Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 39
1.
Nature ; 629(8012): 586-591, 2024 May.
Article En | MEDLINE | ID: mdl-38720080

Light-emitting diodes (LEDs) based on perovskite quantum dots (QDs) have produced external quantum efficiencies (EQEs) of more than 25% with narrowband emission1,2, but these LEDs have limited operating lifetimes. We posit that poor long-range ordering in perovskite QD films-variations in dot size, surface ligand density and dot-to-dot stacking-inhibits carrier injection, resulting in inferior operating stability because of the large bias required to produce emission in these LEDs. Here we report a chemical treatment to improve the long-range order of perovskite QD films: the diffraction intensity from the repeating QD units increases three-fold compared with that of controls. We achieve this using a synergistic dual-ligand approach: an iodide-rich agent (aniline hydroiodide) for anion exchange and a chemically reactive agent (bromotrimethylsilane) that produces a strong acid that in situ dissolves smaller QDs to regulate size and more effectively removes less conductive ligands to enable compact, uniform and defect-free films. These films exhibit high conductivity (4 × 10-4 S m-1), which is 2.5-fold higher than that of the control, and represents the highest conductivity recorded so far among perovskite QDs. The high conductivity ensures efficient charge transportation, enabling red perovskite QD-LEDs that generate a luminance of 1,000 cd m-2 at a record-low voltage of 2.8 V. The EQE at this luminance is more than 20%. Furthermore, the stability of the operating device is 100 times better than previous red perovskite LEDs at EQEs of more than 20%.

2.
Small ; : e2401346, 2024 May 03.
Article En | MEDLINE | ID: mdl-38700047

Transparent flexible energy storage devices are limited by the trade-off among flexibility, transparency, and charge storage capability of their electrode materials. Conductive polymers are intrinsically flexible, but limited by small capacitance. Pseudocapacitive MXene provides high capacitance, yet their opaque and brittle nature hinders their flexibility and transparency. Herein, the development of synergistically interacting conductive polymer Ti3C2Tx MXene/PEDOT:PSS composites is reported for transparent flexible all-solid-state supercapacitors, with an outstanding areal capacitance of 3.1 mF cm-2, a high optical transparency of 61.6%, and excellent flexibility and durability. The high capacitance and high transparency of the devices stem from the uniform and thorough blending of PEDOT:PSS and Ti3C2Tx, which is associated with the formation of O─H…O H-bonds in the composites. The conductive MXene/polymer composite electrodes demonstrate a rational means to achieve high-capacity, transparent and flexible supercapacitors in an easy and scalable manner.

3.
Nanomaterials (Basel) ; 14(10)2024 May 19.
Article En | MEDLINE | ID: mdl-38786841

Two-dimensional transition metal dichalcogenides (2D-TMDs) possess appropriate bandgaps and interact via van der Waals (vdW) forces between layers, effectively overcoming lattice compatibility challenges inherent in traditional heterojunctions. This property facilitates the creation of heterojunctions with customizable bandgap alignments. However, the prevailing method for creating heterojunctions with 2D-TMDs relies on the low-efficiency technique of mechanical exfoliation. Sb2Te3, recognized as a notable p-type semiconductor, emerges as a versatile component for constructing diverse vertical p-n heterostructures with 2D-TMDs. This study presents the successful large-scale deposition of 2D Sb2Te3 onto inert mica substrates, providing valuable insights into the integration of Sb2Te3 with 2D-TMDs to form heterostructures. Building upon this initial advancement, a precise epitaxial growth method for Sb2Te3 on pre-existing WS2 surfaces on SiO2/Si substrates is achieved through a two-step chemical vapor deposition process, resulting in the formation of Sb2Te3/WS2 heterojunctions. Finally, the development of 2D Sb2Te3/WS2 optoelectronic devices is accomplished, showing rapid response times, with a rise/decay time of 305 µs/503 µs, respectively.

