Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 309
Filter
1.
Sci Rep ; 14(1): 14336, 2024 06 21.
Article in English | MEDLINE | ID: mdl-38906938

ABSTRACT

Fungal diseases, such as powdery mildew and rusts, significantly affect the quality and yield of wheat. Pyramiding diverse types of resistance genes into cultivars represents the preferred strategy to combat these diseases. Moreover, achieving collaborative improvement between diseases resistance, abiotic stress, quality, and agronomic and yield traits is difficult in genetic breeding. In this study, the wheat cultivar, Guinong 29 (GN29), showed high resistance to powdery mildew and stripe rust at both seedling and adult plant stages, and was susceptible to leaf rust at the seedling stage but slow resistance at the adult-plant stage. Meanwhile, it has elite agronomic and yield traits, indicating promising coordination ability among multiple diseases resistance and other key breeding traits. To determine the genetic basis of these elite traits, GN29 was tested with 113 molecular markers for 98 genes associated with diseases resistance, stress tolerance, quality, and adaptability. The results indicated that two powdery mildew resistance (Pm) genes, Pm2 and Pm21, confirmed the outstanding resistance to powdery mildew through genetic analysis, marker detection, genomic in situ hybridization (GISH), non-denaturing fluorescence in situ hybridization (ND-FISH), and homology-based cloning; the stripe rust resistance (Yr) gene Yr26 and leaf rust resistance (Lr) genes Lr1 and Lr46 conferred the stripe rust and slow leaf rust resistance in GN29, respectively. Meanwhile, GN29 carries dwarfing genes Rht-B1b and Rht-D1a, vernalization genes vrn-A1, vrn-B1, vrn-D1, and vrn-B3, which were consistent with the phenotypic traits in dwarf characteristic and semi-winter property; carries genes Dreb1 and Ta-CRT for stress tolerance to drought, salinity, low temperature, and abscisic acid (ABA), suggesting that GN29 may also have elite stress-tolerance ability; and carries two low-molecular-weight glutenin subunit genes Glu-B3b and Glu-B3bef which contributed to high baking quality. This study not only elucidated the genetic basis of the elite traits in GN29 but also verified the capability for harmonious improvement in both multiple diseases resistance and other comprehensive traits, offering valuable information for breeding breakthrough-resistant cultivars.


Subject(s)
Ascomycota , Disease Resistance , Plant Diseases , Triticum , Triticum/genetics , Triticum/microbiology , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Ascomycota/pathogenicity , Ascomycota/physiology , Plant Breeding/methods , Phenotype , Basidiomycota/physiology , Basidiomycota/pathogenicity , Genes, Plant , Chromosome Mapping
2.
Anal Methods ; 16(25): 4060-4065, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38873980

ABSTRACT

Methyl parathion, a highly toxic, efficient, and persistent organophosphorus pesticide, is widely used in China. Sibutramine, a non-amphetamine central nervous system depressant, helps lose weight by disrupting hormone regulation, stimulating sympathetic nerves, and suppressing appetite. However, some unethical businesses fail to properly handle raw materials in foods like apple cider vinegar, leading to residual methyl parathion in apples or illegal excessive addition of sibutramine. Therefore, it is imperative to develop an immunoassay for the rapid detection of methyl parathion and sibutramine. The corresponding two haptens were prepared and coupled with the carrier proteins according to methyl parathion-sulfur-bovine serum protein (BSA)/chicken ovalbumin (OVA)-sibutramine (20 : 1 : excess, 15 : 1 : excess, 10 : 1 : excess, and 5 : 1 : excess), and sibutramine-BSA/OVA-methyl parathion (20 : 1 : excess, 10 : 1 : excess: 5 : 1 : excess, and 0 : 1 : excess). The result shows that the inhibition rate of the antibody obtained by methyl parathion-BSA/OVA-sibutramine (20 : 1 : excess) was higher than that of sibutramine-BSA/OVA-methyl parathion, which was 67.93%, and the concentration of methyl parathion was 8.65 ng mL-1 at this inhibition rate. Thus, methyl parathion-BSA/OVA-sibutramine (8.65 : 1 : excess) and the corresponding antibodies were selected for subsequent method establishment. By changing the concentration of the coating and antibody, the inhibition rate was found when the coating was 0.125 ng mL-1 and the antibody was diluted 4000 times. The antibody was used to develop a standard curve for the detection of sibutramine at the half-maximum inhibitory concentration (IC50) is 4.59 ng mL-1, the limit of detection (IC10) is 2.21 ng mL-1, the detection range is 2.89 to 7.28 ng mL-1, methyl p-phosphorus at the half-maximum inhibitory concentration (IC50) is 15.34 ng mL-1, the limit of detection (IC10) is 0.42 ng mL-1, the detection range is ng mL-1. Under these conditions, the recovery rate was between 88% and 102%, within reasonable limits, indicating the successful establishment of a rapid enzyme-linked ELISA assay.


