic Arabidopsis. Results: PpSAUR5 responds to auxin and gibberellin, promoting and inhibiting the synthesis of gibberellin and auxin, respectively. The heterologous transformation of PpSAUR5 in Arabidopsis led to enhanced growth of leaves and siliques, lightening of leaf color, decrease in chlorophyll content, increase in lignin content, abnormalities in the floral organs, and distortion of the inflorescence axis. Transcriptome data analysis of PpSAUR5 overexpression and wild-type lines revealed 854 differentially expressed genes (DEGs). GO and KEGG analyses showed that the DEGs were primarily involved in biological processes, such as cellular processes, metabolic processes, response to stimuli, and catalytic activity. These genes were mainly enriched in pathways, such as phenylalanine biosynthesis, phytohormone signaling, and MAPK signaling. Discussion: In summary, these results suggested that PpSAUR5 might regulate tree vigor by modulating the synthesis of auxin and gibberellin. Future studies can use PpSAUR5 as a candidate gene to elucidate the potential regulatory mechanisms underlying peach tree vigor.

15.
Small ; : e2403082, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004856

ABSTRACT

Mechanical metamaterials with multi-level dynamic crushing effects (MM-MLs) are designed in this study through coordinate transformation and mirror arrays. The mechanical effects of the diameter and length ratio of the struts and connecting rods, the Euler angles, and the cell numbers on the mechanical properties are investigated separately. MM-ML can exhibit significant two-level platform stress, and the local cells in the first platform stress stage undergo rotational motion, while the second platform stress stage mainly involves collapse compression and bending. Although increasing the length of the connecting rods can increase the range of Poisson's ratio, it will reduce the level of platform stress and energy absorption. Increasing the Euler angle will reduce the strain interval of the first platform stress and can improve the energy absorption capacity. In addition, increasing the cell number while maintaining a constant relative density can effectively enhance energy absorption. MM-ML has significant parameter controllability, can achieve different platform stress regions, different ranges of Poisson's ratios, and energy absorption requirements according to the application scenario, and can demonstrate functional diversity compared to existing research. The design scheme can provide ideas for adaptive crushing protection requirements.

16.
Int J Stroke ; : 17474930241270447, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075747

ABSTRACT

RATIONALE: Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors enable an additional 54% to 75% reduction in low-density lipoprotein cholesterol (LDL-C) in statin-treated patients, demonstrating plaque regression in coronary artery disease. However, the impact of achieving an extremely low level of LDL-C with PCSK9 inhibitors (e.g., evolocumabEvolocumab) on symptomatic intracranial atherosclerosis remains unexplored. AIM AND HYPOTHESIS: To determine if combining evolocumabEvolocumab and statins achieves a more significant symptomatic intracranial plaque reduction than statin therapy solely. SAMPLE SIZE ESTIMATES: With a sample size of 1000 subjects, a two-sided of 0.05, and 20% lost to follow-up, the study will have 83.3% power to detect the difference in intracranial plaque burden. METHODS AND DESIGN: This is an investigator-initiated multicenter, randomized, open-label, outcome assessor-blinded trial, evaluating the impact of evolocumabEvolocumab on intracranial plaque burden assessed by high-resolution magnetic resonance imaging at baseline in patients undergoing a clinically indicated acute stroke or transient ischemic attack due to intracranial artery stenosis, and after 24 weeks of treatment. Subjects (n = 1000) will be randomized 1:1 into two groups to receive either evolocumabEvolocumab 140 mg every two weeks with statin therapy or solely statin therapy. STUDY OUTCOMES: The primary endpoint is the change in plaque burden assessed by high-resolution magnetic resonance imaging, performed at baseline and the end of the 24-week treatment period. DISCUSSION: This trial will explore whether more significant plaque regression is achievable with treatment after combining statins and PCSK9 inhibitors, providing information about important efficacy, mechanism, and safety data.Trial registration number: ChiCTR2300068868; https://www.chictr.org.cn/.

17.
Proc Natl Acad Sci U S A ; 121(30): e2404013121, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39024111

ABSTRACT

Rechargeable zinc-air batteries (ZABs) are regarded as a remarkably promising alternative to current lithium-ion batteries, addressing the requirements for large-scale high-energy storage. Nevertheless, the sluggish kinetics involving oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) hamper the widespread application of ZABs, necessitating the development of high-efficiency and durable bifunctional electrocatalysts. Here, we report oxygen atom-bridged Fe, Co dual-metal dimers (FeOCo-SAD), in which the active site Fe-O-Co-N6 moiety boosts exceptional reversible activity toward ORR and OER in alkaline electrolytes. Specifically, FeOCo-SAD achieves a half-wave potential (E1/2) of 0.87 V for ORR and an overpotential of 310 mV at a current density of 10 mA cm-2 for OER, with a potential gap (ΔE) of only 0.67 V. Meanwhile, FeOCo-SAD manifests high performance with a peak power density of 241.24 mW cm-2 in realistic rechargeable ZABs. Theoretical calculations demonstrate that the introduction of an oxygen bridge in the Fe, Co dimer induced charge spatial redistribution around Fe and Co atoms. This enhances the activation of oxygen and optimizes the adsorption/desorption dynamics of reaction intermediates. Consequently, energy barriers are effectively reduced, leading to a strong promotion of intrinsic activity toward ORR and OER. This work suggests that oxygen-bridging dual-metal dimers offer promising prospects for significantly enhancing the performance of reversible oxygen electrocatalysis and for creating innovative catalysts that exhibit synergistic effects and electronic states.

