Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 548
Filter
1.
Lancet Neurol ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38945144

ABSTRACT

The number of long duration human spaceflights has increased substantially over the past 15 years, leading to the discovery of numerous effects on the CNS. Microgravity results in headward fluid shifts, ventricular expansion, an upward shift of the brain within the skull, and remodelling of grey and white matter. The fluid changes are correlated with changes to perivascular space and spaceflight associated neuro-ocular syndrome. Microgravity alters the vestibular processing of head tilt and results in reduced tactile and proprioceptive inputs during spaceflight. Sensory adaptation is reflected in postflight effects, evident as transient sensorimotor impairment. Another major concern is that galactic cosmic radiation, which spacefarers will be exposed to when going beyond the magnetosphere around Earth, might have a negative effect on CNS function. Research with rodents points to the potential disruptive effects of space radiation on blood-brain barrier integrity and brain structures. More work is needed to understand and mitigate these effects on the CNS before humans travel to Mars, as the flight durations will be longer than anyone has previously experienced.

2.
J Integr Plant Biol ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940609

ABSTRACT

Tiller angle is a key agricultural trait that establishes plant architecture, which in turn strongly affects grain yield by influencing planting density in rice. The shoot gravity response plays a crucial role in the regulation of tiller angle in rice, but the underlying molecular mechanism is largely unknown. Here, we report the identification of the BIG TILLER ANGLE2 (BTA2), which regulates tiller angle by controlling the shoot gravity response in rice. Loss-of-function mutation of BTA2 dramatically reduced auxin content and affected auxin distribution in rice shoot base, leading to impaired gravitropism and therefore a big tiller angle. BTA2 interacted with AUXIN RESPONSE FACTOR7 (ARF7) to modulate rice tiller angle through the gravity signaling pathway. The BTA2 protein was highly conserved during evolution. Sequence variation in the BTA2 promoter of indica cultivars harboring a less expressed BTA2 allele caused lower BTA2 expression in shoot base and thus wide tiller angle during rice domestication. Overexpression of BTA2 significantly increased grain yield in the elite rice cultivar Huanghuazhan under appropriate dense planting conditions. Our findings thus uncovered the BTA2-ARF7 module that regulates tiller angle by mediating the shoot gravity response. Our work offers a target for genetic manipulation of plant architecture and valuable information for crop improvement by producing the ideal plant type.

3.
Opt Express ; 32(9): 15507-15526, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38859199

ABSTRACT

Deterministic computer-controlled optical finishing is an essential approach for achieving high-quality optical surfaces. Its determinism and convergence rely heavily on precise and smooth motion control to guide the machine tool over an optical surface to correct residual errors. One widely supported and smooth motion control model is position-velocity-time (PVT), which employs piecewise cubic polynomials to describe positions. Our prior research introduced a PVT-based velocity scheduling method, demonstrating sub-nanometer level convergence in ion beam figuring (IBF) processes. However, three challenges remained. Firstly, this method relies on quadratic programming, resulting in computational intensiveness for dense tool paths. Secondly, the dynamics constraints and velocity and acceleration continuities are not comprehensively considered, limiting the full potential of PVT-based control. Thirdly, no compensation mechanism existed when dynamics constraints are exceeded. In this study, in response to these challenges, we proposed the Enhanced PVT (E-PVT) method, reducing the time complexity from O(n3) to O(n) while fully addressing dynamics constraints and continuities. A novel compensation method utilizing particle swarm optimization was proposed to address situations where dynamics constraints might be exceeded while maintaining the overall processing efficiency. Validation through simulation and experimentation confirmed the improved performance of E-PVT.

4.
iScience ; 27(6): 109827, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38827395

ABSTRACT

Hepatocellular carcinoma (HCC) is a major global cause of death, with epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC)-like properties contributing to its metastasis. DEAD box helicase 56 (DDX56) is involved in carcinogenesis, but its role in EMT induction and stem phenotype maintenance is unclear. This study assessed the impact of DDX56 absence on HCC cell stemness and EMT. DDX56 was found to be overexpressed in HCC tissues, correlating with disease stage and prognosis. In vitro, DDX56 stimulated tumor cell proliferation, migration, invasion, EMT, and stemness. It also enhanced maternal embryonic leucine-zipper kinase (MELK)-mediated forkhead box protein M1 (FOXM1) expression, regulating cancer stemness and malignant traits. In vivo, DDX56 knockdown in tumor-bearing mice reduced tumorigenicity and lung metastasis by modulating the MELK-FOXM1 signaling pathway. Collectively, DDX56 initiates stem cell-like traits in HCC and promotes EMT via MELK-FOXM1 activation, shedding light on HCC pathogenesis and suggesting a potential anti-cancer therapeutic target.