Subject(s)
Cyclobutanes , Enzyme-Linked Immunosorbent Assay , Malus , Methyl Parathion , Cyclobutanes/chemistry , Enzyme-Linked Immunosorbent Assay/methods , Malus/chemistry , Methyl Parathion/analysis , Acetic Acid/chemistry , Appetite Depressants/analysis , Appetite Depressants/chemistry , Food Contamination/analysis , Animals , Limit of Detection
3.
Eur J Pharmacol ; 977: 176697, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38823760

ABSTRACT

Gastric cancer (GC) remains a global challenge due to the lack of early detection and precision therapies. Genkwadaphnin (DD1), a natural diterpene isolated from the bud of Flos GenkWa (Thymelaeaceae), serves as a Karyopherin ß1 (KPNB1) inhibitor. In this study, we investigated the anti-tumor effect of DD1 in both cell culture and animal models. Our findings reveal that KPNB1, a protein involved in nuclear import, was highly expressed in GC tissues and associated with a poor prognosis in patients. We demonstrated that DD1, alongside the established KPNB1 inhibitor importazole (IPZ), inhibited GC cell proliferation and tumor growth by enhancing both genomic and non-genomic activity of Nur77. DD1 and IPZ reduced the interaction between KPNB1 and Nur77, resulting in Nur77 cytoplasmic accumulation and triggering mitochondrial apoptosis. The inhibitors also increased the expression of the Nur77 target apoptotic genes ATF3, RB1CC1 and PMAIP1, inducing apoptosis in GC cell. More importantly, loss of Nur77 effectively rescued the inhibitory effect of DD1 and IPZ on GC cells in both in vitro and in vivo experiments. In this study, we for the first time explored the relationship between KPNB1 and Nur77, and found KPNB1 inhibition could significantly increase the expression of Nur77. Moreover, we investigated the function of KPNB1 in GC for the first time, and the results suggested that KPNB1 could be a potential target for cancer therapy, and DD1 might be a prospective therapeutic candidate.


Subject(s)
Apoptosis , Cell Proliferation , Diterpenes , Nuclear Receptor Subfamily 4, Group A, Member 1 , Signal Transduction , Stomach Neoplasms , beta Karyopherins , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Humans , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Animals , Diterpenes/pharmacology , Diterpenes/therapeutic use , Signal Transduction/drug effects , Cell Proliferation/drug effects , Cell Line, Tumor , Apoptosis/drug effects , Mice , beta Karyopherins/metabolism , beta Karyopherins/genetics , Disease Progression , Male , Mice, Nude , Xenograft Model Antitumor Assays , Gene Expression Regulation, Neoplastic/drug effects , Female , Mice, Inbred BALB C
4.
Toxicon ; 244: 107771, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38795849