4.
ACS Appl Mater Interfaces ; 15(41): 48452-48461, 2023 Oct 18.
Article En | MEDLINE | ID: mdl-37802499

Ferroelectric materials with a modulable polarization extent hold promise for exploring voltage-driven neuromorphic hardware, in which direct current flow can be minimized. Utilizing a single active layer of an insulating ferroelectric polymer, we developed a voltage-mode ferroelectric synapse that can continuously and reversibly update its states. The device states are straightforwardly manifested in the form of variable output voltage, enabling large-scale direct cascading of multiple ferroelectric synapses to build a deep physical neural network. Such a neural network based on potential superposition rather than current flow is analogous to the biological counterpart driven by action potentials in the brain. A high accuracy of over 97% for the simulation of handwritten digit recognition is achieved using the voltage-mode neural network. The controlled ferroelectric polarization, revealed by piezoresponse force microscopy, turns out to be responsible for the synaptic weight updates in the ferroelectric synapses. The present work demonstrates an alternative strategy for the design and construction of emerging artificial neural networks.

5.
BMC Med Inform Decis Mak ; 23(1): 126, 2023 07 18.
Article En | MEDLINE | ID: mdl-37464410

BACKGROUND: The ovarian reserve is a reservoir for reproductive potential. In clinical practice, early detection and treatment of premature ovarian decline characterized by abnormal ovarian reserve tests is regarded as a critical measure to prevent infertility. However, the relevant data are typically stored in an unstructured format in a hospital's electronic medical record (EMR) system, and their retrieval requires tedious manual abstraction by domain experts. Computational tools are therefore needed to reduce the workload. METHODS: We presented RegEMR, an artificial intelligence tool composed of a rule-based natural language processing (NLP) extractor and a knowledge-based disease scoring model, to automatize the screening procedure of premature ovarian decline using Chinese reproductive EMRs. We used regular expressions (REs) as a text mining method and explored whether REs automatically synthesized by the genetic programming-based online platform RegexGenerator + + could be as effective as manually formulated REs. We also investigated how the representativeness of the learning corpus affected the performance of machine-generated REs. Additionally, we translated the clinical diagnostic criteria into a programmable disease diagnostic model for disease scoring and risk stratification. Four hundred outpatient medical records were collected from a Chinese fertility center. Manual review served as the gold standard, and fivefold cross-validation was used for evaluation. RESULTS: The overall F-score of manually built REs was 0.9444 (95% CI 0.9373 to 0.9515), with no significant difference (paired t test p > 0.05) compared with machine-generated REs that could be affected by training set sizes and annotation portions. The extractor performed effectively in automatically tracing the dynamic changes in hormone levels (F-score 0.9518-0.9884) and ultrasonographic measures (F-score 0.9472-0.9822). Applying the extracted information to the proposed diagnostic model, the program obtained an accuracy of 0.98 and a sensitivity of 0.93 in risk screening. For each specific disease, the automatic diagnosis in 76% of patients was consistent with that of the clinical diagnosis, and the kappa coefficient was 0.63. CONCLUSION: A Chinese NLP system named RegEMR was developed to automatically identify high risk of early ovarian aging and diagnose related diseases from Chinese reproductive EMRs. We hope that this system can aid EMR-based data collection and clinical decision support in fertility centers.


Artificial Intelligence , Natural Language Processing , Primary Ovarian Insufficiency , Humans , Electronic Health Records , Language , Primary Ovarian Insufficiency/diagnosis , Female
6.
Nanoscale ; 15(23): 9985-9992, 2023 Jun 15.
Article En | MEDLINE | ID: mdl-37232241

