Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 282
Filter
1.
Pharm Res ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39048879

ABSTRACT

PURPOSE: In biotechnology, microscopic cell imaging is often used to identify and analyze cell morphology and cell state for a variety of applications. For example, microscopy can be used to detect the presence of cytopathic effects (CPE) in cell culture samples to determine virus contamination. Another application of microscopy is to verify clonality during cell line development. Conventionally, inspection of these microscopy images is performed manually by human analysts. This is both tedious and time consuming. In this paper, we propose using supervised deep learning algorithms to automate the cell detection processes mentioned above. METHODS: The proposed algorithms utilize image processing techniques and convolutional neural networks (CNN) to detect the presence of CPE and to verify the clonality in cell line development. RESULTS: We train and test the algorithms on image data which have been collected and labeled by domain experts. Our experiments have shown promising results in terms of both accuracy and speed. CONCLUSION: Deep learning algorithms achieve high accuracy (more than 95%) on both CPE detection and clonal selection applications, resulting in a highly efficient and cost-effective automation process.

2.
Natl Sci Rev ; 11(8): nwae199, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39050980

ABSTRACT

Rechargeable aqueous Zn-ion batteries have been deemed a promising energy storage device. However, the dendrite growth and side reactions have hindered their practical application. Herein, inspired by the ultrafluidic and K+ ion-sieving flux through enzyme-gated potassium channels (KcsA) in biological plasma membranes, a metal-organic-framework (MOF-5) grafted with -ClO4 groups (MOF-ClO4) as functional enzymes is fabricated to mimic the ultrafluidic lipid-bilayer structure for gating Zn2+ 'on' and anions 'off' states. The MOF-ClO4 achieved perfect Zn2+/SO4 2- selectivity (∼10), enhanced Zn2+ transfer number ([Formula: see text]) and the ultrafluidic Zn2+ flux (1.9 × 10-3 vs. 1.67 mmol m-2 s-1 for KcsA). The symmetric cells based on MOF-ClO4 achieve a lifespan of over 5400 h at 10 mA cm-2/20 mAh cm-2. Specifically, the performance of the PMCl-Zn//V2O5 pouch cell keeps 81% capacity after 2000 cycles at 1 A g-1. The regulated ion transport, by learning from a biological plasma membrane, opens a new avenue towards ultralong lifespan aqueous batteries.

3.
J Clin Oncol ; : JCO2302668, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39047224

ABSTRACT

PURPOSE: Newer-generation tyrosine kinase inhibitors (TKIs) for non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK) rearrangements have demonstrated high CNS activity. The optimal use of up-front stereotactic radiosurgery (SRS) for brain metastases (BM) in patients eligible for CNS-penetrant TKIs is controversial, and data to guide patient management are limited. MATERIALS AND METHODS: Data on TKI-naïve patients with EGFR- and ALK-driven NSCLC with BM treated with CNS-penetrant TKIs with and without up-front SRS were retrospectively collected from seven academic centers in the United States. Time-to-CNS progression and overall survival (OS) were analyzed, with multivariable adjustment in Fine & Gray and Cox proportional hazards models for clinically relevant factors. RESULTS: From 2013 to 2022, 317 patients were identified (200 TKI-only and 117 TKI + SRS). Two hundred fifty (79%) and 61 (19%) patients received osimertinib and alectinib, respectively. Patients receiving TKI + SRS were more likely to have BM ≥1 cm (P < .001) and neurologic symptoms (P < .001) at presentation. Median OS was similar between the TKI and TKI + SRS groups (median 41 v 40 months, respectively; P = .5). On multivariable analysis, TKI + SRS was associated with a significant improvement in time-to-CNS progression (hazard ratio [HR], 0.63 [95% CI, 0.42 to 0.96]; P = .033). Local CNS control was significantly improved with TKI + SRS (HR, 0.30 [95% CI, 0.16 to 0.55]; P < .001), whereas no significant differences were observed in distant CNS control. Subgroup analyses demonstrated a greater benefit from TKI + SRS in patients with BM ≥1 cm in diameter for time-to-CNS progression and CNS progression-free survival. CONCLUSION: The addition of up-front SRS to CNS-penetrant TKI improved time-to-CNS progression and local CNS control, but not OS, in patients with BM from EGFR- and ALK-driven NSCLC. Patients with larger BM (≥1 cm) may benefit the most from up-front SRS.