ABSTRACT

In recent years, the nephrotoxicity and carcinogenicity of aristolochic acid have attracted worldwide attention, and the traditional Chinese medicine containing this ingredient has been banned in many places, affecting the TCM industry. To meet this challenge, researchers have developed various detection methods, such as high-performance liquid chromatography, gas chromatography-mass spectrometry and thin-layer chromatography. A rapid detection method must therefore be developed to ensure safety. A polyclonal antibody capable of recognizing aristolochic acid was prepared, and an indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) was established to detect the amount of aristolochic acid in the sample to be measured. Methods Using 1-(4-chlorophenyl) cyclobutylamine as a hapten, immunogens and coating antigens were obtained by coupling with bovine serum albumin (BSA) and chicken ovalbumin (OVA) using the active ester method. UV scanning confirmed the successful coupling of the conjugate, and New Zealand white rabbits were immunized. The obtained antibody serum was screened for the best antibody by ic-ELISA detection. Use the chessboard method to determine three optimal combinations of original coating concentration and antibody dilution ratio, establish a standard curve for each combination to obtain the best combination, and establish a rapid detection method. Finally, the standard aristolochic acid A was added to the purchased apple vinegar and canned coffee for recycling experiments to verify the detection method.By changing the antigen antibody concentration, the antibody showed the highest sensitivity to aristolochic acid standard at the original coating, 1000-fold dilution, IC50 of 24.88 ng/mL, limit of detection IC10 of 3.19 ng/mL, and detection range IC20-IC80 of 6.81-90.91 ng/mL. The recovery experiments under this conditions yielded a recovery rate of 92%-105%, within reasonable limits, indicating the success of the ELISA rapid detection method. Conclusion The enzyme-linked immunoassay method established in this paper can quickly detect the content of aristolochic acid in the sample to be tested, and the antibody prepared by this method has good broad-spectrum and can detect other aristolochic acid, such as aristolochic acid A, aristolochic acid B, aristolochic acid C, and aristolochic acid D.


Subject(s)
Aristolochic Acids , Enzyme-Linked Immunosorbent Assay , Aristolochic Acids/analysis , Enzyme-Linked Immunosorbent Assay/methods , Animals , Rabbits , Antibodies , Haptens
5.
Nat Commun ; 15(1): 3930, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729939

ABSTRACT

Hydrogen-bonded organic frameworks (HOFs) are versatile materials with potential applications in proton conduction. Traditional approaches involve incorporating humidity control to address grain boundary challenges for proton conduction. This study finds vitrification as an alternative strategy to eliminate grain boundary effect in HOFs by rapidly melt quenching the kinetically stable HOF-SXU-8 to glassy state HOF-g. Notably, a remarkable enhancement in proton conductivity without humidity was achieved after vitrification, from 1.31 × 10-7 S cm-1 to 5.62× 10-2 S cm-1 at 100 °C. Long term stability test showed negligible performance degradation, and even at 30 °C, the proton conductivity remained at high level of 1.2 × 10-2 S cm-1. Molecule dynamics (MD) simulations and X-ray total scattering experiments reveal the HOF-g system is consisted of three kinds of clusters, i.e., 1,5-Naphthalenedisulfonic acid (1,5-NSA) anion clusters, N,N-dimethylformamide (DMF) molecule clusters, and H+-H2O clusters. In which, the H+ plays an important role to bridge these clusters and the high conductivity is mainly related to the H+ on H3O+. These findings provide valuable insights for optimizing HOFs, enabling efficient proton conduction, and advancing energy conversion and storage devices.

6.
Proc Natl Acad Sci U S A ; 121(18): e2310283121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38669183

ABSTRACT

Congenital scoliosis (CS), affecting approximately 0.5 to 1 in 1,000 live births, is commonly caused by congenital vertebral malformations (CVMs) arising from aberrant somitogenesis or somite differentiation. While Wnt/ß-catenin signaling has been implicated in somite development, the function of Wnt/planar cell polarity (Wnt/PCP) signaling in this process remains unclear. Here, we investigated the role of Vangl1 and Vangl2 in vertebral development and found that their deletion causes vertebral anomalies resembling human CVMs. Analysis of exome sequencing data from multiethnic CS patients revealed a number of rare and deleterious variants in VANGL1 and VANGL2, many of which exhibited loss-of-function and dominant-negative effects. Zebrafish models confirmed the pathogenicity of these variants. Furthermore, we found that Vangl1 knock-in (p.R258H) mice exhibited vertebral malformations in a Vangl gene dose- and environment-dependent manner. Our findings highlight critical roles for PCP signaling in vertebral development and predisposition to CVMs in CS patients, providing insights into the molecular mechanisms underlying this disorder.