5.
Palliat Med ; : 2692163241257578, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38835179

ABSTRACT

BACKGROUND: Coordination and communication challenges in home-based palliative care complicate transitions from hospital care. Electronic symptom monitoring enables real-time data collection, enhancing patient-provider communication. However, a systematic evaluation of its effectiveness in home-based palliative care is lacking. AIM: To analyze the feasibility, effectiveness, and limitations of electronic symptom monitoring in home-based palliative care, assess the evidence quality, identify the evidence gap, and suggest implications for future research and practice. DESIGN: This study uses systematic review, meta-analysis, and narrative synthesis (CRD42023457977) to analyze relevant studies until September 2023. DATA SOURCES: Electronic searches in MEDLINE, CENTRAL, and Embase until September 2023, complemented by hand-searching of references and citations. RESULTS: This study included twenty studies. The majority of patients positively engage in electronic symptom monitoring, which could improve their quality of life, physical and emotional well-being, and symptom scores without a significant increase in costs. However, firm conclusions about the effects of electronic symptom monitoring on outcomes like survival, hospital admissions, length of stay, emergency visits, and adverse events were limited due to significant variability in the reported data or inadequate statistical power. CONCLUSION: Introducing electronic symptom monitoring in home-based palliative care holds potential for enhancing patient-reported outcomes, potentially decreasing hospital visits and costs. However, inconsistency in current studies arising from diverse monitoring systems obstructs comparability. To advance, future high-quality research should employ standardized follow-up periods and established scales to better grasp the benefits of electronic symptom monitoring in home-based palliative care.

6.
Angew Chem Int Ed Engl ; : e202408989, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837505

ABSTRACT

The extensive industrial applications of fuel oil, a critical strategic resource, are accompanied by significant environmental and health concerns due to the presence of sulfur-containing compounds in its composition, which result in hazardous combustion waste. Extensive research has been conducted to develop technologies for low-vulcanization fuel production to address this issue. Consequently, the investigation of catalysts for environmentally friendly and safe photocatalytic desulfurization becomes imperative. To that end, we have designed efficient MIL-101(Fe)/CQDs@g-C3N4 (MIL101/CDs-C3N4) Z-scheme heterojunction photocatalysts with high carrier separation and mobility through a thermal polymerization-hydrothermal strategy. The high concentration of photogenerated carriers facilitates the activation of oxygen and H2O2, leading to increased production of ROS (·O2-, ·OH, h+), thereby enhancing the photocatalytic desulfurization (PODS). Additionally, DFT calculations were utilized to determine the electron migration pathways of the catalysts and adsorption energies of DBT (dibenzothiophene). Moreover, Gibbs free energy calculations indicated that MIL101/CDs-C3N4 exhibited the lowest activation energy for oxygen and H2O2. The mechanism of photocatalytic desulfurization was proposed through a combination of theoretical calculations and experimental studies. This study provides guidance for the development of MOF-based Z-scheme systems and their practical application in desulfurization processes.

8.
Plant Cell ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916914

ABSTRACT

Alternative splicing (AS) plays crucial roles in regulating various biological processes in plants. However, the genetic mechanisms underlying AS and its role in controlling important agronomic traits in rice (Oryza sativa) remain poorly understood. In this study, we explored AS in rice leaves and panicles using the rice minicore collection. Our analysis revealed a high level of transcript isoform diversity, with approximately one fifth of potential isoforms acting as major transcripts in both tissues. Regarding the genetic mechanism of AS, we found that the splicing of 833 genes in the leaf and 1,230 genes in the panicle was affected by cis-genetic variation. Twenty-one percent of these AS events could only be explained by large structural variations. Approximately 77.5% of genes with significant splicing quantitative trait loci (sGenes) exhibited tissue-specific regulation, and AS can cause 26.9% (leaf) and 23.6% (panicle) of sGenes to have altered, lost or gained functional domains. Additionally, through splicing-phenotype association analysis, we identified phosphate-starvation induced RING-type E3 ligase (OsPIE1; LOC_Os01g72480), whose splicing ratio was significantly associated with plant height. In summary, this study provides an understanding of AS in rice and its contribution to the regulation of important agronomic traits.