4.
Neuro Oncol ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38943513

ABSTRACT

BACKGROUND: IDH-wildtype (-wt) status is a pre-requisite for the diagnosis of glioblastoma (GBM); however, IDH-wt gliomas with low grade or anaplastic morphology have historically been excluded from GBM trials and may represent a distinct prognostic entity. While alkylating agent chemotherapy improves overall survival (OS) and progression-free survival (PFS) for IDH-wt GBM and also IDH-mutant gliomas, irrespective of grade, the benefit for IDH-wt diffuse histologic lower grade gliomas is unclear. METHODS: We performed a meta-analysis of randomized clinical trials for World Health Organization (WHO) grade 2-3 gliomas (2009 to present) to determine the effect of alkylating chemotherapy on IDH-wt and -mutant gliomas using a random-effects model with inverse-variance pooling. RESULTS: We identified six trials with 1,204 patients (430 IDH-wt, 774 IDH-mutant) that evaluated alkylating chemoradiotherapy versus radiotherapy alone, allowing us to perform an analysis focused on the value of adding alkylating chemotherapy to radiotherapy. For patients with IDH-wt tumors, alkylating chemotherapy added to radiotherapy was associated with improved PFS (HR:0.77 [95%CI 0.62-0.97], P=.03) but not OS (HR:0.87 [95%CI 0.64-1.18], P=.17). For patients with IDH-mutant tumors, alkylating chemotherapy added to radiotherapy improved both OS (HR:0.52 [95%CI 0.42-0.64], P<.001) and PFS (HR=0.47 [95%CI 0.39-0.57], P<.001) compared to radiotherapy alone. The magnitude of benefit was similar for IDH-mutant gliomas with or without 1p19q-codeletion. CONCLUSIONS: Alkylating chemotherapy reduces mortality by 48% and progression by 53% for patients with IDH-mutant gliomas. Optimal management of IDH-wt diffuse histologic lower grade gliomas remains to be determined, as there is little evidence supporting an OS benefit from alkylating chemotherapy.

5.
bioRxiv ; 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38712124

ABSTRACT

Antigenic assessments of SARS-CoV-2 variants inform decisions to update COVID-19 vaccines. Primary infection sera are often used for assessments, but such sera are rare due to population immunity from SARS-CoV-2 infections and COVID-19 vaccinations. Here, we show that neutralization titers and breadth of matched human and hamster pre-Omicron variant primary infection sera correlate well and generate similar antigenic maps. The hamster antigenic map shows modest antigenic drift among XBB sub-lineage variants, with JN.1 and BA.4/BA.5 variants within the XBB cluster, but with five to six-fold antigenic differences between these variants and XBB.1.5. Compared to sera following only ancestral or bivalent COVID-19 vaccinations, or with post-vaccination infections, XBB.1.5 booster sera had the broadest neutralization against XBB sub-lineage variants, although a five-fold titer difference was still observed between JN.1 and XBB.1.5 variants. These findings suggest that antibody coverage of antigenically divergent JN.1 could be improved with a matched vaccine antigen.