Subject(s)
Carrier Proteins , Cell Polarity , Membrane Proteins , Spine , Zebrafish , Animals , Zebrafish/genetics , Zebrafish/embryology , Humans , Mice , Cell Polarity/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Spine/abnormalities , Spine/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Scoliosis/genetics , Scoliosis/congenital , Scoliosis/metabolism , Wnt Signaling Pathway/genetics , Genetic Predisposition to Disease , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Female
7.
Sci Rep ; 14(1): 8581, 2024 04 13.
Article in English | MEDLINE | ID: mdl-38615036

ABSTRACT

Parkinson's disease (PD) is the second most frequently diagnosed neurodegenerative disease, and it is characterized by the intracellular and extracellular accumulation of α-synuclein (α-syn) and Tau, which are major components of cytosolic protein inclusions called Lewy bodies, in the brain. Currently, there is a lack of effective methods that preventing PD progression. It has been suggested that the plasminogen activation system, which is a major extracellular proteolysis system, is involved in PD pathogenesis. We investigated the functional roles of plasminogen in vitro in an okadaic acid-induced Tau hyperphosphorylation NSC34 cell model, ex vivo using brains from normal controls and methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice, and in vivo in a widely used MPTP-induced PD mouse model and an α-syn overexpression mouse model. The in vitro, ex vivo and in vivo results showed that the administered plasminogen crossed the blood‒brain barrier (BBB), entered cells, and migrated to the nucleus, increased plasmin activity intracellularly, bound to α-syn through lysine binding sites, significantly promoted α-syn, Tau and TDP-43 clearance intracellularly and even intranuclearly in the brain, decreased dopaminergic neurodegeneration and increased the tyrosine hydroxylase levels in the substantia nigra and striatum, and improved motor function in PD mouse models. These findings indicate that plasminogen plays a wide range of pivotal protective roles in PD and therefore may be a promising drug candidate for PD treatment.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Plasminogen , Animals , Mice , alpha-Synuclein , Disease Models, Animal , DNA-Binding Proteins/metabolism , Dopamine , Neurodegenerative Diseases/metabolism , Parkinson Disease/metabolism , Plasminogen/metabolism , Serine Proteases , tau Proteins/metabolism , Dopaminergic Neurons/pathology
8.
Future Oncol ; 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38445361

ABSTRACT

Background: The authors' preclinical study has confirmed that RO adjuvant (composed of TLR 7 agonists [imiquimod/R837] and OX40 agonists) injected into local lesions induces the regression of both primary tumor and distant metastasis. The authors propose to realize local control and exert abscopal effect through an 'R-ISV-RO' in situ strategy plus anti-PD-1 monoclonal antibody in advanced tumors. Methods: This study is a single-center, exploratory, phase II trial to evaluate the efficacy and safety of R-ISV-RO plus anti-PD-1 monoclonal antibody in advanced tumors. 30 patients with one or more measurable extracerebral lesions that are accessible for radiation or injection will be enrolled. The primary endpoint is the objective response rate of target lesions. Discussion/Conclusion: The efficacy and safety of the novel strategy will be further validated through this clinical trial.Clinical trial registration: ChiCTR2100053870 (www.chictr.org.cn/).


[Box: see text].

9.
Ecotoxicol Environ Saf ; 272: 116049, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38301584

ABSTRACT

Global concern exists regarding the contamination of food and animal feed with aflatoxin B1 (AFB1), which poses a threat to the health of both humans and animals. Previously, we found that a laccase from Bacillus subtilis (BsCotA) effectively detoxified AFB1 in a reaction mediated by methyl syringate (MS), although the underlying mechanism has not been determined. Therefore, our primary objective of this study was to explore the detoxification mechanism employed by BsCotA. First, the enzyme and mediator dependence of AFB1 transformation were studied using the BsCotA-MS system, which revealed the importance of MS radical formation during the oxidation process. Aflatoxin Q1 (AFQ1) resulting from the direct oxidation of AFB1 by BsCotA, was identified using ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The results of UPLC-MS/MS and density functional theory calculations indicated that the products included AFQ1, AFB1-, and AFD1-MS-coupled products in the BsCotA-MS system. The toxicity evaluations revealed that the substances derived from the transformation of AFB1 through the BsCotA-MS mechanism exhibited markedly reduced toxicity compared to AFB1. Finally, we proposed a set of different AFB1-transformation pathways generated by the BsCotA-MS system based on the identified products. These findings greatly enhance the understanding of the AFB1-transformation mechanism of the laccase-mediator system.