18.
ACS Appl Mater Interfaces ; 16(30): 39312-39320, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39036893

ABSTRACT

Perovskite solar cells (PSCs) have led to distinguished achievements and become one of the state-of-the-art photovoltaic technologies. Undoubtedly, reliable preparation of large area high-quality perovskite (PVK) films with uniform optoelectronic properties has become a critical and challenging task to transition PSCs from lab to market. Here, methyldiphenylphosphine oxide (MDPPO) is employed as an additive in a PVK precursor solution to promote uniform conductivity and carrier transport of PVK films. More important, to check its compatibility with the upscaling process, the MDPPO additive strategy was further applied to doctor-blade large-area PVK films. As a result, benefit from the favorable role of MDPPO additive, the power conversion efficiencies (PCEs) of small-area PSCs reach 23.85% with superb open circuit voltage (Voc) of 1.15 V and fill factor of 81.21%, while an impressive PCE of 19.22% was achieved for the large-area PSC minimodules with active area of 61.48 cm2. Remarkably, the MDPPO modified device exhibits significantly improved operational stability, maintaining an initial efficiency of 68% even after 750 h under continuous 1-sun illumination. Our achievements will provide profound insight and further guidance for the scale-up process of PSCs from lab to large-scale modules.

19.
Magn Reson Imaging ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971263

ABSTRACT

PURPOSE: To identify the most effective combination of DCE-MRI (Ktrans,Kep) and IVIM (D,f) and analyze the correlations of these parameters with prognostic indicators (ER, PR, and HER2, Ki-67 index, axillary lymph node (ALN) and tumor size) to improve the diagnostic and prognostic efficiency in breast cancer. METHODS: This is a prospective study. We performed T1WI, T2WI, IVIM, DCE-MRI at 3 T MRI examinations on benign and malignant breast lesions that met the inclusion criteria. We also collected pathological results of corresponding lesions, including ER, PR, and HER2, Ki-67 index, axillary lymph node (ALN) and tumor size. The diagnostic efficacy of DCE-MRI, IVIM imaging, and their combination for benign and malignant breast lesions was assessed. Correlations between the DCE-MRI and IVIM parameters and prognostic indicators were assessed. RESULTS: Overall,59 female patients with 62 lesions (22 benign lesions and 40 malignant lesions) were included in this study. The malignant group showed significantly lower D values (p < 0.05) and significantly higher Ktrans, Kep, and f values (p < 0.05). The AUC values of DCE, IVIM, DCE + IVIM were 0.828, 0.882, 0.901. Ktrans, Kep, D and f values were correlated with the pathological grade (p < 0.05); Ktrans was negatively correlated with ER expression (r = -0.519, p < 0.05); Kep was correlated with PR expression and the Ki-67 index (r = -0.489, 0.330, p < 0.05); the DCE and IVIM parameters showed no significant correlations with the HER2 and ALN (p > 0.05). Tumor diameter was correlated with the Kep, D and f values (r = 0.246, -0.278, 0.293; p < 0.05). CONCLUSION: IVIM and DCE-MRI allowed differential diagnosis of benign and malignant breast lesions, and their combination showed significantly better diagnostic efficiency. DCE- and IVIM-derived parameters showed correlations with some prognostic factors for breast cancer.

20.
Chemistry ; : e202400189, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958147

ABSTRACT

Because of its high specific capacity and superior rate performance, porous carbon is regarded as a potential anode material for lithium-ion batteries (LIBs). However, porous carbon materials with wide pore diameter distributions suffer from low structural stability and low electrical conductivity during the application process. During this study, the calcium carbonate nanoparticle template method is used to prepare coal tar pitch-derived porous carbon (CTP-X). The coal tar pitch-derived porous carbon has a well-developed macroporous-mesoporous-microporous hierarchical porous network structure, which provides abundant active sites for Li+ storage, significantly reduces polarization and charge transfer resistance, shortens the diffusion path and promotes the rapid transport of Li+. More specifically, the CTP-2 anode shows high charge capacity (496.9 mAh g-1 at 50 mA g-1), excellent rate performance (413.6 mAh g-1 even at 500 mA g-1), and high cycling stability (capacity retention rate of about 100% after 1,000 cycles at 2 A g-1). The clean and eco-friendly large-scale utilization of coal tar pitch will facilitate the development of high-performance anodes in the field of LIBs.

SELECTION OF CITATIONS
SEARCH DETAIL