6.
J Virol ; 98(5): e0034724, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38651897

ABSTRACT

Angiotensin converting enzyme 2 (ACE2), the host receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, is differentially expressed in a wide variety of tissues and cell types. The expression of ACE2 is under tight regulation, but the mechanisms regulating ACE2 expression have not yet been well defined. Through a genome-wide CRISPR knockout screen, we discovered that host factors TRAF3, DYRK1A, and RAD54L2 (TDR) form a complex to regulate the expression of ACE2. Knockout of TRAF3, DYRK1A, or RAD54L2 reduces the mRNA levels of ACE2 and inhibits the cellular entry of SARS-CoV-2. On the other hand, SARS-CoV-2 continuously evolves by genetic mutations for the adaption to the host. We have identified mutations in spike (S) (P1079T) and nucleocapsid (N) (S194L) that enhance the replication of SARS-CoV-2 in cells that express ACE2 at a low level. Our results have revealed the mechanisms for the transcriptional regulation of ACE2 and the adaption of SARS-CoV-2. IMPORTANCE: The expression of ACE2 is essential for the entry of SARS-CoV-2 into host cells. We identify a new complex-the TDR complex-that acts to maintain the abundance of ACE2 in host cells. The identification and characterization of the TDR complex provide new targets for the development of therapeutics against SARS-CoV-2 infection. By analysis of SARS-CoV-2 virus replicating in cells expressing low levels of ACE2, we identified mutations in spike (P1079T) and nucleocapsid (S194L) that overcome the restriction of limited ACE2. Functional analysis of these key amino acids in S and N extends our knowledge of the impact of SARS-CoV-2 variants on virus infection and transmission.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , SARS-CoV-2 , Humans , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , COVID-19/virology , COVID-19/metabolism , COVID-19/genetics , Mutation , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , SARS-CoV-2/genetics , SARS-CoV-2/physiology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/genetics , Virus Internalization , Vero Cells , Chlorocebus aethiops , Animals , Cell Line
7.
Biotechnol Bioeng ; 121(7): 2205-2224, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38654549

ABSTRACT

Protein production in the biopharmaceutical industry necessitates the utilization of multiple analytical techniques and control methodologies to ensure both safety and consistency. To facilitate real-time monitoring and control of cell culture processes, Raman spectroscopy has emerged as a versatile analytical technology. This technique, categorized as a Process Analytical Technology, employs chemometric models to establish correlations between Raman signals and key variables of interest. One notable approach for achieving real-time monitoring is through the application of just-in-time learning (JITL), an industrial soft sensor modeling technique that utilizes Raman signals to estimate process variables promptly. The conventional Raman-based JITL method relies on the K-nearest neighbor (KNN) algorithm with Euclidean distance as the similarity measure. However, it falls short of addressing the impact of data uncertainties. To rectify this limitation, this study endeavors to integrate JITL with a variational autoencoder (VAE). This integration aims to extract dominant Raman features in a nonlinear fashion, which are expressed as multivariate Gaussian distributions. Three experimental runs using different cell lines were chosen to compare the performance of the proposed algorithm with commonly utilized methods in the literature. The findings indicate that the VAE-JITL approach consistently outperforms partial least squares, convolutional neural network, and JITL with KNN similarity measure in accurately predicting key process variables.


Subject(s)
Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Cricetulus , CHO Cells , Animals , Cell Culture Techniques/methods , Machine Learning , Algorithms
8.
Front Immunol ; 15: 1389134, 2024.
Article in English | MEDLINE | ID: mdl-38605972

ABSTRACT

Diabetes mellitus, a prevalent global health challenge, significantly impacts societal and economic well-being. Islet transplantation is increasingly recognized as a viable treatment for type 1 diabetes that aims to restore endogenous insulin production and mitigate complications associated with exogenous insulin dependence. We review the role of mesenchymal stem cells (MSCs) in enhancing the efficacy of islet transplantation. MSCs, characterized by their immunomodulatory properties and differentiation potential, are increasingly seen as valuable in enhancing islet graft survival, reducing immune-mediated rejection, and supporting angiogenesis and tissue repair. The utilization of MSC-derived extracellular vesicles further exemplifies innovative approaches to improve transplantation outcomes. However, challenges such as MSC heterogeneity and the optimization of therapeutic applications persist. Advanced methodologies, including artificial intelligence (AI) and single-cell RNA sequencing (scRNA-seq), are highlighted as potential technologies for addressing these challenges, potentially steering MSC therapy toward more effective, personalized treatment modalities for diabetes. This review revealed that MSCs are important for advancing diabetes treatment strategies, particularly through islet transplantation. This highlights the importance of MSCs in the field of regenerative medicine, acknowledging both their potential and the challenges that must be navigated to fully realize their therapeutic promise.