Subject(s)
Aflatoxin B1 , Gallic Acid/analogs & derivatives , Laccase , Humans , Aflatoxin B1/toxicity , Aflatoxin B1/chemistry , Chromatography, Liquid , Tandem Mass Spectrometry
10.
Ecotoxicol Environ Saf ; 273: 116130, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38394761

ABSTRACT

The manganese peroxidase (MnP) can degrade multiple mycotoxins including deoxynivalenol (DON) efficiently; however, the lignin components abundant in foods and feeds were discovered to interfere with DON catalysis. Herein, using MnP from Ceriporiopsis subvermispora (CsMnP) as a model, it was demonstrated that desired catalysis of DON, but not futile reactions with lignin, in the reaction systems containing feeds could be achieved by engineering MnP and supplementing with a boosting reactant. Specifically, two successive strategies (including the fusion of CsMnP to a DON-recognizing ScFv and identification of glutathione as a specific targeting enhancer) were combined to overcome the lignin competition, which together resulted into elevation of the degradation rate from 2.5% to as high as 82.7% in the feeds. The method to construct a targeting MnP and fortify it with an additional enhancer could be similarly applied to catalyze the many other mycotoxins with yet unknown responsive biocatalysts.


Subject(s)
Lignin , Mycotoxins , Trichothecenes , Lignin/metabolism , Peroxidases/metabolism
11.
Nat Commun ; 15(1): 1170, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38326322

ABSTRACT

SAP05, a secreted effector by the obligate parasitic bacteria phytoplasma, bridges host SPL and GATA transcription factors (TFs) to the 26 S proteasome subunit RPN10 for ubiquitination-independent degradation. Here, we report the crystal structures of SAP05 in complex with SPL5, GATA18 and RPN10, which provide detailed insights into the protein-protein interactions involving SAP05. SAP05 employs two opposing lobes with an acidic path and a hydrophobic path to contact TFs and RPN10, respectively. Our crystal structures, in conjunction with mutagenesis and degradation assays, reveal that SAP05 targets plant GATAs but not animal GATAs dependent on their direct salt-bridged electrostatic interactions. Additionally, SAP05 hijacks plant RPN10 but not animal RPN10 due to structural steric hindrance and the key hydrophobic interactions. This study provides valuable molecular-level information into the modulation of host proteins to prevent insect-borne diseases.


Subject(s)
Transcription Factors , Ubiquitin , Ubiquitin/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Proteasome Endopeptidase Complex/metabolism , Ubiquitination
12.
Appl Microbiol Biotechnol ; 108(1): 13, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38170309

ABSTRACT

The cellulose-rich corncob residue (CCR) is an abundant and renewable agricultural biomass that has been under-exploited. In this study, two strategies were compared for their ability to transform CCR into cello-oligosaccharides (COS). The first strategy employed the use of endo-glucanases. Although selected endo-glucanases from GH9, GH12, GH45, and GH131 could release COS with degrees of polymerization from 2 to 4, the degrading efficiency was low. For the second strategy, first, CCR was efficiently depolymerized to glucose and cellobiose using the cellulase from Trichoderma reesei. Then, using these simple sugars and sucrose as the starting materials, phosphorylases from different microorganisms were combined to generate COS to a level up to 100.3 g/L with different patterns and degrees of polymerization. Using tomato as a model plant, the representative COS obtained from BaSP (a sucrose phosphorylase from Bifidobacterium adolescens), CuCbP (a cellobiose phosphorylase from Cellulomonas uda), and CcCdP (a cellodextrin phosphorylase from Clostridium cellulosi) were shown to be able to promote plant growth. The current study pointed to an approach to make use of CCR for production of the value-added COS. KEY POINTS: • Sequential use of cellulase and phosphorylases effectively generated cello-oligosaccharides from corncob residue. • Cello-oligosaccharides patterns varied in accordance to cellobiose/cellodextrin phosphorylases. • Spraying cello-oligosaccharides promoted tomato growth.