9.
Front Surg ; 11: 1389244, 2024.
Article in English | MEDLINE | ID: mdl-38903864

ABSTRACT

Background: Surgical robots are gaining increasing popularity because of their capability to improve the precision of pedicle screw placement. However, current surgical robots rely on unimodal computed tomography (CT) images as baseline images, limiting their visualization to vertebral bone structures and excluding soft tissue structures such as intervertebral discs and nerves. This inherent limitation significantly restricts the applicability of surgical robots. To address this issue and further enhance the safety and accuracy of robot-assisted pedicle screw placement, this study will develop a software system for surgical robots based on multimodal image fusion. Such a system can extend the application range of surgical robots, such as surgical channel establishment, nerve decompression, and other related operations. Methods: Initially, imaging data of the patients included in the study are collected. Professional workstations are employed to establish, train, validate, and optimize algorithms for vertebral bone segmentation in CT and magnetic resonance (MR) images, intervertebral disc segmentation in MR images, nerve segmentation in MR images, and registration fusion of CT and MR images. Subsequently, a spine application model containing independent modules for vertebrae, intervertebral discs, and nerves is constructed, and a software system for surgical robots based on multimodal image fusion is designed. Finally, the software system is clinically validated. Discussion: We will develop a software system based on multimodal image fusion for surgical robots, which can be applied to surgical access establishment, nerve decompression, and other operations not only for robot-assisted nail placement. The development of this software system is important. First, it can improve the accuracy of pedicle screw placement, percutaneous vertebroplasty, percutaneous kyphoplasty, and other surgeries. Second, it can reduce the number of fluoroscopies, shorten the operation time, and reduce surgical complications. In addition, it would be helpful to expand the application range of surgical robots by providing key imaging data for surgical robots to realize surgical channel establishment, nerve decompression, and other operations.

10.
Article in English | MEDLINE | ID: mdl-38848228

ABSTRACT

Imitation learning (IL) is a well-known problem in the field of Markov decision process (MDP), where one is given multiple demonstration trajectories generated by expert(s), and the goal is to replicate the hidden expert-policies so that when the MDP is run independently, it generates trajectories close to the demonstrated ones. IL is one of the most useful tools used in building versatile robots that can learn from examples. This task becomes particularly challenging when the expert exhibits a mixture of behavior modes. Prior work has introduced latent variables to model variations of the expert policy. However, our experiments show that the existing works do not exhibit appropriate imitation of individual modes. To tackle this problem, we first draw inspiration from the well-known classical technique of self-organizing maps (SOMs) and introduce an encoder-free generative model-referred to as the self-organizing generative (SOG) model-for learning multimodal data distributions from samples. We then apply SOG for behavior cloning (BC)-a framework that learns deterministic policies without considering the environment-to accurately distinguish and imitate different modes. Then, we integrate it with generative adversarial IL (GAIL)-a framework that learns policies while considering the environment-to make the learning robust toward compounding errors at unseen states. We show that our method significantly outperforms the state of the art across multiple experiments within the MuJoCo simulator, including locomotion and robotic manipulation tasks.

11.
Article in English | MEDLINE | ID: mdl-38878896

ABSTRACT

OBJECTIVE: The aim of the present study is to explore the impact of the tet(A) type I variant (tetA-v1) on its fitness effect in Klebsiella pneumoniae. METHODS: Clinical K. pneumoniae strains were utilized as parental strains to generate strains carrying only the plasmid vector (pBBR1MCS-5) or the tetA-v1 recombinant plasmid (ptetA-v1). Antimicrobial susceptibility testing was conducted to estimate the contribution of tetA-v1 to drug resistance. Plasmid stability was evaluated by serial passage over 10 consecutive days in the absence of tigecycline. Biological fitness was examined through growth curve analysis, in vitro competition assays and a neutropenic mouse thigh infection model. RESULTS: A 2-4-fold increase in tigecycline MIC was observed following the acquisition of tetA-v1. Without tigecycline treatment, the stability of ptetA-v1 plasmids has been decreasing since day 1. The ptetA-v1 plasmid in Kp89, Kp91, and Kp93 exhibited a decrease of about 20% compared to the pBBR1MCS-5 plasmid. The acquisition of the tetA-v1 gene could inhibit the growth ability of K. pneumoniae strains both in vitro and in vivo. tetA-v1 gene imposed a fitness cost in K. pneumoniae, particularly in the CRKP strain Kp51, with a W value of approximately 0.56. CONCLUSION: The presence of tetA-v1 is associated with a significant fitness cost in K. pneumoniae in the absence of tigecycline, both in vitro and in vivo.