Subject(s)
Diabetes Mellitus, Experimental , Islets of Langerhans Transplantation , Islets of Langerhans , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Animals , Islets of Langerhans Transplantation/methods , Artificial Intelligence , Diabetes Mellitus, Experimental/therapy , Mesenchymal Stem Cell Transplantation/methods , Insulin
9.
Article in English | MEDLINE | ID: mdl-38641234

ABSTRACT

PURPOSE: The role of stereotactic radiosurgery (SRS) in the management of grade 2 and 3 meningiomas is not well elucidated. Unfortunately, local recurrence rates are high, and guidelines for management of recurrent disease are lacking. To address this knowledge gap, we conducted STORM (Salvage Stereotactic Radiosurgery for Recurrent WHO Grade 2 and 3 Meningiomas), a multicenter retrospective cohort study of patients treated with primary SRS for recurrent grade 2 and 3 meningiomas. METHODS AND MATERIALS: Data on patients with recurrent grade 2 and 3 meningioma treated with SRS at first recurrence were retrospectively collected from 8 academic centers in the United States. Patients with multiple lesions at the time of initial diagnosis or more than 2 lesions at the time of first recurrence were excluded from this analysis. Patient demographics and treatment parameters were extracted at time of diagnosis, first recurrence, and second recurrence. Oncologic outcomes, including progression-free survival (PFS) and overall survival, as well as toxicity outcomes, were reported at the patient level. RESULTS: From 2000 to 2022, 108 patients were identified (94% grade 2, 6.0% grade 3). A total of 106 patients (98%) had upfront surgical resection (60% gross-total resection) with 18% receiving adjuvant radiation therapy (RT). Median time to first progression was 2.5 years (IQR, 1.34-4.30). At first recurrence, patients were treated with single or fractionated SRS to a median marginal dose of 16 Gy to a maximum of 2 lesions (87% received single-fraction SRS). The median follow-up time after SRS was 2.6 years. The 1-, 2-, and 3-year PFS was 90%, 75%, and 57%, respectively, after treatment with SRS. The 1-, 2-, and 3-year overall survival was 97%, 94%, and 92%, respectively. In the multivariable analysis, grade 3 disease (HR, 6.80; 95% CI, 1.61-28.6), male gender (HR, 3.48; 95% CI, 1.47-8.26), and receipt of prior RT (HR, 2.69; 95% CI, 1.23-5.86) were associated with worse PFS. SRS dose and tumor volume were not correlated with progression. Treatment was well tolerated, with a 3.0% incidence of grade 2+ radiation necrosis. CONCLUSIONS: This is the largest multicenter study to evaluate salvage SRS in recurrent grade 2 and 3 meningiomas. In this select cohort of patients with primarily grade 2 meningioma with a potentially more favorable natural history of delayed, localized first recurrence amenable to salvage SRS, local control rates and toxicity profiles were favorable, warranting further prospective validation.

10.
Neuro Oncol ; 26(12 Suppl 2): S66-S75, 2024 03 04.
Article in English | MEDLINE | ID: mdl-38437664

ABSTRACT

The clinical efficacy and relative tolerability of adverse effects of immune checkpoint immunotherapy have led to its increasingly routine use in the management of multiple advanced solid malignancies. Radiation therapy (RT) is well-known to have both local and distant immunomodulatory effects, which has led to extensive investigation into the synergism of these 2 therapies. While the central nervous system (CNS) has historically been thought to be a sanctuary site, well-protected by the blood-brain barrier from the effects of immunotherapy, over the last several years studies have shown the benefits of these drugs, particularly in metastatic disease involving the CNS. This review explores current progress and the future of combination therapy with immune checkpoint inhibitors and RT.