Subject(s)
Cellobiose , Cellulase , Zea mays , Oligosaccharides/chemistry , Phosphorylases
13.
eNeuro ; 11(2)2024 Feb.
Article in English | MEDLINE | ID: mdl-38242692

ABSTRACT

The olivocerebellar system, which is critical for sensorimotor performance and learning, functions through modules with feedback loops. The main feedback to the inferior olive comes from the cerebellar nuclei (CN), which are predominantly GABAergic and contralateral. However, for the subnucleus d of the caudomedial accessory olive (cdMAO), a crucial region for oculomotor and upper body movements, the source of GABAergic input has yet to be identified. Here, we demonstrate the existence of a disynaptic inhibitory projection from the medial CN (MCN) to the cdMAO via the superior colliculus (SC) by exploiting retrograde, anterograde, and transsynaptic viral tracing at the light microscopic level as well as anterograde classical and viral tracing combined with immunocytochemistry at the electron microscopic level. Retrograde tracing in Gad2-Cre mice reveals that the cdMAO receives GABAergic input from the contralateral SC. Anterograde transsynaptic tracing uncovered that the SC neurons receiving input from the contralateral MCN provide predominantly inhibitory projections to contralateral cdMAO, ipsilateral to the MCN. Following ultrastructural analysis of the monosynaptic projection about half of the SC terminals within the contralateral cdMAO are GABAergic. The disynaptic GABAergic projection from the MCN to the ipsilateral cdMAO mirrors that of the monosynaptic excitatory projection from the MCN to the contralateral cdMAO. Thus, while completing the map of inhibitory inputs to the olivary subnuclei, we established that the MCN inhibits the cdMAO via the contralateral SC, highlighting a potential push-pull mechanism in directional gaze control that appears unique in terms of laterality and polarity among olivocerebellar modules.


Subject(s)
Cerebellum , Inferior Olivary Complex , Mice , Animals , Olivary Nucleus/physiology , Olivary Nucleus/ultrastructure , Synaptic Transmission , Cerebellar Nuclei/physiology
14.
J Clin Invest ; 134(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-37962965

ABSTRACT

Adolescent idiopathic scoliosis (AIS) is the most common form of spinal deformity, affecting millions of adolescents worldwide, but it lacks a defined theory of etiopathogenesis. Because of this, treatment of AIS is limited to bracing and/or invasive surgery after onset. Preonset diagnosis or preventive treatment remains unavailable. Here, we performed a genetic analysis of a large multicenter AIS cohort and identified disease-causing and predisposing variants of SLC6A9 in multigeneration families, trios, and sporadic patients. Variants of SLC6A9, which encodes glycine transporter 1 (GLYT1), reduced glycine-uptake activity in cells, leading to increased extracellular glycine levels and aberrant glycinergic neurotransmission. Slc6a9 mutant zebrafish exhibited discoordination of spinal neural activities and pronounced lateral spinal curvature, a phenotype resembling human patients. The penetrance and severity of curvature were sensitive to the dosage of functional glyt1. Administration of a glycine receptor antagonist or a clinically used glycine neutralizer (sodium benzoate) partially rescued the phenotype. Our results indicate a neuropathic origin for "idiopathic" scoliosis, involving the dysfunction of synaptic neurotransmission and central pattern generators (CPGs), potentially a common cause of AIS. Our work further suggests avenues for early diagnosis and intervention of AIS in preadolescents.


Subject(s)
Scoliosis , Animals , Humans , Adolescent , Scoliosis/genetics , Scoliosis/diagnosis , Scoliosis/surgery , Glycine/genetics , Zebrafish , Synaptic Transmission
16.
Enzyme Microb Technol ; 174: 110379, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38103484

ABSTRACT

γ-Aminobutyric acid (GABA) has been widely used in the food, feed, pharmaceutical, and chemical industry fields. Previously, we developed a whole-cell catalyst capable of converting L-glutamate (L-Glu) into GABA by overexpressing the glutamate decarboxylase gene (gadz11) from Bacillus sp. Z11 in Escherichia coli BL21(DE3). However, to enhance cell permeability, a freeze-thaw treatment is required, and to enhance GADZ11 activity, pyridoxal 5'-phosphate (PLP) must be added to the reaction system. The aim of this study is to provide a more efficient approach for GABA production by engineering the recombinant E. coli above. First, the inducible expression conditions of the gadz11 in E. coli were optimized to 37 °C for 6 h. Next, an ideal engineered strain was produced via increasing cell permeability by overexpressing sulA and eliminating PLP dependence by constructing a self-sufficient system. Furthermore, an efficient whole-cell biocatalytic process was optimized. The optimal substrate concentration, cell density, and reaction temperature were 1.0 mol/L (the molecular ratio of L-Glu to L-monosodium glutamate (L-MSG) was 4:1), 15 and 37 °C, respectively. Finally, a whole-cell bioconversion procedure was performed in a 3-L bioreactor under optimal conditions. The strain could be reused for at least two cycles with GABA yield, productivity and conversion ratio of 206.2 g/L, 117.8 g/L/h and 100.0%, respectively. This is currently the highest GABA productivity from a mixture of L-Glu and L-MSG reported without the addition of cofactors or additional treatment of cells. This work demonstrates that the novel engineered E. coli strain has the potential for application in large-scale industrial GABA production.


