Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 182
Filter
1.
J Agric Food Chem ; 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39356738

ABSTRACT

Wampee (Clausena lansium) is an economically significant subtropical fruit tree widely cultivated in Southern China. To provide high-quality genomic resources for C. lansium, we report a chromosome-level genome sequence for the "JinFeng" cultivar. The 297.1 Mb C. lansium genome contained nine chromosomes with a scaffold N50 of 29.2 Mb and encoded 23,468 protein-coding genes. Selective sweep analysis between sweet and sour C. lansium varieties and genome-wide association analysis identified 14 candidate genes putatively involved in sugar and acid accumulation. ClERF061, encoding an ethylene response factor, and ClSWEET7, encoding a Sugars Will Eventually be Exported Transporters (SWEET) family protein, were proposed as key regulators of the sweet and sour tastes of the wampee fruit. ClERF061 and ClSWEET7 overexpression in tomatoes increased the total sugar and acid content in fruits. ClSWEET7 promoter activation by ClERF061 was confirmed via Nicotiana benthamiana transient expression. Our study provides valuable genomic resources for C. lansium genetics and breeding.

2.
Nat Commun ; 15(1): 8421, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39341811

ABSTRACT

RNA-binding proteins (RBPs) modulate all aspects of RNA metabolism, but a comprehensive picture of RBP expression across tissues is lacking. Here, we describe our development of the method we call HARD-AP that robustly retrieves RBPs and tightly associated RNA regulatory complexes from cultured cells and fresh tissues. We successfully use HARD-AP to establish a comprehensive atlas of RBPs across mouse primary organs. We then systematically map RNA-binding sites of these RBPs using machine learning-based modeling. Notably, the modeling reveals that the LIM domain as an RNA-binding domain in many RBPs. We validate the LIM-domain-only protein Csrp1 as a tissue-dependent RNA binding protein. Taken together, HARD-AP is a powerful approach that can be used to identify RBPomes from any type of sample, allowing comprehensive and physiologically relevant networks of RNA-protein interactions.


Subject(s)
Machine Learning , RNA-Binding Proteins , Animals , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Mice , Binding Sites , RNA/metabolism , RNA/genetics , Protein Binding , Humans
3.
Neural Netw ; 180: 106670, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39299035

ABSTRACT

Radiologists must utilize medical images of multiple modalities for tumor segmentation and diagnosis due to the limitations of medical imaging technology and the diversity of tumor signals. This has led to the development of multimodal learning in medical image segmentation. However, the redundancy among modalities creates challenges for existing subtraction-based joint learning methods, such as misjudging the importance of modalities, ignoring specific modal information, and increasing cognitive load. These thorny issues ultimately decrease segmentation accuracy and increase the risk of overfitting. This paper presents the complementary information mutual learning (CIML) framework, which can mathematically model and address the negative impact of inter-modal redundant information. CIML adopts the idea of addition and removes inter-modal redundant information through inductive bias-driven task decomposition and message passing-based redundancy filtering. CIML first decomposes the multimodal segmentation task into multiple subtasks based on expert prior knowledge, minimizing the information dependence between modalities. Furthermore, CIML introduces a scheme in which each modality can extract information from other modalities additively through message passing. To achieve non-redundancy of extracted information, the redundant filtering is transformed into complementary information learning inspired by the variational information bottleneck. The complementary information learning procedure can be efficiently solved by variational inference and cross-modal spatial attention. Numerical results from the verification task and standard benchmarks indicate that CIML efficiently removes redundant information between modalities, outperforming SOTA methods regarding validation accuracy and segmentation effect. To emphasize, message-passing-based redundancy filtering allows neural network visualization techniques to visualize the knowledge relationship among different modalities, which reflects interpretability.

4.
Sci Data ; 11(1): 925, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39191793

ABSTRACT

Fusarium oxysporum is an asexual filamentous fungus that causes vascular wilt in hundreds of crop plants and poses a threat to public health through Fusariosis. F. oxysporum f. sp. conglutinans strain Fo5176, originally isolated from Brassica oleracea, is pathogenic to Arabidopsis, making it a model pathosystem for dissecting the molecular mechanisms underlying host-pathogen interactions. Assembling the F. oxysporum genome is notoriously challenging due to the presence of repeat-rich accessory chromosomes. Here, we report a gap-free genome assembly of Fo5176 using PacBio HiFi and Hi-C data. The 69.56 Mb assembly contained 18 complete chromosomes, including all centromeres and most telomeres (20/36), representing the first gap-free genome sequence of a pathogenic F. oxysporum strain. In total, 21,460 protein-coding genes were annotated, a 26.3% increase compared to the most recent assembly. This high-quality reference genome for F. oxysporum f. sp. conglutinans Fo5176 provides a valuable resource for further research into fungal pathobiology and evolution.