Subject(s)
Radiation Oncology , Humans , Immunotherapy , Central Nervous System , Blood-Brain Barrier , Immunomodulation
11.
Neuro Oncol ; 26(7): 1195-1212, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38459978

ABSTRACT

The American Radium Society (ARS) Central Nervous System (CNS) committee reviewed literature on epidermal growth factor receptor mutated (EGFRm) and ALK-fusion (ALK+) tyrosine kinase inhibitors (TKIs) for the treatment of brain metastases (BrMs) from non-small cell lung cancers (NSCLC) to generate appropriate use guidelines addressing use of TKIs in conjunction with or in lieu of radiotherapy (RT). The panel developed three key questions to guide systematic review: can radiotherapy be deferred in patients receiving EGFR or ALK TKIs at (1) diagnosis or (2) recurrence? Should TKI be administered concurrently with RT (3)? Two literature searches were performed (May 2019 and December 2023). The panel developed 8 model cases and voted on treatment options using a 9-point scale, with 1-3, 4-6 and 7-9 corresponding to usually not appropriate, may be appropriate, and usually appropriate (respectively), per the UCLA/RAND Appropriateness Method. Consensus was achieved in only 4 treatment scenarios, all consistent with existing ARS-AUC guidelines for multiple BrM. The panel did not reach consensus that RT can be appropriately deferred in patients with BrM receiving CNS penetrant ALK or EGFR TKIs, though median scores indicated deferral may be appropriate under most circumstances. Whole brain RT with concurrent TKI generated broad disagreement except in cases with 2-4 BrM, where it was considered usually not appropriate. We identified no definitive studies dictating optimal sequencing of TKIs and RT for EGFRm and ALK+ BrM. Until such studies are completed, the committee hopes these cases guide decision- making in this complex clinical space.


Subject(s)
Anaplastic Lymphoma Kinase , Brain Neoplasms , Carcinoma, Non-Small-Cell Lung , ErbB Receptors , Lung Neoplasms , Mutation , Protein Kinase Inhibitors , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/therapy , Brain Neoplasms/secondary , Brain Neoplasms/genetics , Brain Neoplasms/therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/therapy , ErbB Receptors/genetics , Anaplastic Lymphoma Kinase/genetics , Protein Kinase Inhibitors/therapeutic use , Practice Guidelines as Topic/standards
12.
J Pain Res ; 17: 827-835, 2024.
Article in English | MEDLINE | ID: mdl-38449798

ABSTRACT

Objective: To examine the immediate effects of a comprehensive pain course on medical students' pre-existing perceptions and attitudes toward pain patients and opioid management. Methods: First-year medical students at a major academic medical center enrolled in a required pre-clerkship pain course in June 2020 and completed pre- and post-course online surveys with Likert-scale questions about their attitudes toward pain management and opioid-related issues. Additionally, the surveys included a free-text question where the students listed the first five words that came to mind when hearing the word "opioids". These words were categorized as "professional" or "lay" words and further as having "positive", "negative", or "neutral" connotations. Data analyses included descriptive statistics, as well as non-parametric and parametric tests. Results: Fifty-four of the 119 students responded to pretest and posttest surveys and were included in paired analyses. There was a significant difference between the number of professional words used before (M=1.21, SD=0.97) and after the course (M=2.40 SD=1.33); t(52)=-6.39, P<0.001. Students also used more lay-positive words after the course (M=0.81, SD=0.63) than they used pre-course (M=0.23, SD=0.43); t(51)=-5.98, P<0.001. Students' post-course responses to several key Likert-scale questions showed significant shifts toward more positive attitudes about caring for patients with pain. For example, students acknowledged greater comfort in providing opioids for chronic pain (P<0.001) where appropriate, and enhanced interest in handling complex pain cases (P<0.001). Conclusion: Results showed that a comprehensive, multi-disciplinary pain course could greatly enhance first-year medical students' attitudes toward pain management, chronic pain patients, and the complex issues surrounding opioids.