Inkjet printing electronics is a growing market that reached 7.8 billion USD in 2020 and that is expected to grow to ∼23 billion USD by 2026, driven by applications like displays, photovoltaics, lighting, and radiofrequency identification. Incorporating two-dimensional (2D) materials into this technology could further enhance the properties of the existing devices and/or circuits, as well as enable the development of new concept applications. Along these lines, here we report an easy and cheap process to synthesize inks made of multilayer hexagonal boron nitride (h-BN)-an insulating 2D layered material-by the liquid-phase exfoliation method and use them to fabricate memristors. The devices exhibit multiple stochastic phenomena that are very attractive for use as entropy sources in electronic circuits for data encryption (physical unclonable functions [PUFs], true random number generators [TRNGs]), such as: (i) a very disperse initial resistance and dielectric breakdown voltage, (ii) volatile unipolar and non-volatile bipolar resistive switching (RS) with a high cycle-to-cycle variability of the state resistances, and (iii) random telegraph noise (RTN) current fluctuations. The clue for the observation of these stochastic phenomena resides on the unpredictable nature of the device structure derived from the inkjet printing process (i.e., thickness fluctuations, random flake orientations), which allows fabricating electronic devices with different electronic properties. The easy-to-make and cheap memristors here developed are ideal to encrypt the information produced by multiple types of objects and/or products, and the versatility of the inkjet printing method, which allows effortless deposition on any substrate, makes our devices especially attractive for flexible and wearable devices within the internet-of-things.


Electronics , Wearable Electronic Devices , Entropy , Ink
7.
ACS Appl Mater Interfaces ; 15(15): 19300-19306, 2023 Apr 19.
Article En | MEDLINE | ID: mdl-37014251

A comprehensive comparison of organic single crystals based on a single material but with different dimensions provides a unique approach to probe their carrier injection mechanism. In this report, both two-dimensional (2D) and microrod single crystals with the same crystalline structure of an identical thiopyran derivative, 7,14-dioctylnaphtho[2,1-f:6,5-f']bis(cyclopentane[b]thiopyran) (C8-SS), are grown on a glycerol surface with the space-confined method. Organic field-effect transistors (OFETs) based on the 2D C8-SS single crystal exhibit superior performance compared with those based on the microrod single crystal, particularly in their contact resistance (RC). It is demonstrated that the resistance of the crystal bulk in the contact region plays a key role in RC of the OFETs. Thus, among the 30 devices tested, the microrod OFETs typically appear contact-limited, whereas the 2D OFETs possess significantly reduced RC arising from the tiny thickness of the 2D single crystal. The 2D OFETs show high operational stability and high channel mobility up to 5.7 cm2/V·s. The elucidation of the contact behavior highlights the merits and great potential of 2D molecular single crystals in organic electronics.

8.
Angew Chem Int Ed Engl ; 62(17): e202300396, 2023 Apr 17.
Article En | MEDLINE | ID: mdl-36849867

PbS quantum dots (QDs) are promising building blocks for solution-processed short-wavelength infrared (SWIR) devices. The recently developed direct synthesis of semi-conductive PbS QD inks has substantially simplified the preparation processing and reduced the material cost, while facing the challenge to synthesize large-size QDs with absorption covering the SWIR region. Herein, we for the first time realize a low-cost, scalable synthesis of SWIR PbS QD inks after an extensive investigation of the reaction kinetics. Finally, based on these PbS SWIR QD inks, the solar cell demonstrates a record-high power conversion efficiency (PCE) of 1.44 % through an 1100 nm cutoff silicon filter and the photodetector device shows a low dark current density of 2×10-6  A cm-2 at -0.8 V reverse bias with a high external quantum efficiency (EQE) of 70 % at ≈1300 nm. Our results realize the direct synthesis of low-cost and scalable SWIR QD inks and may accelerate the industrialization of consumer SWIR technologies.