12.
Int J Mol Sci ; 25(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38892460

ABSTRACT

Sprouty-related enabled/vasodilator-stimulated phosphoprotein homology 1 domain containing 2 (SPRED2) is an inhibitor of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway and has been shown to promote autophagy in several cancers. Here, we aimed to determine whether SPRED2 plays a role in autophagy in hepatocellular carcinoma (HCC) cells. The Cancer Genome Atlas (TCGA) Liver Cancer Database showed a negative association between the level of SPRED2 and p62, a ubiquitin-binding scaffold protein that accumulates when autophagy is inhibited. Immunohistochemically, accumulation of p62 was detected in human HCC tissues with low SPRED2 expression. Overexpression of SPRED2 in HCC cells increased the number of autophagosomes and autophagic vacuoles containing damaged mitochondria, decreased p62 levels, and increased levels of light-chain-3 (LC3)-II, an autophagy marker. In contrast, SPRED2 deficiency increased p62 levels and decreased LC3-II levels. SPRED2 expression levels were negatively correlated with translocase of outer mitochondrial membrane 20 (TOM20) expression levels, suggesting its role in mitophagy. Mechanistically, SPRED2 overexpression reduced ERK activation followed by the mechanistic or mammalian target of rapamycin complex 1 (mTORC1)-mediated signaling pathway, and SPRED2 deficiency showed the opposite pattern. Finally, hepatic autophagy was impaired in the liver of SPRED2-deficient mice with hepatic lipid droplet accumulation in response to starvation. These results indicate that SPRED2 is a critical regulator of autophagy not only in HCC cells, but also in hepatocytes, and thus the manipulation of this process may provide new insights into liver pathology.


Subject(s)
Autophagy , Carcinoma, Hepatocellular , Hepatocytes , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Autophagy/genetics , Hepatocytes/metabolism , Hepatocytes/pathology , Animals , Mice , Cell Line, Tumor , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , MAP Kinase Signaling System , Mitophagy/genetics , Repressor Proteins
13.
Article in English | MEDLINE | ID: mdl-38922793

ABSTRACT

WHAT IS KNOWN ON THE SUBJECT: People living with schizophrenia spectrum disorder (SSD) have a higher death rate which is caused, in part, by poorer adherence to treatment as compared to those with other mental illnesses. Using long-acting injectable antipsychotic (LAI) medications can improve medication adherence and reduce hospitalizations for people living with SSD but are often underutilized. WHAT THE PAPER ADDS TO EXISTING KNOWLEDGE: As compared to oral antipsychotic medications provided to patients with SSD at discharge from a psychiatric hospitalization, being provided with an LAI antipsychotic medication may reduce subsequent rehospitalization. Specifically, patients discharged on an atypical or second-generation LAI medication are less likely to be readmitted to the hospital when compared to those discharged on a typical first-generation oral medication. WHAT ARE THE IMPLICATIONS FOR PRACTICE: Because LAI antipsychotic medications are often underutilized as treatment options, the study findings suggest that this modality may be considered for patients with SSD when being discharged from a psychiatric hospitalization. Ideally, psychiatric-mental health nurses can educate patients about indications, benefits, and risks of using atypical or second-generation LAI antipsychotic medications during hospitalization and at discharge prevent the risk for future rehospitalizations. ABSTRACT: INTRODUCTION: People living with schizophrenia spectrum disorder (SSD) have poorer medication adherence compared to those with other mental illnesses. Long-acting injectable antipsychotic (LAI) medication use is associated with greater adherence, reduced re-hospitalizations, and improved recovery outcomes when compared to oral formulations. AIM: To compare LAI antipsychotic medication use versus oral formulations on readmission to an inpatient hospital. METHOD: Medical records (N = 707) from a state psychiatric hospital in the southern region of the United States were reviewed. Controlling for demographic variables, logistic regression analyses were used to examine LAI compared to oral formulations on readmission. RESULTS: Compared to patients discharged with oral antipsychotic medications, those with LAIs had a lower proportion of readmission rates in 6-month and 1-year periods, but not 30-day or 2-year periods. When controlling for demographic variables, those discharged with an atypical LAI had significantly lower odds of being readmitted within the 24-year period compared to those discharged on a typical oral antipsychotic. DISCUSSION: Compared to orals, LAIs do not increase and may mitigate readmissions to psychiatric hospitalization. IMPLICATIONS FOR PRACTICE: Psychiatric-mental health nurses and other professionals may recommend LAIs when indicated for those with SSD.