13.
BMC Neurol ; 24(1): 85, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38433248

ABSTRACT

OBJECTIVE: In patients experiencing acute ischemic stroke, there is ongoing debate surrounding the connection between chronic hyperglycemic status and their initial clinical outcomes. Our objective was to examine the connection between glycated hemoglobin (HbA1c) levels and adverse clinical outcomes at both 3-months adverse clinical outcomes in individuals with acute ischemic stroke (AIS) with and without diabetes. METHODS: The present prospective cohort study involved 896 AIS patients without diabetes and 628 with diabetes treated at a South Korean hospital from January 2010 to December 2016. The target independent variable is HbA1c. The outcome variable is a modified Rankin scale score ≥ 3. A binary logistic regression model was applied to assess the connection between HbA1c levels and 3-month poor clinical outcomes in AIS patients with and without diabetes. Additionally, a generalized additive model and smoothed curve fitting were utilized to explore potential nonlinear associations between HbA1c levels and 3-month adverse clinical outcomes in AIS patients with and without diabetes. RESULTS: The binary logistic regression model could not identify any statistically significant connection between HbA1c and 3-month adverse clinical outcomes in AIS patients, both those with and without diabetes, after correcting for various factors. However, a nonlinear relationship emerged between HbA1c and 3-month adverse clinical outcomes in AIS patients with diabetes. The inflection point for HbA1c was determined to be 6.1%. For HbA1c values ≤ 6.1%, an inverse association was observed between HbA1c and 3-month adverse clinical outcomes in diabetic AIS patients, and each 1% increase in HbA1c in AIS patients with DM was associated with an 87% reduction in 3-month adverse clinical outcomes (OR = 0.13, 95% CI: 0.02-0.81). Conversely, when HbA1c exceeded 6.1%, a positive association between HbA1c and 3-month adverse clinical outcomes became apparent in diabetic AIS patients, and each 1% increase in HbA1c in AIS patients with DM was associated with a 23% increase in 3-month adverse clinical outcomes (OR = 1.23, 95%CI: 1.03-1.47). However, it's important to note that no significant linear or nonlinear relationships were observed between HbA1c levels and 3-month adverse clinical outcomes in AIS patients without diabetes. CONCLUSION: Our findings suggest a nonlinear connection and threshold effect between HbA1c and 3-month adverse clinical outcomes in AIS patients with diabetes. AIS patients with diabetes had a lower risk of 3-month adverse clinical outcomes when their HbA1c control was close to 6.1%. Our findings may aid treatment decision-making and potentially guide interventions to optimize glycemic control in AIS patients.


Subject(s)
Diabetes Mellitus , Ischemic Stroke , Humans , Cohort Studies , Glycated Hemoglobin , Prospective Studies , Diabetes Mellitus/epidemiology , Republic of Korea/epidemiology
14.
Pract Radiat Oncol ; 14(3): 212-215, 2024.
Article in English | MEDLINE | ID: mdl-38211694

ABSTRACT

The cochlear apparatus is one of the major organs at risk when considering radiation therapy (RT) for brain, head, and neck tumors. Radiation oncologists currently consider mean dose constraints of <35 Gy for conventionally fractioned radiation therapy (RT), <4 Gy for single fraction stereotactic radiosurgery, and <17.1 or 25 Gy for 3- or 5-fraction stereotactic radiosurgery, respectively, as the standard of care. Indeed, dose adjustments are made in the setting of concurrent platinum-based chemotherapy or when prioritizing tumor coverage during treatment planning. Despite guidelines, in many patients, RT to the cochlea may still cause sensorineural hearing loss through progressive degeneration and ossification of the inner ear. There are several audiologic and otolaryngologic interventions for incident RT-induced hearing loss, including hearing aids, cochlear implants, or, in the context of vestibular schwannoma due to neurofibromatosis type 2, auditory brain stem implantation. Cochlear implants are the most effective at restoring hearing and improving quality of life for those with an intact cochlear nerve. An early multidisciplinary approach is essential to optimally manage RT-induced hearing loss, and this topic discussion serves as a guide for radiation oncologists on cochlear dosimetric considerations as well as how to address potential RT-induced adverse effects.