9.
Nanotechnology ; 33(6)2021 Nov 19.
Article En | MEDLINE | ID: mdl-34736234

Artificial synapses that integrate functions of sensing, memory and computing are highly desired for developing brain-inspired neuromorphic hardware. In this work, an optoelectronic synapse based on the ZnO nanowire (NW) transistor is achieved, which can be used to emulate both the short-term and long-term synaptic plasticity. Synaptic potentiation is present when the device is stimulated by light pulses, arising from the light-induced O2desorption and the persistent photoconductivity behavior of the ZnO NW. On the other hand, synaptic depression occurs when the device is stimulated by electrical pulses in dark, which is realized by introducing a charge trapping layer in the gate dielectric to trap carriers. Simulation of a neural network utilizing the ZnO NW synapses is carried out, demonstrating a high recognition accuracy over 90% after only 20 training epochs for recognizing the Modified National Institute of Standards and Technology digits. The present nanoscale optoelectronic synapse has great potential in the development of neuromorphic visual systems.

10.
ACS Appl Mater Interfaces ; 13(30): 35878-35888, 2021 Aug 04.
Article En | MEDLINE | ID: mdl-34297521

Electrochemical capacitors using neutral aqueous electrolytes are safer and cheaper and allow diverse current collectors compared with the counterparts using organic or acidic/alkaline electrolytes. Two-dimensional (2D) MXenes have been demonstrated as the high-capacitive materials with high rate performance. However, MXene electrodes often exhibit a limited capacitance in neutral electrolytes, where the reversible electrochemical reactions rely greatly on the structural and surface properties of MXenes depending on their synthesis methods. Herein, a simple and highly efficient strategy, which combines HF etching of Ti3AlC2 powder and subsequent amine-assisted delamination at a low temperature, is developed to synthesize 2D Ti3C2Tx MXenes. The comprehensive results demonstrate that the enlarged interlayer spacing and the presence of more -O-containing functional groups synergistically contribute to the improvement of capacitive performance in neutral electrolytes. The 2D Ti3C2Tx MXenes show excellent electrochemical performance in various neutral electrolytes, and a high specific gravimetric capacitance of 149.8 F/g is achieved in 1.0 M Li2SO4. Furthermore, the flexible solid-state supercapacitors (SCs) with a neutral PVA/LiCl gel electrolyte possess a superior areal capacitance (163.1 mF/cm2) and high energy density (17.6 µWh/cm2 at 0.07 mW/cm2), together with high user safety. This work provides a promising guideline of synthesis strategy for high-capacitive MXenes used in neutral electrolytes, which may promote the development of safe and flexible power sources with a high energy density.

11.
Sci Technol Adv Mater ; 21(1): 768-786, 2021 Jan 06.
Article En | MEDLINE | ID: mdl-33488297

With the rapid development of conductive polymers, they have shown great potential in room-temperature chemical gas detection, as their electrical conductivity can be changed upon exposure to oxidative or reductive gas molecules at room temperature. However, due to their relatively low conductivity and high affinity toward volatile organic compounds and water molecules, they always exhibit low sensitivity, poor stability, and gas selectivity, which hinder their practical gas sensor applications. In addition, inorganic sensitive materials show totally different advantages in gas sensors, such as high sensitivity, fast response to low concentration analytes, high surface area, and versatile surface chemistry, which could complement the conducting polymers in terms of the sensing characteristics. It seems to be a win-win choice to combine inorganic sensitive materials with polymers for gas detection due to their synergistic effects, which has attracted extensive interests in gas-sensing applications. In this review, we summarize the recent development in polymer-inorganic nanocomposite based gas sensors. The roles of inorganic nanomaterials in improving the gas-sensing performances of conducting polymers are introduced and the progress of conducting polymer-inorganic nanocomposites including metal oxides, metal, carbon (carbon nanotube, graphene), and ternary composites are presented. Finally, a conclusion and a perspective in the field of gas sensors incorporating conducting polymer-inorganic nanocomposite are summarized.

