Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Healthc Mater ; 12(13): e2202949, 2023 05.
Article in English | MEDLINE | ID: mdl-36716523

ABSTRACT

Cuproptosis is a recently discovered form of programmed cell death and shows great potential in cancer treatment. Herein, a copper-dithiocarbamate chelate-doped and artemisinin-loaded hollow nanoplatform (HNP) is developed via a chelation competition-induced hollowing strategy for cuproptosis-based combination therapy. The HNP exhibits tumor microenvironment-triggered catalytic activity, wherein liberated Cu2+ catalyzes artemisinin and endogenous H2 O2 to produce C-centered radicals and hydroxyl radicals, respectively. Meanwhile, the disulfide bonds-rich HNP can deplete intracellular glutathione, thus triply amplifying tumor oxidative stress. The augmented oxidative stress sensitizes cancer cells to the cuproptosis, causing prominent dihydrolipoamide S-acetyltransferase oligomerization and mitochondrial dysfunction. Moreover, the HNP can activate ferroptosis via inhibiting GPX4 activity and trigger apoptosis via dithiocarbamate-copper chelate-mediated ubiquitinated proteins accumulation, resulting in potent antitumor efficacy. Such a cuproptosis/ferroptosis/apoptosis synergetic strategy opens a new avenue for cancer therapy.


Subject(s)
Apoptosis , Artemisinins , Neoplasms , Cell Line, Tumor , Combined Modality Therapy , Copper/pharmacology , Neoplasms/drug therapy , Oxidative Stress , Tumor Microenvironment
2.
ACS Appl Mater Interfaces ; 14(14): 16018-16031, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35353495

ABSTRACT

Bacterial infection and delayed healing are two major obstacles in cutaneous wound management, and developing multifunctional hydrogels with antibacterial and prohealing capabilities presents a promising strategy to dress wounds. However, the simple and facile fabrication of such hydrogel dressings remains challenging. Herein, we report the first observation on hydrazide-metal coordination crosslinking that is utilized to successfully construct a series of hyaluronan (HA)-metal hydrogels by mixing hydrazided HA and metal ion solutions. Considering the antibacterial, prohealing, and proangiogenic properties of HA and Cu(II), as a proof of principle, a HA-Cu hydrogel was systematically investigated as a wound dressing. Surprisingly, the hydrazide-Cu(II) coordination was dynamic in nature and imparted the HA-Cu hydrogel with physicochemical multifunctions, including spontaneous self-healing, shear-thinning injectability, reversible pH/redox/ion pair triple responsiveness, etc. Moreover, the HA-Cu hydrogel exhibited a robust broad-spectrum antibacterial activity and could significantly accelerate infectious wound healing. Impressively, glutathione-triggered hydroxyl radical generation further potentiated wound healing, providing a paradigm for on-demand antibacterial activity enhancement. Hence, the HA-Cu hydrogel is a clinically applicable "smart" dressing for multi-scenario wound healing. We envision that the simple and versatile coordination approach opens up a new avenue to develop multifunctional hydrogels and shows great potential in frontier fields, such as biomedicine, wearable devices, and soft robots.


Subject(s)
Hydrogels , Wound Infection , Anti-Bacterial Agents/chemistry , Copper/pharmacology , Humans , Hyaluronic Acid/pharmacology , Hydrazines , Hydrogels/chemistry , Hydrogels/pharmacology , Wound Healing , Wound Infection/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...