Subject(s)
Fusarium , Genome, Fungal , Plant Diseases , Fusarium/genetics , Plant Diseases/microbiology
5.
Methods Mol Biol ; 2841: 165-170, 2024.
Article in English | MEDLINE | ID: mdl-39115775

ABSTRACT

Vesicle trafficking is an essential cellular process conserved in eukaryotes to precisely transport proteins to their destinations. The plant endomembrane system plays a pivotal role in orchestrating this vesicle-mediated protein transport process, making its study essential for a comprehensive understanding of plant growth and development. Pharmaceutical analysis proves highly useful in investigating the plant endomembrane system. To facilitate further studies in this area, we present a summary of several commonly used chemical inhibitors in this chapter, providing a practical resource for researchers interested in the plant endomembrane system.


Subject(s)
Protein Transport , Plants/metabolism , Intracellular Membranes/metabolism , Intracellular Membranes/drug effects , Plant Proteins/metabolism , Cell Membrane/metabolism
8.
Nat Commun ; 15(1): 4295, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769327

ABSTRACT

Chili pepper (Capsicum) is known for its unique fruit pungency due to the presence of capsaicinoids. The evolutionary history of capsaicinoid biosynthesis and the mechanism of their tissue specificity remain obscure due to the lack of high-quality Capsicum genomes. Here, we report two telomere-to-telomere (T2T) gap-free genomes of C. annuum and its wild nonpungent relative C. rhomboideum to investigate the evolution of fruit pungency in chili peppers. We precisely delineate Capsicum centromeres, which lack high-copy tandem repeats but are extensively invaded by CRM retrotransposons. Through phylogenomic analyses, we estimate the evolutionary timing of capsaicinoid biosynthesis. We reveal disrupted coding and regulatory regions of key biosynthesis genes in nonpungent species. We also find conserved placenta-specific accessible chromatin regions, which likely allow for tissue-specific biosynthetic gene coregulation and capsaicinoid accumulation. These T2T genomic resources will accelerate chili pepper genetic improvement and help to understand Capsicum genome evolution.


Subject(s)
Capsaicin , Capsicum , Evolution, Molecular , Genome, Plant , Phylogeny , Telomere , Capsicum/genetics , Capsicum/metabolism , Capsaicin/metabolism , Telomere/genetics , Telomere/metabolism , Fruit/genetics , Fruit/metabolism , Retroelements/genetics , Gene Expression Regulation, Plant
9.
Sci Data ; 11(1): 55, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38195564

ABSTRACT

Chinese motherwort (Leonurus japonicus), a member of Lamiaceae family, is a commonly used medicinal herb for treating obstetrical and gynecological diseases, producing over 280 officinal natural products. Due to limited genomic resources, little progress has been made in deciphering the biosynthetic pathway of valuable natural products in L. japonicus. Here, we de novo assembled the L. japonicus genome using high-coverage ONT long reads and Hi-C reads. The chromosome-level genome assembly contained ten chromosomes representing 99.29% of 489.34 Mb genomic sequence with a contig and scaffold N50 of 7.27 Mb and 50.86 Mb, respectively. Genome validations revealed BUSCO and LAI score of 99.2% and 21.99, respectively, suggesting high quality of genome assembly. Using transcriptomic data from various tissues, 22,531 protein-coding genes were annotated. Phylogenomic analysis of 13 angiosperm plants suggested L. japonicus had 58 expanded gene families functionally enriched in specialized metabolism such as diterpenoid biosynthesis. The genome assembly, annotation, and sequencing data provide resources for the elucidation of biosynthetic pathways behind natural products of pharmaceutical applications in L. japonicus.