12.
ACS Appl Mater Interfaces ; 11(47): 44430-44437, 2019 Nov 27.
Article En | MEDLINE | ID: mdl-31680508

PbS colloidal quantum dots passivated by the thiocyanate anion (SCN-) are developed to combine with perovskite (CH3NH3PbI3) as building blocks for UV-vis-NIR broadband photodetectors. Both high electrical conductivity and appropriate energy-level alignment are obtained by the in situ ligand exchange with SCN-. The PbS-SCN/CH3NH3PbI3 composite photodetectors are sensitive to a broad wavelength range covering the UV-vis-NIR region (365-1550 nm), possessing an excellent responsivity of 255 A W-1 at 365 nm and 1.58 A W-1 at 940 nm, remarkably high detectivity of 4.9 × 1013 Jones at 365 nm and 3.0 × 1011 Jones at 940 nm, and fast response time of ≤42 ms. Furthermore, a 10 × 10 photodetector array is fabricated and integrated, which constitutes a high-performance broadband image sensor. Our approach paves a way for the development of highly sensitive broadband photodetectors/imagers that can be easily integrated.

13.
ACS Appl Mater Interfaces ; 11(43): 40366-40371, 2019 Oct 30.
Article En | MEDLINE | ID: mdl-31595743

Integration of selective photodetection and signal storage in a single device, such as organic field-effect transistor (OFET) memories, meets the demands for radiation monitoring and protection. A new strategy is developed to achieve filter-free and selective light monitoring by adopting a solution-processed blend charge-trapping layer in OFET memories, where the charge-trapping layer is composed of phenyl-C61-butyric acid methyl ester (PCBM) dispersed in a polymer electret thin film. The OFET memory without PCBM shows response only to ultraviolet light, whereas the spectral response edges are extended to the visible and near-infrared regions in the corresponding devices with relatively low and high contents of PCBM in the charge-trapping layer, respectively. A set of OFET memories with different PCBM contents is used to qualitatively evaluate the light composition in an optical source. The tunable spectral response in the OFET memories is ascribed to the additional photoassisted charge-trapping paths depending on the blend ratio in the charge-trapping layer. This mechanism may inspire alternative approaches to organic-based optical sensing and monitoring in flexible and wearable electronics.

14.
RSC Adv ; 8(25): 13997-14008, 2018 Apr 11.
Article En | MEDLINE | ID: mdl-35539330

Fullerene-based molecules are being studied as potential inhibitors of protein tyrosine phosphatases due to their unique properties and low toxicity. However, the underlying molecular mechanism remains elusive. In this study, molecular dynamics (MD) simulations in conjunction with molecular docking calculations were utilized to investigate the binding effects of C60, C60(NH2)30, and C60(OH)30 on the enzymatic activity of CD45 (a receptor-like protein tyrosine phosphatase). Our results show that all the investigated molecules can be docked into the region between D1 and D2 domains of CD45, and stabilize the protein structure. The average number of residues that directly interact with the C60(NH2)30 is two more than that of C60(OH)30, F819 and F820 (located in the loop connects α3 and ß12), resulting in different effects of C60(NH2)30 and C60(OH)30 on protein activity. Detailed MD simulation analyses show that transformation of the interaction network caused by C60(NH2)30 is completely different from that of the control simulation due to the misfolding of α3. Furthermore, the movement of D1 active pocket and KNRY motif are most severely impaired by docking with C60(NH2)30. Our simulation results illustrate that fullerene derivatives modified with amino groups exhibit conspicuous tumor inhibition to protein tyrosine phosphatases, and can act as effective inhibitors. Our results give insight into the inhibitory effects of fullerene-based molecules on protein tyrosine phosphatases and providing a theoretical basis for the design of effective inhibitors.

