Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 432
Filter
1.
Mikrochim Acta ; 191(8): 446, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963446

ABSTRACT

The stability of black phosphorene (BP) and its preparation and modification for developing and applying devices have become a hot topic in the interdisciplinary field. We propose ultrasound-electrochemistry co-assisted liquid-phase exfoliation as an eco-friendly one-step method to prepare gold-silver bimetallic nanoparticles (Au-AgNPs)-decorated BP nanozyme for smartphone-based portable sensing of 4-nitrophenol (4-NP) in different water sources. The structure, morphology, composition, and properties of Au-AgNPs-BP nanozyme are characterized by multiple instrumental analyses. Bimetallic salts are induced to efficiently occupy oxidative sites of BP to form highly stable Au-AgNPs-BP nanozyme and guarantee the integrity of the lamellar BP. The electrochemistry shortens the exfoliation time of the BP nanosheet and contributes to the loading efficiency of bimetallic nanoparticles on the BP nanosheet. Au-AgNPs-BP-modified screen-printed carbon electrode coupled with palm-sized smartphone-controlled wireless electrochemical analyzer as a portable wireless intelligent sensing platform was applied to the determination of 4-NP in a linear range of 0.6-10 µM with a limit of detection of 63 nM. It enables on-site determination of 4-NP content in lake water, river water, and irrigation ditch water. This work will provide a reference for an eco-friendly one-step preparation of bimetallic nanoparticle-decorated graphene-like materials as nanozymes and their smartphone-based portable sensing application outdoors.

2.
Int J Biol Macromol ; : 133657, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971278

ABSTRACT

Hyaluronic acid (HA), a major component of skin extracellular matrix, provides an excellent framework for hemostatic design; however, there still lacks HA materials tailored with superior mechanical properties to address non-compressible hemorrhages. Here, we present a solvent-free thermal approach for constructing a shape-memory HA sponge for this application. Following facile thermal incubation around 130 °C, HA underwent cross-linking via esterification with poly(acrylic acid) within the sponge pre-shaped through a prior freeze-drying process. The resulting sponge system exhibited extensively interconnected macropores with a high fluid absorption capacity, excellent shape-memory property, and robust mechanical elasticity. When introduced to whole blood in vitro, the HA sponges demonstrated remarkable hemostatic properties, yielding a shorter coagulation time and lower blood clotting index compared to the commercial gelatin sponge (GS). Furthermore, in vivo hemostatic studies involving two non-compressible hemorrhage models (rat liver volume defect injury or femoral artery injury) achieved a significant reduction of approximately 64 % (or 56 %) and 73 % (or 70 %) in bleeding time and blood loss, respectively, which also outperformed GS. Additionally, comprehensive in vitro and in vivo evaluations suggested the good biocompatibility and biodegradability of HA sponges. This study highlights the substantial potential for utilizing the designed HA sponges in massive bleeding management.

3.
PeerJ ; 12: e17521, 2024.
Article in English | MEDLINE | ID: mdl-38903881

ABSTRACT

Background: Acute respiratory distress syndrome (ARDS) is a severe complication that can lead to fatalities in multiple trauma patients. Nevertheless, the incidence rate and early prediction of ARDS among multiple trauma patients residing in high-altitude areas remain unknown. Methods: This study included a total of 168 multiple trauma patients who received treatment at Shigatse People's Hospital Intensive Care Unit (ICU) between January 1, 2019 and December 31, 2021. The clinical characteristics of the patients and the incidence rate of ARDS were assessed. Univariable and multivariable logistic regression models were employed to identify potential risk factors for ARDS, and the predictive effects of these risk factors were analyzed. Results: In the high-altitude area, the incidence of ARDS among multiple trauma patients was 37.5% (63/168), with a hospital mortality rate of 16.1% (27/168). Injury Severity Score (ISS) and thoracic injuries were identified as significant predictors for ARDS using the logistic regression model, with an area under the curve (AUC) of 0.75 and 0.75, respectively. Furthermore, a novel predictive risk score combining ISS and thoracic injuries demonstrated improved predictive ability, achieving an AUC of 0.82. Conclusions: This study presents the incidence of ARDS in multiple trauma patients residing in the Tibetan region, and identifies two critical predictive factors along with a risk score for early prediction of ARDS. These findings have the potential to enhance clinicians' ability to accurately assess the risk of ARDS and proactively prevent its onset.


