Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 189
Filter
1.
Free Radic Biol Med ; 222: 456-466, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950659

ABSTRACT

Hepatocellular carcinoma (HCC), the primary form of liver cancer, is the third leading cause of cancer-related death globally. Hernandonine is a natural alkaloid derived from Hernandia nymphaeifolia that has been shown to exert various biological functions. In a previous study, hernandonine was shown to suppress the proliferation of several solid tumor cell lines without affecting normal human cell lines. However, little is known about the effect of hernandonine on HCC. Therefore, this study aimed to investigate the effect and mechanism of hernandonine on HCC in relation to autophagy. We found that hernandonine inhibited HCC cell growth in vitro and in vivo. In addition, hernandonine elicited autophagic cell death and DNA damage in HCC cells. RNA-seq analysis revealed that hernandonine upregulated p53 and Hippo signaling pathway-related genes in HCC cells. Small RNA interference of p53 resulted in hernandonine-induced autophagic cell death attenuation. However, inhibition of YAP sensitized HCC cells to hernandonine by increasing the autophagy induction. This is the first study to illustrate the complex involvement of p53 and YAP in the hernandonine-induced autophagic cell death in human HCC cells. Our findings provide novel evidence for the potential of hernandonine as a therapeutic agent for HCC treatment.

2.
Environ Toxicol ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38924303

ABSTRACT

Osteosarcoma, a highly aggressive bone cancer, often develops resistance to conventional chemotherapeutics, leading to poor prognosis and survival rates. The malignancy and chemoresistance of osteosarcoma pose significant challenges in its treatment, highlighting the critical need for novel therapeutic approaches. Bruton's tyrosine kinase (BTK) plays a pivotal role in B-cell development and has been linked to various cancers, including breast, lung, and oral cancers, where it contributes to tumor growth and chemoresistance. Despite its established importance in these malignancies, the impact of BTK on osteosarcoma remains unexplored. Our study delves into the expression levels of BTK in osteosarcoma tissues by data from the GEO and TCGA database, revealing a marked increase in BTK expression compared with primary osteoblasts and a potential correlation with primary site progression. Through our investigations, we identified a subset of osteosarcoma cells, named cis-HOS, which exhibited resistance to cisplatin. These cells displayed characteristics of cancer stem cells (CSCs), demonstrated a higher angiogenesis effect, and had an increased migration ability. Notably, an upregulation of BTK was observed in these cisplatin-resistant cells. The application of ibrutinib, a BTK inhibitor, significantly mitigated these aggressive traits. Our study demonstrates that BTK plays a crucial role in conferring chemoresistance in osteosarcoma. The upregulation of BTK in cisplatin-resistant cells was effectively countered by ibrutinib. These findings underscore the potential of targeting BTK as an effective strategy to overcome chemoresistance in osteosarcoma treatment.

3.
J Food Drug Anal ; 32(2): 155-167, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38934694

ABSTRACT

In this study, a marine medicinal brown alga Sargassum cristaefolium-derived fungal strain Xylaria acuta SC1019 was isolated and identified. Column chromatography of the extracts from liquid- and solid-fermented products of the fungal strain was carried out, and led to the isolation of twenty-one compounds. Their structures were characterized by spectroscopic analysis, and the absolute configurations were further established by single X-ray diffraction analysis or modified Mosher's method as nine previously undescribed compounds, namely xylarilactones A-C (1-3), ent-gedebic acid 8-O-α-D-glucopyranoside (4), 5R-hydroxylmethylmellein 11-O-α-D-glucopyranoside (5), ent-hymatoxin E 16-O-α-D-mannopyranoside (6), 19,20-epoxycytochalasin S (7), 19,20-epoxycytochalasin T (8), and (2R)-butylitaconic acid (9), along with twelve known compounds 10-21. All the isolates were subjected to anti-inflammatory and anti-angiogenic assays. Compounds 1, 5, 7, 10, and 17 showed moderate nitric oxide production inhibitory activities in lipopolysaccharide-activated BV-2 microglial cells with IC50 values of 19.55 ± 0.35, 16.10 ± 0.57, 15.20 ± 0.87, 11.76 ± 0.49, and 11.30 ± 0.32 µM, respectively, as compared to curcumin (IC50 = 2.69 ± 0.34 µM) without any significant cytotoxicity. Compounds 7, 8, and 21 displayed potent anti-angiogenic activities by suppressing the growth of human endothelial progenitor cells with IC50 values of 0.44 ± 0.01, 0.47 ± 0.03, and 0.53 ± 0.01 µM, respectively, as compared to sorafenib (IC50 = 5.50 ± 1.50 µM).