Subject(s)
Escherichia coli , Sodium Glutamate , Escherichia coli/genetics , Escherichia coli/metabolism , Sodium Glutamate/metabolism , Pyridoxal Phosphate/metabolism , gamma-Aminobutyric Acid , Glutamate Decarboxylase/genetics
17.
PeerJ ; 11: e16569, 2023.
Article in English | MEDLINE | ID: mdl-38130930

ABSTRACT

Background: Thyroid-associated orbitopathy (TAO) is a disease associated with autoimmune thyroid disorders and it can lead to proptosis, diplopia, and vision-threatening compressive optic neuropathy. To comprehensively understand the molecular mechanisms underlying orbital adipogenesis in TAO, we characterize the intrinsic molecular properties of orbital adipose/connective tissue from patients with TAO and control individuals. Methods: RNA sequencing analysis (RNA-seq) was performed to measure the gene expression of orbital adipose/connective tissues of TAO patients. Differentially expressed genes (DEGs) were detected and analyzed through Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and Gene Set Enrichment Analysis (GSEA). The protein-protein interaction (PPI) network was constructed using the STRING database, and hub genes were identified by the Cytoscape plug-in, cytoHubba. We validated several top DEGs through quantitative real-time polymerase chain reaction (qRT-PCR). Results: We identified 183 DEGs in adipose tissue between TAO patients (n = 3) and control patients (n = 3) through RNA sequencing, including 114 upregulated genes and 69 downregulated genes. The PPI network of these DEGs had 202 nodes and 743 edges. PCR-based validation results of orbital adipose tissue showed multiple top-ranked genes in TAO patients (n = 4) are immune and inflammatory response genes compared with the control individual (n = 4). They include ceruloplasmin isoform x3 (CP), alkaline tissue-nonspecific isozyme isoform x1 (ALPL), and angiotensinogen (AGT), which were overrepresented by 2.27- to 6.40-fold. Meanwhile, protein mab-21-like 1 (MAB21L1), phosphoinositide 3-kinase gamma-subunit (PIK3C2G), and clavesin-2 (CLVS2) decreased by 2.6% to 32.8%. R-spondin 1 (RSPO1), which is related to oogonia differentiation and developmental angiogenesis, was significantly downregulated in the orbital muscle tissues of patients with TAO compared with the control groups (P = 0.024). Conclusions: Our results suggest that there are genetic differences in orbital adipose-connective tissues derived from TAO patients. The upregulation of the inflammatory response in orbital fat of TAO may be consistent with the clinical phenotype like eyelid edema, exophthalmos, and excess tearing. Downregulation of MAB21L1, PIK3C2G, and CLVS2 in TAO tissue demonstrates dysregulation of differentiation, oxidative stress, and developmental pathways.


Subject(s)
Graves Ophthalmopathy , Humans , Graves Ophthalmopathy/genetics , Phosphatidylinositol 3-Kinases/genetics , Connective Tissue/metabolism , Real-Time Polymerase Chain Reaction , Protein Isoforms/genetics , Homeodomain Proteins/genetics
18.
Genome Med ; 15(1): 116, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38111038