Subject(s)
Genome, Plant , Leonurus , Biological Products , China , Gene Expression Profiling , Genomics , Leonurus/genetics
10.
New Phytol ; 241(6): 2606-2620, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38291701

ABSTRACT

The advent of full-length transcriptome sequencing technologies has accelerated the discovery of novel splicing isoforms. However, existing alternative splicing (AS) tools are either tailored for short-read RNA-Seq data or designed for human and animal studies. The disparities in AS patterns between plants and animals still pose a challenge to the reliable identification and functional exploration of novel isoforms in plants. Here, we developed integrated full-length alternative splicing analysis (iFLAS), a plant-optimized AS toolkit that introduced a semi-supervised machine learning method known as positive-unlabeled (PU) learning to accurately identify novel isoforms. iFLAS also enables the investigation of AS functions from various perspectives, such as differential AS, poly(A) tail length, and allele-specific AS (ASAS) analyses. By applying iFLAS to three full-length transcriptome sequencing datasets, we systematically identified and functionally characterized maize (Zea mays) AS patterns. We found intron retention not only introduces premature termination codons, resulting in lower expression levels of isoforms, but may also regulate the length of 3'UTR and poly(A) tail, thereby affecting the functional differentiation of isoforms. Moreover, we observed distinct ASAS patterns in two genes within heterosis offspring, highlighting their potential value in breeding. These results underscore the broad applicability of iFLAS in plant full-length transcriptome-based AS research.


Subject(s)
Alternative Splicing , Transcriptome , Humans , Alternative Splicing/genetics , Transcriptome/genetics , Zea mays/genetics , Gene Expression Profiling/methods , Plant Breeding , Protein Isoforms/genetics , RNA, Messenger/genetics , Sequence Analysis, RNA
11.
Cell Host Microbe ; 32(1): 131-144.e6, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38091982

ABSTRACT

Timely liver function recovery (LFR) is crucial for postoperative hepatocellular carcinoma (HCC) patients. Here, we established the significance of LFR on patient long-term survival through retrospective and prospective cohorts and identified a key gut microbe, Bifidobacterium longum, depleted in patients with delayed recovery. Fecal microbiota transfer from HCC patients with delayed recovery to mice similarly impacted recovery time post hepatectomy. However, oral gavage of B. longum improved liver function and repair in these mice. In a clinical trial of HCC patients, orally administering a probiotic bacteria cocktail containing B. longum reduced the rates of delayed recovery, shortened hospital stays, and improved overall 1-year survival. These benefits, attributed to diminished liver inflammation, reduced liver fibrosis, and hepatocyte proliferation, were associated with changes in key metabolic pathways, including 5-hydroxytryptamine, secondary bile acids, and short-chain fatty acids. Our findings propose that gut microbiota modulation can enhance LFR, thereby improving postoperative outcomes for HCC patients.


Subject(s)
Bifidobacterium longum , Carcinoma, Hepatocellular , Liver Neoplasms , Probiotics , Humans , Mice , Animals , Carcinoma, Hepatocellular/surgery , Prospective Studies , Recovery of Function , Retrospective Studies , Liver Neoplasms/surgery
12.
Life Sci Alliance ; 7(1)2024 01.
Article in English | MEDLINE | ID: mdl-37914396

ABSTRACT

Circadian rhythms are essential physiological feature for most living organisms. Previous studies have shown that epigenetic regulation plays a crucial role. There is a knowledge gap in the chromatin state of some key clock neuron clusters. In this study, we show that circadian rhythm is affected by the epigenetic regulator Polycomb (Pc) within the Drosophila clock neurons. To investigate the molecular mechanisms underlying the roles of Pc in these clock neuron clusters, we use targeted DamID (TaDa) to identify genes significantly bound by Pc in the neurons marked by C929-Gal4 (including l-LNvs cluster), R6-Gal4 (including s-LNvs cluster), R18H11-Gal4 (including DN1 cluster), and DVpdf-Gal4, pdf-Gal80 (including LNds cluster). It shows that Pc binds to the genes involved in the circadian rhythm pathways, arguing a direct role for Pc in regulating circadian rhythms through specific clock genes. This study shows the identification of Pc targets in the clock neuron clusters, providing potential resource for understanding the regulatory mechanisms of circadian rhythms by the PcG complex. Thus, this study provided an example for epigenetic regulation of adult behavior.