Subject(s)
Xylariales , Humans , Animals , Xylariales/chemistry , Mice , Molecular Structure , Phaeophyceae/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Cell Line
4.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791180

ABSTRACT

Chondrosarcoma is a malignant bone tumor that arises from abnormalities in cartilaginous tissue and is associated with lung metastases. Lymphangiogenesis plays an essential role in cancer metastasis. Visfatin is an adipokine reported to enhance tumor metastasis, but its relationship with VEGF-D generation and lymphangiogenesis in chondrosarcoma remains undetermined. Our results from clinical samples reveal that VEGF-D levels are markedly higher in chondrosarcoma patients than in normal individuals. Visfatin stimulation promotes VEGF-D-dependent lymphatic endothelial cell lymphangiogenesis. We also found that visfatin induces VEGF-D production by activating HIF-1α and reducing miR-2277-3p generation through the Raf/MEK/ERK signaling cascade. Importantly, visfatin controls chondrosarcoma-related lymphangiogenesis in vivo. Therefore, visfatin is a promising target in the treatment of chondrosarcoma lymphangiogenesis.


Subject(s)
Bone Neoplasms , Chondrosarcoma , Hypoxia-Inducible Factor 1, alpha Subunit , Lymphangiogenesis , MicroRNAs , Nicotinamide Phosphoribosyltransferase , Vascular Endothelial Growth Factor D , Humans , Chondrosarcoma/metabolism , Chondrosarcoma/genetics , Chondrosarcoma/pathology , Lymphangiogenesis/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Nicotinamide Phosphoribosyltransferase/metabolism , Nicotinamide Phosphoribosyltransferase/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Vascular Endothelial Growth Factor D/metabolism , Vascular Endothelial Growth Factor D/genetics , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Bone Neoplasms/genetics , Animals , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Mice , Cytokines/metabolism , Male , Female , MAP Kinase Signaling System
5.
Ann Otol Rhinol Laryngol ; 133(4): 411-417, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38186353

ABSTRACT

OBJECTIVES: To investigate the role of normal weight central obesity (NWCO) in the prognosis of sudden sensorineural hearing loss (SSNHL). METHODS: We retrospectively investigated 807 cases of SSNHL from January of 2008 to August of 2019 from the Department of Otorhinolaryngology at Kaohsiung Medical University Hospital in southern Taiwan. We analyzed the association between overweight and obesity, NWCO, and the prognosis of SSNHL. The demographic and clinical characteristics, audiometry results, and outcomes were also reviewed. RESULTS: The nonobese (body mass index [BMI] < 24 kg/m2) and overweight and obese groups (BMI ≥ 24 kg/m2) comprised 343 (42.50%) and 464 (57.50%) patients, respectively. The favorable prognosis rates in the nonobese and the overweight and obese groups were 45.48% and 45.91%, respectively, without a significant difference (P = .9048). Multivariate logistic regression revealed that BMI (adjusted odds ratio [aOR] = 1.00, 95% CI = 0.948-1.062, P = .9165) was not significantly associated with SSNHL recovery. The normal weight noncentral obesity (NWNCO) and NWCO groups comprised 266 (77.55%) and 77 (22.45%) patients, respectively, and had favorable prognosis rates of 48.50% and 35.06%, respectively. The difference between the groups was significant (P = .0371). Multivariate logistic regression analysis revealed that NWCO (aOR = 2.51, 95% CI = 1.292-5.019, P = .0075) was significantly associated with SSNHL recovery. CONCLUSIONS: NWCO may significantly affect the prognosis of SSNHL.