ABSTRACT

BACKGROUND: The American College of Medical Genetics and Genomics (ACMG)/Association for Molecular Pathology (AMP) guidelines recommend using variant enrichment among cases as "strong" evidence for pathogenicity per the PS4 criterion. However, quantitative support for PS4 thresholds from real-world Mendelian case-control cohorts is lacking. METHODS: To address this gap, we evaluated and established PS4 thresholds using data from the Chinese Deafness Genetics Consortium. A total of 9,050 variants from 13,845 patients with hearing loss (HL) and 6,570 ancestry-matched controls were analyzed. Positive likelihood ratio and local positive likelihood ratio values were calculated to determine the thresholds corresponding to each strength of evidence across three variant subsets. RESULTS: In subset 1, consisting of variants present in both cases and controls with an allele frequency (AF) in cases ≥ 0.0005, an odds ratio (OR) ≥ 6 achieved strong evidence, while OR ≥ 3 represented moderate evidence. For subset 2, which encompassed variants present in both cases and controls with a case AF < 0.0005, and subset 3, comprising variants found only in cases and absent from controls, we defined the PS4_Supporting threshold (OR > 2.27 or allele count ≥ 3) and the PS4_Moderate threshold (allele count ≥ 6), respectively. Reanalysis applying the adjusted PS4 criteria changed the classification of 15 variants and enabled diagnosis of an additional four patients. CONCLUSIONS: Our study quantified evidence strength thresholds for variant enrichment in genetic HL cases, highlighting the importance of defining disease/gene-specific thresholds to improve the precision and accuracy of clinical genetic testing.


Subject(s)
Genetic Variation , Hearing Loss , Humans , Virulence , Genome, Human , Genetic Testing , Hearing Loss/genetics
19.
Microb Cell Fact ; 22(1): 236, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37974259

ABSTRACT

BACKGROUND: Thermophilic fungus Myceliophthora thermophila has been widely used in industrial applications due to its ability to produce various enzymes. However, the lack of an efficient protein expression system has limited its biotechnological applications. RESULTS: In this study, using a laccase gene reporting system, we developed an efficient protein expression system in M. thermophila through the selection of strong constitutive promoters, 5'UTRs and signal peptides. The expression of the laccase was confirmed by enzyme activity assays. The results showed that the Mtpdc promoter (Ppdc) was able to drive high-level expression of the target protein in M. thermophila. Manipulation of the 5'UTR also has significant effects on protein expression and secretion. The best 5'UTR (NCA-7d) was identified. The transformant containing the laccase gene under the Mtpdc promoter, NCA-7d 5'UTR and its own signal peptide with the highest laccase activity (1708 U/L) was obtained. In addition, the expression system was stable and could be used for the production of various proteins, including homologous proteins like MtCbh-1, MtGh5-1, MtLPMO9B, and MtEpl1, as well as a glucoamylase from Trichoderma reesei. CONCLUSIONS: An efficient protein expression system was established in M. thermophila for the production of various proteins. This study provides a valuable tool for protein production in M. thermophila and expands its potential for biotechnological applications.


Subject(s)
Laccase , Sordariales , Laccase/genetics , Laccase/metabolism , 5' Untranslated Regions/genetics , Promoter Regions, Genetic , Sordariales/genetics , Sordariales/metabolism
20.
Nanomaterials (Basel) ; 13(21)2023 Oct 29.
Article in English | MEDLINE | ID: mdl-37947710

ABSTRACT

To enhance the conductivity of a silver nanowire (Ag NW) network, a facile solvent welding method was developed. Soaking a Ag NW network in ethylene glycol (EG) or alcohol for less than 15 min decreased the resistance about 70%. Further combined solvent processing via a plasmonic welding approach decreased the resistance about 85%. This was achieved by simply exposing the EG-soaked Ag NW network to a low-power blue light (60 mW/cm2). Research results suggest that poly(vinylpyrrolidone) (PVP) dissolution by solvent brings nanowires into closer contact, and this reduced gap distance between nanowires enhances the plasmonic welding effect, hence further decreasing resistance. Aside from this dual combination of methods, a triple combination with Joule heating welding induced by applying a current to the Ag NW network decreased the resistance about 96%. Although conductivity was significantly enhanced, our results showed that the melting at Ag NW junctions was relatively negligible, which indicates that the enhancement in conductivity could be attributed to the removal of PVP layers. Moreover, the approaches were quite gentle so any potential damage to Ag NWs or polymer substrates by overheating (e.g., excessive Joule heating) was avoided entirely, making the approaches suitable for application in devices using heat-sensitive materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...