Subject(s)
Drosophila Proteins , Neuropeptides , Animals , Drosophila/metabolism , Epigenesis, Genetic , Neuropeptides/metabolism , Drosophila Proteins/metabolism , Circadian Rhythm/genetics , Neurons/metabolism , Polycomb-Group Proteins/genetics , Polycomb-Group Proteins/metabolism
13.
Mar Pollut Bull ; 198: 115864, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38096691

ABSTRACT

The muscle tissues of 19 fish species, two crab species, and one shrimp species collected from the Gulf of Thailand (GoT) were analyzed to determine the levels of heavy metals, including Cu, Zn, Fe, Mn, Ni, Pb, Cd, and Hg. The results revealed that the mean concentrations of the heavy metals, in descending order, were Zn > Cu > Fe > Cd > Hg > Mn > Pb > Ni. Among the examined metals, zinc was found to be the most prevalent in fish tissues. Based on the risk assessment indices, the estimated average daily doses (ADD) of the heavy metals were found to be below the provisional tolerable daily intake (PTDI) recommended by the joint Committee of the Food and Agriculture Organization (FAO) and the World Health Organization (WHO) on food contaminants. The results of the target cancer risk analysis revealed no related cancer risk from the consumption of the fishes considered for the study. However, the target hazard quotient (THQ) values exceeded the threshold of 1 (THQ > 1) specifically for mercury in Gymnothorax spp. and Terapon spp. Furthermore, the calculated hazard index (HI) values for fish muscles were all below 1, indicating that there is no significant health risk for humans at the current consumption rates, except in Terapon species for both normal and habitual consumers. Notably, habitual consumers of Gymnothorax species showed the highest HI value (>1), suggesting potential long-term effects on human health when consuming larger quantities of these fishes.


Subject(s)
Mercury , Metals, Heavy , Neoplasms , Water Pollutants, Chemical , Animals , Humans , Cadmium/analysis , Fisheries , Bioaccumulation , Lead/analysis , Thailand , Food Contamination/analysis , Metals, Heavy/analysis , Mercury/analysis , Fishes , Risk Assessment , Environmental Monitoring , Water Pollutants, Chemical/analysis
14.
Opt Express ; 31(23): 38540-38549, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-38017957

ABSTRACT

Compared to other parts of the electromagnetic spectrum, the terahertz frequency range lacks efficient polarization manipulation techniques, which is impeding the proliferation of terahertz technology. In this work, we demonstrate a tunable and broadband linear-to-circular polarization converter based on an InSb plate containing a free-carrier magnetoplasma. In a wide spectral region (∼ 0.45 THz), the magnetoplasma selectively absorbs one circularly polarized mode due to electron cyclotron resonance and also reflects it at the edges of the absorption band. Both effects are nonreciprocal and contribute to form a near-zero transmission band with a high isolation of -36 dB, resulting in the output of a near-perfect circularly polarized terahertz wave for an incident linearly polarized beam. The near-zero transmission band is tunable with magnetic field to cover a wide frequency range from 0.3 to 4.8 THz.

16.
New Phytol ; 240(6): 2468-2483, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37823217

ABSTRACT

Meloidogyne enterolobii is an emerging root-knot nematode species that overcomes most of the nematode resistance genes in crops. Nematode effector proteins secreted in planta are key elements in the molecular dialogue of parasitism. Here, we show the MeMSP1 effector is secreted into giant cells and promotes M. enterolobii parasitism. Using co-immunoprecipitation and bimolecular fluorescent complementation assays, we identified glutathione-S-transferase phi GSTFs as host targets of the MeMSP1 effector. This protein family plays important roles in plant responses to abiotic and biotic stresses. We demonstrate that MeMSP1 interacts with all Arabidopsis GSTF. Moreover, we confirmed that the N-terminal region of AtGSTF9 is critical for its interaction, and atgstf9 mutant lines are more susceptible to root-knot nematode infection. Combined transcriptome and metabolome analyses showed that MeMSP1 affects the metabolic pathways of Arabidopsis thaliana, resulting in the accumulation of amino acids, nucleic acids, and their metabolites, and organic acids and the downregulation of flavonoids. Our study has shed light on a novel effector mechanism that targets plant metabolism, reducing the production of plant defence-related compounds while favouring the accumulation of metabolites beneficial to the nematode, and thereby promoting parasitism.