15.
RSC Adv ; 8(36): 20182-20189, 2018 May 30.
Article En | MEDLINE | ID: mdl-35541635

Finding earth-abundant and high-performance electrode materials for supercapacitors is a demanding challenge in the energy storage field. Cuprous oxide (Cu2O) has attracted increasing attention due to its theoretically high specific capacitance, however, the development of Cu2O-based electrodes with superior capacitive performance is still challenging. We herein report a simple and effective ionic-liquid-assisted sputtering approach to synthesizing the Cu2O nanoparticles/multi-walled carbon nanotubes (Cu2O/MWCNTs) nanocomposite for high-performance asymmetric supercapacitors. The Cu2O/MWCNTs nanocomposite delivers a high specific capacitance of 357 F g-1, good rate capability and excellent capacitance retention of about 89% after 20 000 cycles at a current density of 10 A g-1. The high performance is attributed to the uniform dispersion of small-sized Cu2O nanoparticles on conductive MWCNTs, which offers plenty of redox active sites and thus improve the electron transfer efficiency. Oxygen vacancies are further introduced into Cu2O by the NaBH4 treatment, providing the oxygen-deficient Cu2O/MWCNTs (r-Cu2O/MWCNTs) nanocomposite with significantly improved specific capacitance (790 F g-1) and cycling stability (∼93% after 20 000 cycles). The assembled asymmetric supercapacitor based on the r-Cu2O/MWCNTs//activated carbon (AC) structure achieves a high energy density of 64.2 W h kg-1 at 825.3 W kg-1, and long cycling life. This work may form a foundation for the development of both high capacity and high energy density supercapacitors by showcasing the great potential of earth-abundant Cu-based electrode materials.

16.
ACS Appl Mater Interfaces ; 9(38): 32452-32462, 2017 Sep 27.
Article En | MEDLINE | ID: mdl-28859474

Single-walled carbon nanotubes (SWCNTs) have attracted considerable attention owing to their applications in various fields such as biotechnology and biomedicine. Recently, aggregated SWCNTs have shown more significant effects on the treatment of methamphetamine addiction (Nat. Nanotech. 2016, 11, 613). However, the mechanisms underlying these actions are unclear. By using all-atom molecular dynamics simulations, we investigate the effects of single and aggregated SWCNTs (single-(10,10)CNT, aggregated-7-(10,10)CNTs, and single-(35,35)CNT with the same diameter as that of the aggregated one) on the activity of dopamine-related proteins [tyrosine hydroxylase (TyrOH) and dopamine transporter (DAT), which are related to the synthesis and transport of dopamine, respectively]. We find that both TyrOH and DAT can adsorb onto these SWCNTs. For TyrOH, the aggregated-7-(10,10)CNTs mainly affect the conformation of the active site of the protein, and hence, they are more effective in inhibiting the expression of TyrOH. For DAT, our results suggest that the aggregated-7-(10,10)CNTs allow DAT to maintain an outward-facing conformation and hence are favorable to the reuptake of dopamine. The binding of a dopamine reuptake inhibitor, [3H]-WIN35,428, to DAT is significantly disrupted by aggregated-7-(10,10)CNTs and hence improve the ability to transport dopamine. Our results provide the dynamic interactions of proteins with single/aggregated SWCNTs, which illustrate the mechanism of aggregated SWCNTs for the treatment of drug addiction.

17.
ACS Appl Mater Interfaces ; 9(33): 27649-27656, 2017 Aug 23.
Article En | MEDLINE | ID: mdl-28758739

Flexible transparent solid-state supercapacitors have attracted immerse attention for the power supply of next-generation flexible "see-through" or "invisible" electronics. For fabrication of such devices, high-performance flexible transparent current collectors are highly desired. In this paper, the utilization of embedded Ag grid transparent conductive electrodes (TCEs) fabricated by a facile soft ultraviolet imprinting lithography method combined with scrap techniques, as the current collector for flexible transparent solid-state supercapacitors, is demonstrated. The embedded Ag grid TCEs exhibit not only excellent optoelectronic properties (RS ∼ 2.0 Ω sq-1 and T ∼ 89.74%) but also robust mechanical properties, which could meet the conductivity, transparency, and flexibility needs of current collectors for flexible transparent supercapacitors. The obtained supercapacitor exhibits large specific capacitance, long cycling life, high optical transparency (T ∼ 80.58% at 550 nm), high flexibility, and high stability. Owing to the embedded Ag grid TCE structure, the device shows a slight capacitance loss of 2.6% even after 1000 cycles of repetitive bending for a bending radius of up to 2.0 mm. This paves the way for developing high-performance current collectors and thus flexible transparent energy storage devices, and their general applicability opens up opportunities for flexible transparent electronics.