Subject(s)
Hearing Loss, Sensorineural , Hearing Loss, Sudden , Humans , Obesity, Abdominal/complications , Obesity, Abdominal/epidemiology , Prognosis , Retrospective Studies , Risk Factors , Overweight , Obesity/complications , Obesity/epidemiology , Hearing Loss, Sudden/diagnosis , Hearing Loss, Sudden/etiology , Hearing Loss, Sensorineural/diagnosis , Hearing Loss, Sensorineural/epidemiology , Hearing Loss, Sensorineural/etiology
6.
Mar Pollut Bull ; 198: 115839, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38052138

ABSTRACT

Since reef ecosystems can offer intricate habitats for various marine organisms, calcified reefs may contain valuable long-term environmental data. This study investigated stable isotopic composition of marine organisms from the Taoyuan and Linshanbi crustose coralline algae (CCA) reef ecosystems to understand sewage pollution. CCA samples from Taoyuan (Palaeo Xin A: ∼1000 years old and Palaeo G: ∼7000 years old) and Linshanbi (Palaeo L: ∼7000 years old and modern CCA) had significantly lower δ15N values (2.5-5.6 ‰) compared to modern CCA from Taoyuan (10.2 ± 1.2 ‰). Intertidal organisms from the Taoyuan CCA reef also showed higher δ15N values than those from Linshanbi CCA reef, indicating anthropogenic stress in both ecosystems. Long-term pollution monitoring and effective strategies to mitigate sewage pollution are recommended for these CCA reef ecosystems.


Subject(s)
Anthozoa , Ecosystem , Animals , Coral Reefs , Nitrogen , Sewage , Isotopes
8.
Plants (Basel) ; 12(22)2023 Nov 11.
Article in English | MEDLINE | ID: mdl-38005725

ABSTRACT

To look in-depth into the phytochemical and pharmacological properties of Taiwan juniper, this study investigated the chemical profiles and anti-lymphangiogenic activity of Juniperus chinensis var. tsukusiensis. In this study, four new sesquiterpenes, 12-acetoxywiddrol (1), cedrol-13-al (2), α-corocalen-15-oic acid (3), 1,3,5-bisaoltrien-10-hydroperoxy-11-ol (4), one new diterpene, 1ß,2ß-epoxy-9α-hydroxy-8(14),11-totaradiene-3,13-dione (5), and thirty-three known terpenoids were successfully isolated from the heartwood of J. chinensis var. tsukusiensis. The structures of all isolates were determined through the analysis of physical data (including appearance, UV, IR, and optical rotation) and spectroscopic data (including 1D, 2D NMR, and HRESIMS). Thirty-four compounds were evaluated for their anti-lymphangiogenic effects in human lymphatic endothelial cells (LECs). Among them, totarolone (6) displayed the most potent anti-lymphangiogenic activity by suppressing cell growth (IC50 = 6 ± 1 µM) of LECs. Moreover, 3ß-hydroxytotarol (7), 7-oxototarol (8), and 1-oxo-3ß-hydroxytotarol (9) showed moderate growth-inhibitory effects on LECs with IC50 values of 29 ± 1, 28 ± 1, and 45 ± 2 µM, respectively. Totarolone (6) also induced a significant concentration-dependent inhibition of LEC tube formation (IC50 = 9.3 ± 2.5 µM) without cytotoxicity. The structure-activity relationship discussion of aromatic totarane-type diterpenes against lymphangiogenesis of LECs is also included in this study. Altogether, our findings unveiled the promising potential of J. chinensis var. tsukusiensis in developing therapeutics targeting tumor lymphangiogenesis.