Subject(s)
Hearing Loss, Sensorineural , Humans , Hearing Loss, Sensorineural/etiology , Radiation Injuries/etiology , Radiation Injuries/therapy , Radiotherapy/adverse effects , Radiotherapy/methods
16.
Biotechnol Bioeng ; 121(4): 1231-1243, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38284180

ABSTRACT

Advanced process control in the biopharmaceutical industry often lacks real-time measurements due to resource constraints. Raman spectroscopy and Partial Least Squares (PLS) models are often used to monitor bioprocess cultures in real-time. In spite of the ease of training, the accuracy of the PLS model is impacted if it is not used to predict quality attributes for the cell lines it is trained on. To address this issue, a deep convolutional neural network (CNN) is proposed for offline modeling of metabolites using Raman spectroscopy. By utilizing asymmetric least squares smoothing to adjust Raman spectra baselines, a generic training data set is created by amalgamating spectra from various cell lines and operating conditions. This data set, combined with their derivatives, forms a two-dimensional model input. The CNN model is developed and validated for predicting different quality variables against measurements from various continuous and fed-batch experimental runs. Validation results confirm that the deep CNN model is an accurate generic model of the process to predict real-time quality attributes, even in experimental runs not included in the training data. This model is robust and versatile, requiring no recalibration when deployed at different sites to monitor various cell lines and experimental runs.


Subject(s)
Cell Culture Techniques , Spectrum Analysis, Raman , Animals , Cricetinae , Spectrum Analysis, Raman/methods , Neural Networks, Computer , Bioreactors , CHO Cells
18.
Cancer ; 130(4): 588-596, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38018695

ABSTRACT

INTRODUCTION: Suicide rates are elevated after cancer diagnosis. Existential distress caused by awareness of one's impending death is well-described in patients with cancer. The authors hypothesized that suicide risk is associated with cancer prognosis, and the impact of prognosis on suicide risk is greatest for populations with higher baseline suicide risk. METHODS: The authors identified patients (≥16 years old) with newly diagnosed cancers from 2000 to 2019 in the Surveillance, Epidemiology, and End Results database, representing 27% of US cancers. Multiple primary-standardized mortality ratios (SMR) were used to estimate the relative risk of suicide within 6 months of diagnosis compared to the general US population, adjusted for age, sex, race, and year of follow-up. Suicide rates by 20 most common cancer sites were compared with respective 2-year overall survival rates (i.e., prognosis) using a weighted linear regression model. RESULTS: Among 6,754,704 persons diagnosed with cancer, there were 1610 suicide deaths within 6 months of diagnosis, three times higher than the general population (SMR = 3.1; 95% confidence interval, 3.0-3.3). Suicide risk by cancer site was closely associated with overall prognosis (9.5%/percent survival deficit, R2  = 0.88, p < .0001). The association of prognosis with suicide risk became attenuated over time. For men, the risk of suicide increased by 2.8 suicide deaths per 100,000 person-years (p < .0001) versus 0.3 in women (p < .0001). The risk was also higher for persons ≥60 old and for the White (vs. Black) race. CONCLUSIONS: Poorer prognosis was closely associated with suicide risk early after cancer diagnosis and had a greater effect on populations with higher baseline risks of suicide. This model highlights the need for enhanced psychiatric surveillance and continued research in this patient population.


Subject(s)
Neoplasms , Suicide , Humans , Male , Female , Adolescent , Suicide/psychology , Neoplasms/diagnosis , Neoplasms/psychology , Prognosis , Risk , Risk Factors
19.
J Neurooncol ; 166(1): 73-78, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38114801