18.
Sci Rep ; 7(1): 6751, 2017 07 28.
Article En | MEDLINE | ID: mdl-28754899

Single-walled carbon nanotubes (SWCNTs) offer great potential for field-effect transistors and integrated circuit applications due to their extraordinary electrical properties. To date, as-made SWCNT transistors are usually p-type in air, and it still remains challenging for realizing n-type devices. Herein, we present efficient and reversible electron doping of semiconductor-enriched single-walled carbon nanotubes (s-SWCNTs) by firstly utilizing decamethylcobaltocene (DMC) deposited by a simple spin-coating process at room temperature as an electron donor. A n-type transistor behavior with high on current, large I on /I off ratio and excellent uniformity is obtained by surface charge transfer from the electron donor DMC to acceptor s-SWCNTs, which is further corroborated by the Raman spectra and the ab initio simulation results. The DMC dopant molecules could be reversibly removed by immersion in N, N-Dimethylformamide solvent, indicating its reversibility and providing another way to control the carrier concentration effectively as well as selective removal of surface dopants on demand. Furthermore, the n-type behaviors including threshold voltage, on current, field-effect mobility, contact resistances, etc. are well controllable by adjusting the surface doping concentration. This work paves the way to explore and obtain high-performance n-type nanotubes for future complementary CMOS circuit and system applications.

19.
Nanomicro Lett ; 9(4): 48, 2017.
Article En | MEDLINE | ID: mdl-30393743

We present a straightforward physical approach for synthesizing multiwalled carbon nanotubes (CNTs)-PdAu/Pt trimetallic nanoparticles (NPs), which allows predesign and control of the metal compositional ratio by simply adjusting the sputtering targets and conditions. The small-sized CNTs-PdAu/Pt NPs (~3 nm, Pd/Au/Pt ratio of 3:1:2) act as nanocatalysts for the methanol oxidation reaction (MOR), showing excellent performance with electrocatalytic peak current of 4.4 A mgPt -1 and high stability over 7000 s. The electrocatalytic activity and stability of the PdAu/Pt trimetallic NPs are much superior to those of the corresponding Pd/Pt and Au/Pt bimetallic NPs, as well as a commercial Pt/C catalyst. Systematic investigation of the microscopic, crystalline, and electronic structure of the PdAu/Pt NPs reveals alloying and charge redistribution in the PdAu/Pt NPs, which are responsible for the promotion of the electrocatalytic performance.

20.
Nanomicro Lett ; 8(4): 371-380, 2016.
Article En | MEDLINE | ID: mdl-30460295

ABSTRACT: A simple one-pot method was developed to prepare PtNi alloy nanoparticles, which can be self-decorated on multiwalled carbon nanotubes in [BMIm][BF4] ionic liquid. The nanohybrids are targeting stable nanocatalysts for fuel cell applications. The sizes of the supported PtNi nanoparticles are uniform and as small as 1-2 nm. Pt-to-Ni ratio was controllable by simply selecting a PtNi alloy target. The alloy nanoparticles with Pt-to-Ni ratio of 1:1 show high catalytic activity and stability for methanol electro-oxidation. The performance is much higher compared with those of both Pt-only nanoparticles and commercial Pt/C catalyst. The electronic structure characterization on the PtNi nanoparticles demonstrates that the electrons are transferred from Ni to Pt, which can suppress the CO poisoning effect.

...