9.
Bot Stud ; 64(1): 34, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38030829

ABSTRACT

BACKGROUND: Endophytic fungi have proven to be a rich source of novel natural products with a wide-array of biological activities and higher levels of structural diversity. RESULTS: Chemical investigation on the liquid- and solid-state fermented products of Chaetomium globosum Km1226 isolated from the littoral medicinal herb Atriplex maximowicziana Makino resulted in the isolation of compounds 1-14. Their structures were determined by spectroscopic analysis as three previously undescribed C13-polyketides, namely aureonitol C (1), mollipilins G (2), and H (3), along with eleven known compounds 4-14. Among these, mollipilin A (5) exhibited significant nitric oxide production inhibitory activity in LPS-induced BV-2 microglial cells with an IC50 value of 0.7 ± 0.1 µM, and chaetoglobosin D (10) displayed potent anti-angiogenesis property in human endothelial progenitor cells (EPCs) with an IC50 value of 0.8 ± 0.3 µM. CONCLUSIONS: Three previously unreported compounds 1-3 were isolated and identified. Mollipilin A (5) and chaetoglobosin D (10) could possibly be developed as anti-inflammatory and anti-angiogenic lead drugs, respectively.

10.
Pharmacol Res ; 197: 106945, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37797662

ABSTRACT

Multidrug resistance (MDR) is a major challenge in cancer chemotherapy. Nanoparticles as drug delivery systems (DDSs) show promise for MDR cancer therapy. However, current DDSs require sophisticated design and construction based on xenogeneic nanomaterials, evoking feasibility and biocompatibility concerns. Herein, a simple but versatile biological DDS (bDDS) composed of human red blood cell (RBC)-derived vesicles (RDVs) with excellent biocompatibility was surface-linked with doxorubicin (Dox) using glutaraldehyde (glu) to form Dox-gluRDVs that remarkably suppressed MDR in uterine sarcoma through a lysosomal-mitochondrial axis-dependent cell death mechanism. Dox-gluRDVs can efficiently deliver and accumulate Dox in lysosomes, bypassing drug efflux transporters and facilitating cellular uptake and retention of Dox in drug-resistant MES-SA/Dx5 cells. The transfer of lysosomal calcium to the mitochondria during mitochondria-lysosome contact due to lysosomal Dox accumulation may result in mitochondrial ROS overproduction, mitochondrial membrane potential loss, and activation of apoptotic signaling for the superior anti-MDR activity of Dox-gluRDVs in vitro and in vivo. This work highlights the great promise of RDVs to serve as a bDDS of Dox to overcome MDR cancers but also opens up a reliable strategy for lysosomal-mitochondrial axis-dependent cell death for fighting against other inoperable cancers.


Subject(s)
Neoplasms , Humans , Pharmaceutical Preparations , Cell Death , Lysosomes , Mitochondria , Erythrocytes , Doxorubicin/pharmacology
11.
Biochem Pharmacol ; 218: 115853, 2023 12.
Article in English | MEDLINE | ID: mdl-37832794

ABSTRACT

Osteosarcoma is a malignant tumor with high metastatic potential, such that the overall 5-year survival rate of patients with metastatic osteosarcoma is only 20%. Therefore, it is necessary to unravel the mechanisms of osteosarcoma metastasis to identify predictors of metastasis by which to develop new therapies. Fibroblast growth factor 2 (FGF2) is a growth factor involved in embryonic development, cell migration, and proliferation. The overexpression of FGF2 and FGF receptors (FGFRs) has been shown to enhance cancer cell proliferation in lung, breast, gastric, and prostate cancers as well as melanoma. Nonetheless, the roles of FGF2 and FGFRs in human osteosarcoma cells remain unknown. In the present study, we found that FGF2 was overexpressed in human osteosarcoma sections and correlated with lung metastasis. Treatment of FGF2 induced migration activity, invasion activity, and intercellular adhesion molecule (ICAM)-1 expression in osteosarcoma cells. In particular, the downregulation or antagonism of FGFR1-4 suppressed FGF2-induced ICAM-1 expression and cancer cell migration. Furthermore, FGFR1, FGFR2, FGFR3, and FGFR4 were involved in FGF2-induced the phospholipase Cß/protein kinase Cα/proto-oncogene c-Src signaling pathway and triggered c-Jun nuclear translocation. Subsequent c-Jun upregulation of activator protein-1 transcription activity on the ICAM-1 promoter led to an increased migration of osteosarcoma cells. Moreover, the knockdown of endogenous FGF2 suppressed ICAM-1 expression and migration of osteosarcoma cells. These findings suggest that FGF2/FGFR1-4 signaling promotes metastasis via its direct downstream target gene ICAM-1, revealing a novel potential therapeutic target for osteosarcoma.