15.
Biomed Pharmacother ; 177: 116995, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38917761

ABSTRACT

Osteoporosis is a prevalent bone metabolic disease that poses a significant challenge to global human health. Jaw osteoporosis, characterized by microstructural damage of the jaw resulting from various factors, is one of the common manifestations of this condition. Recent studies have demonstrated that jaw osteoporosis has multifaceted effects on oral health and can negatively impact conditions such as periodontitis, oral implantation, orthodontic treatment, and wound healing. However, there are still some limitations in the conventional treatment of osteoporosis. For instance, while bisphosphonates can enhance bone quality, they may also lead to osteonecrosis of the jaw, which poses a potential safety hazard in oral diagnosis and treatment. In recent years, considerable attention has been focused on improving the pathological condition of jaw osteoporosis. Treatment strategies such as gut microbial regulation, extracellular vesicles, molecular targeted therapy, herbal medicine, mechanical stimulation are expected to enhance efficacy and minimize adverse reactions. Therefore, understanding these effects and exploring novel treatments for jaw osteoporosis may provide new insights for oral health maintenance and disease treatment. This article reviews the impact of jaw osteoporosis on oral health and describes the limitations associated with current methods. It also discusses emerging perspectives on treatment, offering a comprehensive overview of the challenges and future directions in managing jaw osteoporosis.

16.
Article in English | MEDLINE | ID: mdl-38831543

ABSTRACT

BACKGROUND: A common psychological problem among nurses is depression, potentially affecting their well-being and job performance. It is vital to explore how to alleviate nurses' depressive symptoms. AIM: The current research explored the mediating impact of basic psychological needs satisfaction on the link of gratitude with depressive symptoms. METHODS: The nurses in this study were from mainland China. A total of 724 subjects completed an online questionnaire, which included measures of depressive symptoms, basic psychological needs satisfaction and gratitude. RESULTS: Our research found that gratitude was negatively linked to depressive symptoms. Furthermore, basic psychological needs satisfaction had a partial mediation effect on the link of gratitude with depressive symptoms after controlling for five demographic variables. These results suggest that gratitude may influence depressive symptoms via basic psychological needs satisfaction. LINKING EVIDENCE TO ACTION: Our study found that basic psychological need satisfaction partially mediates the gratitude-depression relationship in nurses. The result means that hospital administrators and nurse leaders should design gratitude interventions to alleviate nurses' depressive symptoms. They also help nurses decrease depressive symptoms by creating an environment that meets their basic psychological needs.

18.
Phys Med Biol ; 69(12)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38776945

ABSTRACT

Objective.In oncology, clinical decision-making relies on a multitude of data modalities, including histopathological, radiological, and clinical factors. Despite the emergence of computer-aided multimodal decision-making systems for predicting hepatocellular carcinoma (HCC) recurrence post-hepatectomy, existing models often employ simplistic feature-level concatenation, leading to redundancy and suboptimal performance. Moreover, these models frequently lack effective integration with clinically relevant data and encounter challenges in integrating diverse scales and dimensions, as well as incorporating the liver background, which holds clinical significance but has been previously overlooked.Approach.To address these limitations, we propose two approaches. Firstly, we introduce the tensor fusion method to our model, which offers distinct advantages in handling multi-scale and multi-dimensional data fusion, potentially enhancing overall performance. Secondly, we pioneer the consideration of the liver background's impact, integrating it into the feature extraction process using a deep learning segmentation-based algorithm. This innovative inclusion aligns the model more closely with real-world clinical scenarios, as the liver background may contain crucial information related to postoperative recurrence.Main results.We collected radiomics (MRI) and histopathological images from 176 cases diagnosed by experienced clinicians across two independent centers. Our proposed network underwent training and 5-fold cross-validation on this dataset before validation on an external test dataset comprising 40 cases. Ultimately, our model demonstrated outstanding performance in predicting early recurrence of HCC postoperatively, achieving an AUC of 0.883.Significance.These findings signify significant progress in addressing challenges related to multimodal data fusion and hold promise for more accurate clinical outcome predictions. In this study, we exploited global 3D liver background into modelling which is crucial to to the prognosis assessment and analyzed the whole liver background in addition to the tumor region. Both MRI images and histopathological images of HCC were fused at high-dimensional feature space using tensor techniques to solve cross-scale data integration issue.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/surgery , Liver Neoplasms/pathology , Humans , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/surgery , Carcinoma, Hepatocellular/pathology , Neoplasm Recurrence, Local/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Recurrence , Deep Learning
19.
Medicine (Baltimore) ; 103(19): e37998, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728505