Subject(s)
Arabidopsis , Tylenchoidea , Animals , Arabidopsis/genetics , Host-Parasite Interactions , Tylenchoidea/physiology , Glutathione Transferase/metabolism , Glutathione/metabolism , Plant Diseases/genetics
17.
Front Plant Sci ; 14: 1207139, 2023.
Article in English | MEDLINE | ID: mdl-37600179

ABSTRACT

Genotype-to-phenotype (G2P) prediction has become a mainstream paradigm to facilitate genomic selection (GS)-assisted breeding in the seed industry. Many methods have been introduced for building GS models, but their prediction precision may vary depending on species and specific traits. Therefore, evaluation of multiple models and selection of the appropriate one is crucial to effective GS analysis. Here, we present the G2P container developed for the Singularity platform, which not only contains a library of 16 state-of-the-art GS models and 13 evaluation metrics. G2P works as an integrative environment offering comprehensive, unbiased evaluation analyses of the 16 GS models, which may be run in parallel on high-performance computing clusters. Based on the evaluation outcome, G2P performs auto-ensemble algorithms that not only can automatically select the most precise models but also can integrate prediction results from multiple models. This functionality should further improve the precision of G2P prediction. Another noteworthy function is the refinement design of the training set, in which G2P optimizes the training set based on the genetic diversity analysis of a studied population. Although the training samples in the optimized set are fewer than in the original set, the prediction precision is almost equivalent to that obtained when using the whole set. This functionality is quite useful in practice, as it reduces the cost of phenotyping when constructing training population. The G2P container and source codes are freely accessible at https://g2p-env.github.io/.

18.
New Phytol ; 240(1): 41-60, 2023 10.
Article in English | MEDLINE | ID: mdl-37507353

ABSTRACT

The endomembrane system consists of various membrane-bound organelles including the endoplasmic reticulum (ER), Golgi apparatus, trans-Golgi network (TGN), endosomes, and the lysosome/vacuole. Membrane trafficking between distinct compartments is mainly achieved by vesicular transport. As the endomembrane compartments and the machineries regulating the membrane trafficking are largely conserved across all eukaryotes, our current knowledge on organelle biogenesis and endomembrane trafficking in plants has mainly been shaped by corresponding studies in mammals and yeast. However, unique perspectives have emerged from plant cell biology research through the characterization of plant-specific regulators as well as the development and application of the state-of-the-art microscopical techniques. In this review, we summarize our current knowledge on the plant endomembrane system, with a focus on several distinct pathways: ER-to-Golgi transport, protein sorting at the TGN, endosomal sorting on multivesicular bodies, vacuolar trafficking/vacuole biogenesis, and the autophagy pathway. We also give an update on advanced imaging techniques for the plant cell biology research.


Subject(s)
Endosomes , Plants , Plants/metabolism , Endosomes/metabolism , Vacuoles/metabolism , Multivesicular Bodies/metabolism , Protein Transport , Golgi Apparatus/metabolism , trans-Golgi Network/metabolism
19.
World J Clin Cases ; 11(18): 4368-4376, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37449220

ABSTRACT

BACKGROUND: It is difficult and risky for patients with a single lung to undergo thoracoscopic segmental pneumonectomy, and previous reports of related cases are rare. We introduce anesthesia for Extracorporeal membrane oxygenation (ECMO)-assisted thoracoscopic lower lobe subsegmental resection in a patient with a single left lung. CASE SUMMARY: The patient underwent comprehensive treatment for synovial sarcoma of the right lung and nodules in the lower lobe of the left lung. Examination showed pulmonary function that had severe restrictive ventilation disorder, forced expiratory volume in 1 second of 0.72 L (27.8%), forced vital capacity of 1.0 L (33%), and maximal voluntary ventilation of 33.9 L (35.5%). Lung computed tomography showed a nodular shadow in the lower lobe of the left lung, and lung metastasis was considered. After multidisciplinary consultation and adequate preoperative preparation, thoracoscopic left lower lung lobe S9bii+S10bii combined subsegmental resection was performed with the assistance of total intravenous anesthesia and ECMO intraoperative pulmonary protective ventilation. The patient received postoperative ICU supportive care. After surgical treatment, the patient was successfully withdrawn from ECMO on postoperative Day 1. The tracheal tube was removed on postoperative Day 4, and she was discharged from the hospital on postoperative Day 15. CONCLUSION: The multi-disciplinary treatment provided maximum medical optimization for surgical anesthesia and veno-venous ECMO which provided adequate protection for the patient's perioperative treatment.

SELECTION OF CITATIONS
SEARCH DETAIL