Subject(s)
Bone Neoplasms , Osteosarcoma , Humans , Male , Bone Neoplasms/genetics , Fibroblast Growth Factor 2/genetics , Intercellular Adhesion Molecule-1 , Osteosarcoma/genetics , Osteosarcoma/pathology , Receptor, Fibroblast Growth Factor, Type 1/genetics , Signal Transduction
12.
J Microbiol Immunol Infect ; 56(6): 1187-1197, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37739902

ABSTRACT

BACKGROUND: Protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reinfection relies on immunity generated after primary infection. However, humoral immunity following primary infection with the Omicron variant is not well understood. METHODS: We prospectively recruited children <19 years with virologically-confirmed SARS-CoV-2 infection at National Cheng Kung University Hospital from February 2022 to September 2022 during the first wave of Omicron BA.2 outbreak in Taiwan. Serum samples were collected one month after acute infection to measure anti-spike protein receptor binding domain antibody levels and surrogate virus neutralizing antibody (NAb) levels against wild type disease and variants. RESULTS: Of the 164 patients enrolled, most were under 5 years (65.2%) with a diagnosis of upper respiratory tract infection. Children under 6 months with maternal coronavirus disease 2019 (COVID-19) vaccination had higher levels of both anti-SARS-CoV-2 spike antibody (119.0 vs 27.4 U/ml, p < 0.05) and anti-wild type NAb (56.9% vs 27.6% inhibition, p = 0.001) than those without. Children aged 5-12 years with prior vaccination had higher anti-spike antibody, anti-wild type, and anti-Omicron BA.2 NAb levels than those without (all p < 0.05). In previously naïve children without maternal or self-vaccination, those 6 months to 2 years had the highest antibody levels. Multivariable linear regression analysis showed age was the only independent factor associated with antibody level. CONCLUSIONS: In our study, children aged 6 months to 2 years have the highest antibody responses to SARS-CoV-2 Omicron variant infection. Age and prior vaccination are the main factors influencing the immunogenicity of SARS-CoV-2 infection.


Subject(s)
COVID-19 , Child , Humans , SARS-CoV-2 , Antibodies, Viral , Vaccination , Antibodies, Neutralizing
13.
Free Radic Biol Med ; 208: 833-845, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37776916

ABSTRACT

The incidence rate of colorectal cancer (CRC) has been increasing and poses severe threats to human health worldwide and developing effective treatment strategies remains an urgent task. In this study, Chaetoglobosin A (ChA), an endophytic fungal metabolite from the medicinal herb-derived fungus Chaetomium globosum Km1126, was identified as a potent and selective antitumor agent in human CRC. ChA induced growth inhibition of CRC cells in a concentration-dependent manner but did not impair the viability of normal colon cells. ChA triggered mitochondrial intrinsic and caspase-dependent apoptotic cell death. In addition, apoptosis antibody array analysis revealed that expression of Heme oxygenase-1 (HO-1) was significantly increased by ChA. Inhibition of HO-1 increased the sensitivity of CRC cells to ChA, suggesting HO-1 may play a protective role in ChA-mediated cell death. ChA induced cell apoptosis via the induction of reactive oxygen species (ROS) and ROS scavenger (NAC) prevented ChA-induced cell death, mitochondrial dysfunction, and HO-1 activation. ChA promoted the activation of c-Jun N-terminal kinase (JNK), and co-administration of JNK inhibitor or siRNA markedly reversed ChA-mediated apoptosis. ChA significantly decreased the tumor growth without eliciting any organ toxicity or affecting the body weight of the CRC xenograft mice. This is the first study to demonstrate that ChA exhibits promising anti-cancer properties against human CRC both in vitro and in vivo. ChA is a potential therapeutic agent worthy of further development in clinical trials for cancer treatment.


Subject(s)
Colorectal Neoplasms , Heme Oxygenase-1 , Humans , Mice , Animals , Reactive Oxygen Species/metabolism , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Apoptosis , Colorectal Neoplasms/metabolism , Mitochondria/metabolism , Cell Line, Tumor
14.
Commun Biol ; 6(1): 610, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37280327

ABSTRACT

Chronic heavy alcohol use is associated with lethal arrhythmias. Whether common East Asian-specific aldehyde dehydrogenase deficiency (ALDH2*2) contributes to arrhythmogenesis caused by low level alcohol use remains unclear. Here we show 59 habitual alcohol users carrying ALDH2 rs671 have longer QT interval (corrected) and higher ventricular tachyarrhythmia events compared with 137 ALDH2 wild-type (Wt) habitual alcohol users and 57 alcohol non-users. Notably, we observe QT prolongation and a higher risk of premature ventricular contractions among human ALDH2 variants showing habitual light-to-moderate alcohol consumption. We recapitulate a human electrophysiological QT prolongation phenotype using a mouse ALDH2*2 knock-in (KI) model treated with 4% ethanol, which shows markedly reduced total amount of connexin43 albeit increased lateralization accompanied by markedly downregulated sarcolemmal Nav1.5, Kv1.4 and Kv4.2 expressions compared to EtOH-treated Wt mice. Whole-cell patch-clamps reveal a more pronounced action potential prolongation in EtOH-treated ALDH2*2 KI mice. By programmed electrical stimulation, rotors are only provokable in EtOH-treated ALDH2*2 KI mice along with higher number and duration of ventricular arrhythmia episodes. The present research helps formulate safe alcohol drinking guideline for ALDH2 deficient population and develop novel protective agents for these subjects.


Subject(s)
Aldehyde Dehydrogenase, Mitochondrial , Ethanol , Long QT Syndrome , Animals , Humans , Mice , Aldehyde Dehydrogenase, Mitochondrial/genetics , Arrhythmias, Cardiac/genetics , East Asian People , Ethanol/toxicity , Long QT Syndrome/chemically induced , Mice, Transgenic
15.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-37259371

ABSTRACT

Both osteoporosis and cardiovascular disease (CVD) share similar pathways in pathophysiology and are intercorrelated with increased morbidity and mortality in elderly women. Although denosumab and raloxifene are the current guideline-based pharmacological treatments, their impacts on cardiovascular protection are yet to be examined. This study aimed to compare mortality rate and cardiovascular events between denosumab and raloxifene in osteoporotic women. Risks of CVD development and all-cause mortality were estimated using Cox proportional hazard regression. A total of 7972 (3986 in each group) women were recruited between January 2003 and December 2018. No significant difference between denosumab and raloxifene was observed in composite CVDs, myocardial infarction, or congestive heart failure. However, comparison of the propensity score matched cohorts revealed that patients with proportion of days covered (PDC) ≥60% had lower incidence of ischemic stroke in the denosumab group than that in the raloxifene group (aHR 0.68; 95% CI 0.47-0.98; p = 0.0399). In addition, all-cause mortality was lower in the denosumab group than in the raloxifene group (aHR 0.59; 95% CI 0.48-0.72; p = 0.001), except in patients aged <65 y/o in this cohort study. We concluded that denosumab is superior to raloxifene in lowering risks of all-cause mortality and certain ischemic strokes in osteoporotic women.