Subject(s)
Altitude , Multiple Trauma , Respiratory Distress Syndrome , Humans , Respiratory Distress Syndrome/mortality , Respiratory Distress Syndrome/epidemiology , Male , Female , Incidence , Retrospective Studies , Middle Aged , Adult , Risk Factors , Multiple Trauma/mortality , Multiple Trauma/epidemiology , Multiple Trauma/complications , Hospital Mortality , Injury Severity Score , China/epidemiology , Thoracic Injuries/mortality , Thoracic Injuries/epidemiology , Thoracic Injuries/complications , Intensive Care Units
4.
Adv Sci (Weinh) ; : e2402162, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38708715

ABSTRACT

High-performance soft magnetic materials are important for energy conservation and emission reduction. One challenge is achieving a combination of reliable temperature stability, high resistivity, high Curie temperature, and high saturation magnetization in a single material, which often comes at the expense of intrinsic coercivity-a typical trade-off in the family of soft magnetic materials with homogeneous microstructures. Herein, a nanostructured FeCoNiSiAl complex concentrated alloy is developed through a hierarchical structure strategy. This alloy exhibits superior soft magnetic properties up to 897 K, maintaining an ultra-low intrinsic coercivity (13.6 A m-1 at 297 K) over a wide temperature range, a high resistivity (138.08 µΩ cm-1 at 297 K) and the saturation magnetization with only a 16.7% attenuation at 897 K. These unusual property combinations are attributed to the dual-magnetic-state nature with exchange softening due to continuous crystal ordering fluctuations at the atomic scale. By deliberately controlling the microstructure, the comprehensive performance of the alloy can be tuned and controlled. The research provides valuable guidance for the development of soft magnetic materials for high-temperature applications and expands the potential applications of related functional materials in the field of sustainable energy.

6.
ACS Appl Mater Interfaces ; 16(20): 26537-26546, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38739859

ABSTRACT

Water-stable organic radicals are promising photothermal conversion candidates for photothermal therapy (PTT). However, organic radicals are usually unstable in biological environments, which greatly hinders their wide application. Here, we have developed a chaotropic effect-based and photoinduced water-stable supramolecular radical (MB12-2) for efficient antibacterial PTT. The supramolecular radical precursor MB12-1 was constructed by the chaotropic effect between closo-dodecaborate cluster (B12H122-) and N,N'-dimethylated dipyridinium thiazolo [5,4-d] thiazole (MPT2+). Subsequently, with triethanolamine (TEOA) serving as an electron donor, MB12-1 could transform to its radical form MB12-2 through photoinduced electron transfer (PET) under 435-nm laser irradiation. The N2 adsorption-desorption analysis confirmed that MB12-2 was tightly packed through the introduction of B12H122-, which effectively enhanced its stability via a spatial site-blocked effect. Moreover, the half-life of MB12-2 in water was calculated through ultraviolet-visible light (UV-vis) absorption spectra results for periods as long as 20 days. In addition, in the skin infection model, MB12-2, as a wound dressing, showed remarkable photothermal antibacterial activity (>97%) under 660-nm laser irradiation and promoted wound healing. This study presents a simple method for designing long-term water-stable supramolecular radicals, offering a novel avenue for noncontact treatments for bacterial infections.


Subject(s)
Anti-Bacterial Agents , Photothermal Therapy , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Animals , Water/chemistry , Mice , Free Radicals/chemistry , Boron/chemistry , Boron/pharmacology , Staphylococcus aureus/drug effects , Escherichia coli/drug effects
7.
Plant Physiol ; 195(3): 1818-1834, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38573326

ABSTRACT

Bacterial wilt severely jeopardizes plant growth and causes enormous economic loss in the production of many crops, including tobacco (Nicotiana tabacum). Here, we first demonstrated that the roots of bacterial wilt-resistant tobacco mutant KCB-1 can limit the growth and reproduction of Ralstonia solanacearum. Secondly, we demonstrated that KCB-1 specifically induced an upregulation of naringenin content in root metabolites and root secretions. Further experiments showed that naringenin can disrupt the structure of R. solanacearum, inhibit the growth and reproduction of R. solanacearum, and exert a controlling effect on bacterial wilt. Exogenous naringenin application activated the resistance response in tobacco by inducing the burst of reactive oxygen species and salicylic acid deposition, leading to transcriptional reprogramming in tobacco roots. Additionally, both external application of naringenin in CB-1 and overexpression of the Nicotiana tabacum chalcone isomerase (NtCHI) gene, which regulates naringenin biosynthesis, in CB-1 resulted in a higher complexity of their inter-root bacterial communities than in untreated CB-1. Further analysis showed that naringenin could be used as a marker for resistant tobacco. The present study provides a reference for analyzing the resistance mechanism of bacterial wilt-resistant tobacco and controlling tobacco bacterial wilt.


Subject(s)
Flavanones , Mutation , Nicotiana , Plant Diseases , Plant Roots , Ralstonia solanacearum , Ralstonia solanacearum/drug effects , Ralstonia solanacearum/physiology , Ralstonia solanacearum/pathogenicity , Nicotiana/microbiology , Nicotiana/genetics , Nicotiana/drug effects , Flavanones/pharmacology , Flavanones/metabolism , Plant Diseases/microbiology , Plant Roots/microbiology , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/genetics , Mutation/genetics , Disease Resistance/genetics , Disease Resistance/drug effects , Gene Expression Regulation, Plant/drug effects , Reactive Oxygen Species/metabolism , Salicylic Acid/metabolism , Salicylic Acid/pharmacology
8.
Nano Lett ; 24(15): 4649-4657, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38572971

ABSTRACT

Deep-seated bacterial infections (DBIs) are stubborn and deeply penetrate tissues. Eliminating deep-seated bacteria and promoting tissue regeneration remain great challenges. Here, a novel radical-containing hydrogel (SFT-B Gel) cross-linked by a chaotropic effect was designed for the sensing of DBIs and near-infrared photothermal therapy (NIR-II PTT). A silk fibroin solution stained with 4,4',4″-(1,3,5-triazine-2,4,6-triyl)tris(1-methylpyridin-1-ium) (TPT3+) was employed as the backbone, which could be cross-linked by a closo-dodecaborate cluster (B12H122-) through a chaotropic effect to form the SFT-B Gel. More interestingly, the SFT-B Gel exhibited the ability to sense DBIs, which could generate a TPT2+• radical with obvious color changes in the presence of bacteria. The radical-containing SFT-B Gel (SFT-B★ Gel) possessed strong NIR-II absorption and a remarkable photothermal effect, thus demonstrating excellent NIR-II PTT antibacterial activity for the treatment of DBIs. This work provides a new approach for the construction of intelligent hydrogels with unique properties using a chaotropic effect.


Subject(s)
Phototherapy , Photothermal Therapy , Hydrogels/pharmacology
9.
Childs Nerv Syst ; 40(7): 2227-2233, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38635072

ABSTRACT

PURPOSE: Desmoplastic fibroma (DF) is an uncommon intermediate bone tumor rarely involving the skull with unidentified pathogenesis. We report the first case of pediatric temporoparietal cranial desmoplastic fibroma (DF) with a CTNNB1 gene mutation and review the previous literature. CASE PRESENTATION: A 3-year-old boy had a firm, painless mass on the right temporoparietal region for 22 months. The cranial CT scan showed isolated osteolytic destruction in the outer plate and diploe of the right temporoparietal bone. Gross total resection of the lesion and cranioplasty were performed. After that, a growing epidural hematoma was observed so another operation was performed to remove the artificial titanium plate. Postoperative pathology indicated a DF diagnosis and molecular pathology suggested a missense mutation in exon 3 of the CTNNB1 gene (c.100G > A,p.Gly34Arg). CONCLUSION: Pediatric cranial DF is rare and easy to be misdiagnosed before operation. For cranial DF, lesion resection can be performed and perioperative management should be strengthened. Mutations in the CTNNB1 gene might be one of the molecular pathologic features of DF.


Subject(s)
Fibroma, Desmoplastic , Skull Neoplasms , beta Catenin , Humans , Male , beta Catenin/genetics , Child, Preschool , Fibroma, Desmoplastic/genetics , Fibroma, Desmoplastic/surgery , Fibroma, Desmoplastic/pathology , Fibroma, Desmoplastic/diagnostic imaging , Skull Neoplasms/genetics , Skull Neoplasms/surgery , Skull Neoplasms/diagnostic imaging , Skull Neoplasms/pathology , Mutation , Tomography, X-Ray Computed
10.
Int J Biol Macromol ; 266(Pt 2): 131076, 2024 May.
Article in English | MEDLINE | ID: mdl-38531522

ABSTRACT

Physically crosslinked hydrogels have shown great potential as excellent and eco-friendly matrices for wound management. Herein, we demonstrate the development of a thermosensitive chitosan hydrogel system using CaCO3 as a gelling agent, followed by CaCO3 mineralization to fine-tune its properties. The chitosan hydrogel effectively gelled at 37 °C and above after an incubation period of at least 2 h, facilitated by the CaCO3-mediated slow deprotonation of primary amine groups on chitosan polymers. Through synthesizing and characterizing various chitosan hydrogel compositions, we found that mineralization played a key role in enhancing the hydrogels' mechanical strength, viscosity, and thermal inertia. Moreover, thorough in vitro and in vivo assessments of the chitosan-based hydrogels, whether modified with mineralization or not, demonstrated their outstanding hemostatic activity (reducing coagulation time by >41 %), biocompatibility with minimal inflammation, and biodegradability. Importantly, in vivo evaluations using a rat burn wound model unveiled a clear wound healing promotion property of the chitosan hydrogels, and the mineralized form outperformed its precursor, with a reduction of >7 days in wound closure time. This study presents the first-time utilization of chitosan/CaCO3 as a thermogelation formulation, offering a promising prototype for a new family of thermosensitive hydrogels highly suited for wound care applications.


Subject(s)
Calcium Carbonate , Chitosan , Hydrogels , Wound Healing , Chitosan/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Calcium Carbonate/chemistry , Wound Healing/drug effects , Rats , Temperature , Male , Viscosity , Humans , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Burns/drug therapy , Burns/therapy
11.
Proc Natl Acad Sci U S A ; 121(14): e2318391121, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38527207

ABSTRACT

The exploitation of novel wound healing methods with real-time infection sensing and high spatiotemporal precision is highly important for human health. Pt-based metal-organic cycles/cages (MOCs) have been employed as multifunctional antibacterial agents due to their superior Pt-related therapeutic efficiency, various functional subunits and specific geometries. However, how to rationally apply these nanoscale MOCs on the macroscale with controllable therapeutic output is still challenging. Here, a centimeter-scale Pt MOC film was constructed via multistage assembly and subsequently coated on a N,N'-dimethylated dipyridinium thiazolo[5,4-d]thiazole (MPT)-stained silk fabric to form a smart wound dressing for bacterial sensing and wound healing. The MPT on silk fabric could be used to monitor wound infection in real-time through the bacteria-mediated reduction of MPT to its radical form via a color change. The MPT radical also exhibited an excellent photothermal effect under 660 nm light irradiation, which could not only be applied for photothermal therapy but also induce the disassembly of the Pt MOC film suprastructure. The highly ordered Pt MOC film suprastructure exhibited high biosafety, while it also showed improved antibacterial efficiency after thermally induced disassembly. In vitro and in vivo studies revealed that the combination of the Pt MOC film and MPT-stained silk can provide real-time information on wound infection for timely treatment through noninvasive techniques. This study paves the way for bacterial sensing and wound healing with centimeter-scale metal-organic materials.


Subject(s)
Platinum , Wound Infection , Humans , Platinum/pharmacology , Wound Healing , Bandages , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Silk/chemistry , Bacteria , Hydrogels/pharmacology
12.
Int J Mol Sci ; 25(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38473971

ABSTRACT

UDP-glycosyltransferases (UGTs) form a large enzyme family that is found in a wide range of organisms. These enzymes are known for accepting a wide variety of substrates, and they derivatize xenobiotics and metabolites for detoxification. However, most UGT homologs have not been well characterized, and their potential for biomedical and environmental applications is underexplored. In this work, we have used a fluorescent assay for screening substrates of a plant UGT homolog by monitoring the formation of UDP. We optimized the assay such that it could be used for high-throughput screening of substrates of the Medicago truncatula UGT enzyme, UGT71G1, and our results show that 34 of the 159 screened compound samples are potential substrates. With an LC-MS/MS method, we confirmed that three of these candidates indeed were glycosylated by UGT71G1, which includes bisphenol A (BPA) and 7-Ethyl-10-hydroxycamptothecin (SN-38); derivatization of these toxic compounds can lead to new environmental and medical applications. This work suggests that UGT homologs may recognize a substrate profile that is much broader than previously anticipated. Additionally, it demonstrates that this screening method provides a new means to study UDP-glycosyltransferases, facilitating the use of these enzymes to tackle a wide range of problems.


Subject(s)
Glycosyltransferases , Tandem Mass Spectrometry , Glycosyltransferases/metabolism , Chromatography, Liquid , Plants/metabolism , Uridine Diphosphate
13.
Int J Mol Sci ; 25(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38474028

ABSTRACT

The uridine diphosphate glycosyltransferase (UGT) superfamily plays a key role in the metabolism of xenobiotics and metabolic wastes, which is essential for detoxifying those species. Over the last several decades, a huge effort has been put into studying human and mammalian UGT homologs, but family members in other organisms have been explored much less. Potentially, other UGT homologs can have desirable substrate specificity and biological activities that can be harnessed for detoxification in various medical settings. In this review article, we take a plant UGT homology, UGT71G1, and compare its structural and biochemical properties with the human homologs. These comparisons suggest that even though mammalian and plant UGTs are functional in different environments, they may support similar biochemical activities based on their protein structure and function. The known biological functions of these homologs are discussed so as to provide insights into the use of UGT homologs from other organisms for addressing human diseases related to UGTs.


Subject(s)
Glycosyltransferases , Uridine Diphosphate , Animals , Humans , Glycosyltransferases/metabolism , Plants/metabolism , Phylogeny , Mammals/metabolism
14.
Heliyon ; 10(2): e24795, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38304798

ABSTRACT

Most clinically non-functioning pituitary tumour arise from gonadotroph cells. However, clinically functional pituitary gonadotroph adenoma is rare. Here we report a female case who presented with menstrual disturbances, however further workup demonstrated a pituitary microadenoma with elevated FSH and oestradiol level. Transsphenoidal resection was performed and the surgical histopathology confirmed pituitary gonadotroph adenoma. Postoperatively, improvement in both symptoms and hormonal profile were observed. Interestingly, the initially enlarged and polycystic ovaries became within normal range around eight months after the surgery. We suggest functional gonadotroph adenoma should be considered in the presence of gynaecological disorder with persistently elevated oestradiol and FSH levels.

15.
Am J Transl Res ; 16(1): 155-162, 2024.
Article in English | MEDLINE | ID: mdl-38322568

ABSTRACT

OBJECTIVES: To investigate the effects of music combined with dexmedetomidine on perioperative anxiety and postoperative recovery in gynecologic laparoscopic patients. METHODS: A total of 82 female patients were enrolled in this study. Patients were randomized to the patient-preferred Music+Dexmedetomidine group (M+DEX group, n=41) and the Dexmedetomidine group (DEX group, n=41). Prior to the induction of anesthesia, dexmedetomidine was pumped intravenously at 0.5 µg/kg for 10 minutes in both groups and then maintained at 0.2 µg/kg/hour until 30 minutes before the end of surgery. In contrast to the patients in the DEX group, the patients in the M+DEX group listened to 5 minutes of their favorite music during dexmedetomidine infusion. The primary outcome was the patient's preoperative State Anxiety Inventory (SAI) score. The secondary outcomes included visual analog scale (VAS) pain scores and QoR-15 scores at 24 hours postoperatively. RESULTS: The clinical data of a total of 82 patients were analyzed. After the music intervention, we found that the preoperative SAI scores were lower in the M+DEX group than in the DEX group (37.9±5.6 vs. 41.5±6.9; P=0.01). The M+DEX group had lower VAS scores at 24 hours postoperatively than the DEX group (1 (1.0, 2.0) vs. 2 (2.0, 3.0), P < 0.01), and the M+DEX group had higher QoR-15 scores at 24 hours after the surgery than the DEX group (127.7±10.0 vs. 122.3±11.2; P=0.03). CONCLUSION: Patients undergoing gynecologic laparoscopic surgery who listened to their favorite music before the induction of anesthesia had less preoperative anxiety and recovered better 24 hours postoperatively than those who only received dexmedetomidine.

16.
Oral Maxillofac Surg ; 28(2): 999-1004, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38378934

ABSTRACT

PURPOSE: We report a case of fibrous dysplasia (FD) with aneurysmal bone cyst (ABC)-like change in a child with orbital involvement, review the related cases, and discuss clinical features, therapy, and prognosis of this disease. CASE PRESENTATION: A 10-year-old girl had right proptosis (degree of exophthalmos: OD 16 mm, OS 13 mm) and limited vision (visual acuity: OD 1.0, OS 0.8) without trauma. Preoperative CT showed a 5.0*4.3 cm right-sided crania-orbital communicating tumor. MRI indicated a well-defined multicystic mass with scattered fluid levels and soap bubble-like alterations. The child underwent total tumor resection and orbital parietal titanium mesh reconstruction. At 20 months of follow-up, the child has recovered from ocular problems, and the tumor has not recurred. CONCLUSION: FD combined with ABC rarely occurs in orbit and generally begins with ocular symptoms. The etiology is uncertain. Early diagnosis and surgery are essential. Complete resection is suggested whenever possible because residual lesions may recur.


Subject(s)
Bone Cysts, Aneurysmal , Humans , Female , Child , Bone Cysts, Aneurysmal/surgery , Bone Cysts, Aneurysmal/diagnostic imaging , Bone Cysts, Aneurysmal/pathology , Exophthalmos/etiology , Exophthalmos/surgery , Tomography, X-Ray Computed , Orbital Diseases/surgery , Orbital Diseases/diagnostic imaging , Orbital Diseases/pathology , Magnetic Resonance Imaging , Fibrous Dysplasia of Bone/surgery , Fibrous Dysplasia of Bone/diagnostic imaging , Fibrous Dysplasia of Bone/complications , Surgical Mesh , Plastic Surgery Procedures/methods
17.
Environ Microbiome ; 19(1): 6, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38229154

ABSTRACT

BACKGROUND: Beneficial root-associated microbiomes play crucial roles in enhancing plant growth and suppressing pathogenic threats, and their application for defending against pathogens has garnered increasing attention. Nonetheless, the dynamics of microbiome assembly and defense mechanisms during pathogen invasion remain largely unknown. In this study, we aimed to investigate the diversity and assembly of microbial communities within four niches (bulk soils, rhizosphere, rhizoplane, and endosphere) under the influence of the bacterial plant pathogen Ralstonia solanacearum. RESULTS: Our results revealed that healthy tobacco plants exhibited more diverse community compositions and more robust co-occurrence networks in root-associated niches compared to diseased tobacco plants. Stochastic processes (dispersal limitation and drift), rather than determinism, dominated the assembly processes, with a higher impact of drift observed in diseased plants than in healthy ones. Furthermore, during the invasion of R. solanacearum, the abundance of Fusarium genera, a known potential pathogen of Fusarium wilt, significantly increased in diseased plants. Moreover, the response strategies of the microbiomes to pathogens in diseased and healthy plants diverged. Diseased microbiomes recruited beneficial microbial taxa, such as Streptomyces and Bacilli, to mount defenses against pathogens, with an increased presence of microbial taxa negatively correlated with the pathogen. Conversely, the potential defense strategies varied across niches in healthy plants, with significant enrichments of functional genes related to biofilm formation in the rhizoplane and antibiotic biosynthesis in the endosphere. CONCLUSION: Our study revealed the varied community composition and assembly mechanism of microbial communities between healthy and diseased tobacco plants along the soil-root continuum, providing new insights into niche-specific defense mechanisms against pathogen invasions. These findings may underscore the potential utilization of different functional prebiotics to enhance plants' ability to fend off pathogens.

18.
Article in English | MEDLINE | ID: mdl-38194391

ABSTRACT

Infantile spasms (IS) is a neurological disorder causing mental and/or developmental retardation in many infants. Hypsarrhythmia is a typical symptom in the electroencephalography (EEG) signals with IS. Long-term EEG/video monitoring is most frequently employed in clinical practice for IS diagnosis, from which manual screening of hypsarrhythmia is time consuming and lack of sufficient reliability. This study aims to identify potential biomarkers for automatic IS diagnosis by quantitative analysis of the EEG signals. A large cohort of 101 IS patients and 155 healthy controls (HC) were involved. Typical hypsarrhythmia and non-hypsarrhythmia EEG signals were annotated, and normal EEG were randomly picked from the HC. Root mean square (RMS), teager energy (TE), mean frequency, sample entropy (SamEn), multi-channel SamEn, multi-scale SamEn, and nonlinear correlation coefficient were computed in each sub-band of the three EEG signals, and then compared using either a one-way ANOVA or a Kruskal-Wallis test (based on their distribution) and the receiver operating characteristic (ROC) curves. The effects of infant age on these features were also investigated. For most of the employed features, significant ( ) differences were observed between hypsarrhythmia EEG and non-hypsarrhythmia EEG or HC, which seem to increase with increased infant age. RMS and TE produce the best classification in the delta and theta bands, while entropy features yields the best performance in the gamma band. Our study suggests RMS and TE (delta and theta bands) and entropy features (gamma band) to be promising biomarkers for automatic detection of hypsarrhythmia in long-term EEG monitoring. The findings of our study indicate the feasibility of automated IS diagnosis using artificial intelligence.


Subject(s)
Spasms, Infantile , Infant , Humans , Spasms, Infantile/diagnosis , Cohort Studies , Reproducibility of Results , Artificial Intelligence , Electroencephalography , Biomarkers
19.
Clin Transl Med ; 14(1): e1548, 2024 01.
Article in English | MEDLINE | ID: mdl-38282415

ABSTRACT

BACKGROUND: Intratumour heterogeneity is a hallmark of most solid tumours, including breast cancers. We applied spatial transcriptomics and single-cell RNA-sequencing on patient-derived xenografts (PDXs) to profile spatially resolved cell populations within oestrogen receptor-positive (ER+ ) breast cancer and to elucidate their importance in oestrogen-dependent tumour growth. METHODS: Two PDXs of 'ER-high' breast cancers with opposite oestrogen-mediated growth responses were investigated: oestrogen-suppressed GS3 (80-100% ER) and oestrogen-dependent SC31 (40-90% ER) models. The observation was validated via single-cell analyses on an 'ER-low' PDX, GS1 (5% ER). The results from our spatial and single-cell analyses were further supported by a public ER+ breast cancer single-cell dataset and protein-based dual immunohistochemistry (IHC) of SC31 examining important luminal cancer markers (i.e., ER, progesterone receptor and Ki67). The translational implication of our findings was assessed by clinical outcome analyses on publicly available cohorts. RESULTS: Our space-gene-function study revealed four spatially distinct compartments within ER+ breast cancers. These compartments showed functional diversity (oestrogen-responsive, proliferative, hypoxia-induced and inflammation-related). The 'proliferative' population, rather than the 'oestrogen-responsive' compartment, was crucial for oestrogen-dependent tumour growth, leading to the acquisition of luminal B-like features. The cells expressing typical oestrogen-responsive genes like PGR were not directly linked to oestrogen-dependent proliferation. Dual IHC analyses demonstrated the distinct contribution of the Ki67+ proliferative cells toward oestrogen-mediated growth and their response to a CDK4/6 inhibitor. The gene signatures derived from the proliferative, hypoxia-induced and inflammation-related compartments were significantly correlated with worse clinical outcomes, while patients with the oestrogen-responsive signature showed better prognoses, suggesting that this compartment would not be directly associated with oestrogen-dependent tumour progression. CONCLUSIONS: Our study identified the gene signature in our 'proliferative' compartment as an important determinant of luminal cancer subtypes. This 'proliferative' cell population is a causative feature of luminal B breast cancer, contributing toward its aggressive behaviours.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Ki-67 Antigen/genetics , Receptors, Estrogen/genetics , Gene Expression Profiling , Estrogens , Inflammation , Hypoxia
20.
Plant Dis ; 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38173266

ABSTRACT

Cucumis melo L. is an important fruit with widespread consumption and commercial value. However, an undescribed disease affecting Hami melon (Cucumis melo L. var. Luhoutian) plants has consistently emerged in the Qihe region of Dezhou, Shandong Province of China since 2021. The disease can occur in both seedling and mature stages of Hami melon plants, and in severely diseased areas, the incidence rate was seen as 40 to 80%. During the seedling stage, the initial symptom is the appearance of water-soaked spots on the leaves. As the disease progresses, the leaves develop necrotic spots, and severely affected plants may exhibit stem rot and decay. In the mature stage, the disease primarily affects the leaves, causing necrotic spots and chlorosis. Under conditions of high humidity, black mold can be observed in the affected areas. Small pieces of symptomatic leaves from six different infected plants were collected and surface-sterilized with 5% NaClO for 3 min and 75% alcohol for 30 s for pathogen isolation (Wang et al., 2020). After rinsing with sterile water and blotted on sterile filter paper, the tissues were established on potato dextrose agar (PDA) media and incubated at 28℃ for 3-4 days. Pure isolates showed up at PDA were obtained through single-spore isolation. Colonies of all 16 isolates obtained by single-spore isolation had similar morphological characteristics on the PDA medium, the mycelium of the isolate appears dense and yellowish-brown on the PDA medium, and also secretes a brownish-red pigment on PDA. Under the opticalmicroscope, the perithecia from PDA media are subglobose spherical in shape, 80-100 µm in diameter, brownish by reflected light, wholly and densely hairy. Terminal hairs are very dense, greyish by reflected light, olive brown to reddish brown by transmitted light, thick-walled, arcuate, circinate, or spirally coiled at the apex. The ascospores within the perithecia are elliptical or droplet-shaped, initially colorless hyaline but later becoming subhyaline slightly gray, with dimensions of 7-9 µm × 4-5 µm. The morphological characteristics of the isolates were consistent with the description of Arcopilus aureus (Wang et.al. 2016). The internal transcribed spacer (ITS) region and ß-tubulin genes of three randomly selected isolates were PCR amplified and sequenced using primers ITS4/ITS5 and Bt2a/Bt2b. The sequences of ITS and ß-tubulin genes were submitted to NCBI with GenBank Accession No. OR539527 and OR640972, respectively. Based on morphological features and phylogenetic analysis, we concluded that the isolates belonged to A. aureus. Pathogenicity tests were conducted by placing agar plugs-containing fungal mycelia and agar blocks (control) on leaves of Hami melon seedlings (n=12) grown at 28°C with 60% humidity in a greenhouse, the assay was repeated three times. Symptoms appeared on the pathogen-inoculated leaves seven days after inoculation, whereas the control treatment remained symptomless. The pathogens were reisolated from diseased leaves and identified as A. aureus based on morphological, and molecular phylogenetic analysis, while Koch'sostulate was used to confirm its life mode. To the best of our knowledge, this is the first report of leaf spot caused by A. aureus on Cucumis melo L. in China.

SELECTION OF CITATIONS
SEARCH DETAIL
...