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most common cancers globally, seriously endangering people health. Vitamin D was significantly associated with tumor progression and patients' prognosis. Integrative 10 machine learning algorithms were used to develop a Vitamin D-related signature (VRS) with one training cohort and 3 testing cohorts. The performance of VRS in predicting the immunology response was verified using several predicting approaches. The optimal VRS was constructed by stepCox + superPC algorithm. VRS acted as a risk factor for HCC patients. HCC patients with high-risk score had a poor clinical outcome and the AUCs of 1-, 3-, and 5-year ROC were 0.786, 0.755, and 0.786, respectively. A higher level of CD8 + cytotoxic T cells and B cells was obtained in HCC patients with low-risk score. There is higher PD1&CTLA4 immunophenoscore and TMB score in low-risk score in HCC patients. Lower TIDE score and tumor escape score was found in HCC cases with low-risk score. The IC50 value of camptothecin, docetaxel, crizotinib, dasatinib, and erlotinib was lower in HCC cases with high-risk score. HCC patients with high-risk score had a higher score of cancer-related hallmarks, including angiogenesis, glycolysis, and NOTCH signaling. Our study proposed a novel VRS for HCC, which served as an indicator for predicting clinical outcome and immunotherapy responses in HCC.


Subject(s)
Carcinoma, Hepatocellular , Immunotherapy , Liver Neoplasms , Vitamin D , Humans , Carcinoma, Hepatocellular/immunology , Liver Neoplasms/immunology , Vitamin D/therapeutic use , Male , Immunotherapy/methods , Prognosis , Female , Middle Aged , Machine Learning , Risk Factors , Biomarkers, Tumor
20.
J Affect Disord ; 358: 270-282, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38723681

ABSTRACT

OBJECTIVE: Ganoderic Acid A (GAA), a primary bioactive component in Ganoderma, has demonstrated ameliorative effects on depressive-like behaviors in a Chronic Social Defeat Stress (CSDS) mouse model. This study aims to elucidate the underlying molecular mechanisms through proteomic analysis. METHODS: C57BL/6 J mice were allocated into control (CON), chronic social defeat stress (CSDS), GAA, and imipramine (IMI) groups. Post-depression induction via CSDS, the GAA and IMI groups received respective treatments of GAA (2.5 mg/kg) and imipramine (10 mg/kg) for five days. Behavioral assessments utilized standardized tests. Proteins from the prefrontal cortex were analyzed using LC-MS, with further examination via bioinformatics and PRM for differential expression. Western blot analysis confirmed protein expression levels. RESULTS: Chronic social defeat stress (CSDS) induced depressive-like behaviors in mice, which were significantly alleviated by GAA treatment, comparably to imipramine (IMI). Proteomic analysis identified distinct proteins in control (305), GAA-treated (949), and IMI-treated (289) groups. Enrichment in mitochondrial and synaptic proteins was evident from GO and PPI analyses. PRM analysis revealed significant expression changes in proteins crucial for mitochondrial and synaptic functions (namely, Naa30, Bnip1, Tubgcp4, Atxn3, Carmil1, Nup37, Apoh, Mrpl42, Tprkb, Acbd5, Dcx, Erbb4, Ppp1r2, Fam3c, Rnf112, and Cep41). Western blot validation in the prefrontal cortex showed increased levels of Mrpl42, Dcx, Fam3c, Ppp1r2, Rnf112, and Naa30 following GAA treatment. CONCLUSION: GAA exhibits potential antidepressant properties, with its action potentially tied to the modulation of synaptic functions and mitochondrial activities.


Subject(s)
Behavior, Animal , Depression , Disease Models, Animal , Lanosterol , Mice, Inbred C57BL , Prefrontal Cortex , Proteomics , Social Defeat , Stress, Psychological , Animals , Mice , Stress, Psychological/drug therapy , Stress, Psychological/metabolism , Depression/drug therapy , Depression/metabolism , Male , Prefrontal Cortex/metabolism , Prefrontal Cortex/drug effects , Behavior, Animal/drug effects , Lanosterol/analogs & derivatives , Lanosterol/pharmacology , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Imipramine/pharmacology , Doublecortin Protein , Heptanoic Acids
SELECTION OF CITATIONS
SEARCH DETAIL
...