16.
Aging (Albany NY) ; 15(11): 4774-4793, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37286356

ABSTRACT

Lymph node metastasis is a recognized prognostic factor in esophageal cancer. Adipokines, including visfatin, and the molecule vascular endothelial growth factor (VEGF)-C, are implicated in lymphangiogenesis, but whether any association exists between esophageal cancer, adipokines and VEGF-C is unknown. We examined the relevance of adipokines and VEGF-C in esophageal squamous cell carcinoma (ESCC) in the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. We found significantly higher levels of visfatin and VEGF-C expression in esophageal cancer tissue than in normal tissue. Immunohistochemistry (IHC) staining identified that higher levels of visfatin and VEGF-C expression were correlated with advanced stage ESCC. Visfatin treatment of ESCC cell lines upregulated VEGF-C expression and VEGF-C-dependent lymphangiogenesis in lymphatic endothelial cells. Visfatin induced increases in VEGF-C expression by activating the mitogen-activated protein kinase kinases1/2-extracellular signal-regulated kinase (MEK1/2-ERK) and Nuclear Factor Kappa B (NF-κB) signaling cascades. Transfecting ESCC cells with MEK1/2-ERK and NF-κB inhibitors (PD98059, FR180204, PDTC, and TPCK) and siRNAs inhibited visfatin-induced increases in VEGF-C expression. It appears that visfatin and VEGF-C are promising therapeutic targets in the inhibition of lymphangiogenesis in esophageal cancer.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , NF-kappa B/metabolism , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/pathology , Lymphangiogenesis/genetics , Vascular Endothelial Growth Factor C/genetics , Vascular Endothelial Growth Factor C/metabolism , Endothelial Cells/metabolism , Nicotinamide Phosphoribosyltransferase/genetics , Vascular Endothelial Growth Factor A , Adipokines
17.
RSC Adv ; 13(19): 13169-13176, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37124006

ABSTRACT

In situ CuI-mediated cyclization methodology helped yield benzimidazoles with different substitution manner, such as 1,2-diarylbenzimidazoles (4 and 5) and 1-arylbenzimidazoles (6-15). The result of structure-activity relationship (SAR) study confirmed the significance of the 5,6,7-trimethoxybenzimidazole moiety, and the representative derivatives (8-10) exhibited marked antiproliferative activity against A549, HCT-116, and PC-3 cells; in addition, they are able to inhibit the polymerization of tubulin. Among them, compound 10 inhibited the growth of A549, HCT-116, and PC-3 cells with a mean IC50 value of 0.07 µM, and its IC50 value of tubulin polymerization is 0.26 µM.

19.
Eur J Pharmacol ; 951: 175770, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37209940

ABSTRACT

Prostate cancer metastasis is associated with poor prognosis and is difficult to treat clinically. Numerous studies have shown that Asiatic Acid (AA) has antibacterial, anti-inflammatory, and antioxidant effects. However, the effect of AA on prostate cancer metastasis is still unclear. This purpose of this study is to investigate the effect of AA on prostate cancer metastasis and to better understand its molecular mechanisms of action. Our results indicate that AA ≤ 30 µM did not influence cell viability and cell cycle distribution in PC3, 22Rv1 and DU145 cells. AA inhibited the migratory and invasive capabilities of three prostate cancer cells to be due to its effects on Snail, but did not have activity on Slug. We observed that AA inhibited the Myeloid zinc finger 1 (MZF-1) and ETS Like-1 (Elk-1) protein interaction and affected the complex's binding capacity to the Snail promoter region, ultimately blocking Snail transcription activity. Kinase cascade analysis revealed that phosphorylation of MEK3/6 and p38MAPK was inhibited by AA treatment. Moreover, knockdown of p38MAPK enhanced AA-suppressed protein levels of MZF-1, Elk-1, and Snail, suggesting that p38MAPK influences prostate cancer cell metastasis. These results provide promise for AA as a future candidate in the development of drug therapies to prevent or treat prostate cancer metastasis.


Subject(s)
Prostatic Neoplasms , Signal Transduction , Male , Humans , Cell Line, Tumor , Prostatic Neoplasms/pathology , Snail Family Transcription Factors , Cell Movement
20.
RSC Adv ; 13(22): 14878, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37200692

ABSTRACT

[This corrects the article DOI: 10.1039/D3RA01927F.].

SELECTION OF CITATIONS
SEARCH DETAIL
...