ABSTRACT

OBJECTIVE: Standard-of-care for 1p19q-intact anaplastic gliomas is defined by the international randomized phase III CATNON trial, which found an overall survival (OS) benefit for adjuvant temozolomide (TMZ) when added to radiotherapy. Paradoxically, TMZ did not appear to benefit patients with IDH-wildtype gliomas, regardless of MGMT promoter status. The authors concluded that well-powered prospective study on the clinical efficacy of TMZ for patients with IDH-wildtype anaplastic gliomas (meeting criteria for glioblastoma) is warranted. Given that the prognostic and predictive role of MGMT status for grade 2-3 gliomas is unresolved, we determined the effect of MGMT status on OS in patients with 1p19q-intact gliomas in the National Cancer Database (NCDB). METHODS: We queried the NCDB from 2018 to 2019 for patients with diffuse (grade 2) and anaplastic (grade 3) IDH-wildtype or -mutant astrocytomas who received chemotherapy with follow-up through 2022. The Kaplan-Meier method and Cox proportional hazards regressions models were used to determine the association of MGMT with OS. RESULTS: We identified 1514 patients who were newly diagnosed with IDH-wildtype (n = 802, 33% methylated) or -mutant astrocytomas (n = 712, 48% methylated) and received chemotherapy during initial management. An unmethylated promoter was associated with poorer survival in patients with IDH-wildtype (3-year OS 34% [95%CI 29-39%] vs. 46% [95%CI 39-54%], p < .001, adjusted HR 1.53 [95%CI 1.24-1.89]) but not IDH-mutant astrocytomas (3-year OS 79% [95%CI 74-84%] vs. 80% [95%CI 75-86%], p =0 .81, HR 1.04 [95%CI 0.73-1.50]). CONCLUSIONS: This ancillary analysis supports conclusions from the CATNON trial for adjuvant TMZ as standard-of-care for anaplastic astrocytomas (IDH-mutant and 1p19q-intact), irrespective of MGMT status. Determining the optimal strategy for diffuse gliomas that are IDH-wildtype will be particularly important. MGMT promoter methylation should be considered as a stratification factor in future clinical trials for these patients.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Humans , Brain Neoplasms/therapy , Brain Neoplasms/drug therapy , Prospective Studies , Tumor Suppressor Proteins/genetics , Glioma/therapy , Glioma/drug therapy , Glioblastoma/drug therapy , Temozolomide/therapeutic use , Methylation , DNA Methylation , DNA Repair Enzymes/genetics , DNA Modification Methylases/genetics , Isocitrate Dehydrogenase/genetics
20.
Vaccine ; 42(3): 608-619, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38142216

ABSTRACT

In this study, we evaluated the immunogenicity and protective immunity of in vitro transcribed Venezuelan equine encephalitis virus (VEEV TC-83 strain) self-amplifying RNA (saRNA) encoding the SARS-CoV-2 spike (S) protein in wild type (S-WT) and stabilized pre-fusion conformations (S-PP). Immunization with S-WT and S-PP saRNA induced specific neutralizing antibody responses in both K18-Tg hACE2 (K18) and BALB/c mice, as assessed using SARS-CoV-2 pseudotyped viruses. Protective immunity was assessed in challenge experiments. Two immunizations with S-WT and S-PP induced protective immunity, evidenced by lower mortality, lower weight loss and more than one log10 lower subgenomic virus RNA titers in the upper and lower respiratory tracts in both K18 and BALB/c mice. Histopathologic examination of lungs post-challenge showed that immunization with S-WT and S-PP resulted in a higher degree of immune cell infiltration and inflammatory changes, compared with control mice, characterized by high levels of T- and B-cell infiltration. No substantial differences were found in the presence and localization of eosinophils, macrophages, neutrophils, and natural killer cells. CD4 and CD8 T-cell depletion post immunization resulted in reduced lung inflammation post challenge but also prolonged virus clearance. These data indicate that immunization with saRNA encoding the SARS-CoV-2 S protein induces immune responses that are protective following challenge, that virus clearance is associated with pulmonary changes caused by T-cell and B-cell infiltration in the lungs, but that this T and B-cell infiltration plays an important role in viral clearance.


Subject(s)
COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Viral Vaccines , gamma-Globulins , Animals , Humans , Mice , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Immunization , Spike Glycoprotein, Coronavirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL