Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 687
Filter
1.
Chemosphere ; : 142996, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39097105

ABSTRACT

Photocatalytic degradation of pollutants coupled with hydrogen (H2) evolution has emerged as a promising solution for environmental and energy crises. However, the fast recombination of photoexcited electrons and holes limits photocatalytic activities. Herein, an S-scheme heterojunction carbon doped-TiO2 /ZnIn2S4 (C-TiO2/ZnIn2S4) was designed by substituting oxygen sites within C-TiO2 by ZnIn2S4. Under visible light irradiation, the optimal C-TiO2/ZnIn2S4 exhibits a higher degradation efficiency (88.6%) of microcystin-LR (MC-LR), compared to pristine C-TiO2 (72.9%) and ZnIn2S4 (66.8%). Furthermore, the H2 yield of the C-TiO2/ZnIn2S4 reaches 1526.9 µmol·g-1·h-1, which is 3.83 times and 2.87 times that of the C-TiO2 and ZnIn2S4, respectively. Experimental and theoretical investigations reveal that an internal electric field (IEF) informed in the C-TiO2/ZnIn2S4 heterojunction, accelerates the separation of photogenerated charge pairs, thereby enhancing photocatalytic efficiency of MC-LR degradation and H2 production. This work highlights a new perspective on the development of high-performance photocatalysts for wastewater treatment and H2 generation.

2.
BMC Oral Health ; 24(1): 804, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014389

ABSTRACT

BACKGROUND: Tooth segmentation on intraoral scanned (IOS) data is a prerequisite for clinical applications in digital workflows. Current state-of-the-art methods lack the robustness to handle variability in dental conditions. This study aims to propose and evaluate the performance of a convolutional neural network (CNN) model for automatic tooth segmentation on IOS images. METHODS: A dataset of 761 IOS images (380 upper jaws, 381 lower jaws) was acquired using an intraoral scanner. The inclusion criteria included a full set of permanent teeth, teeth with orthodontic brackets, and partially edentulous dentition. A multi-step 3D U-Net pipeline was designed for automated tooth segmentation on IOS images. The model's performance was assessed in terms of time and accuracy. Additionally, the model was deployed on an online cloud-based platform, where a separate subsample of 18 IOS images was used to test the clinical applicability of the model by comparing three modes of segmentation: automated artificial intelligence-driven (A-AI), refined (R-AI), and semi-automatic (SA) segmentation. RESULTS: The average time for automated segmentation was 31.7 ± 8.1 s per jaw. The CNN model achieved an Intersection over Union (IoU) score of 91%, with the full set of teeth achieving the highest performance and the partially edentulous group scoring the lowest. In terms of clinical applicability, SA took an average of 860.4 s per case, whereas R-AI showed a 2.6-fold decrease in time (328.5 s). Furthermore, R-AI offered higher performance and reliability compared to SA, regardless of the dentition group. CONCLUSIONS: The 3D U-Net pipeline was accurate, efficient, and consistent for automatic tooth segmentation on IOS images. The online cloud-based platform could serve as a viable alternative for IOS segmentation.


Subject(s)
Neural Networks, Computer , Tooth , Humans , Tooth/diagnostic imaging , Tooth/anatomy & histology , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods
3.
World J Clin Cases ; 12(20): 4384-4390, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39015899

ABSTRACT

BACKGROUND: Enterocutaneous fistula (ECF) is an abnormal connection between the gastrointestinal tract and the skin. ECF can lead to massive body fluid loss, hypercatabolism, and malnutrition. Therefore, nutritional support plays a crucial role in managing ECFs and promoting the healing of fistulas. For nutritional support, enteral nutrition (EN) is the preferred method when gastrointestinal function is recovering. Currently, various EN approaches have been applied for different anatomical positions of the ECF. However, the effectiveness of administering EN support for treating lower ECFs still needs further exploration and improvement. CASE SUMMARY: We present the case of a 46-year-old male who underwent gastrointestinal stromal tumour resection. Six days after the surgery, the patient presented with fever, fatigue, severe upper abdominal pain, and septic shock. Subsequently, lower ECFs were diagnosed through laboratory and imaging examinations. In addition to symptomatic treatment for homeostasis, total parenteral nutrition support was administered in the first 72 h due to dysfunction of the intestine. After that, we gradually provided EN support through the intestinal obstruction catheter in consideration of the specific anatomic position of the fistula instead of using the nasal jejunal tube. Ultimately, the patient could receive optimal EN support via the catheter, and no complications were found during the treatment. CONCLUSION: Nutritional support is a crucial element in ECF management, and intestinal obstruction catheters could be used for early EN administration.

4.
Biochem Biophys Res Commun ; 730: 150389, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39003864

ABSTRACT

To better understand the effect of Vibrio splendidus infection on Strongylocentrotus intermedius, 16S rRNA sequencing was carried out to investigate the intestinal flora of S. intermedius stimulated by 0 CFU/mL (Con), 1.5 × 107 CFU/mL (Vib1) and 1.5 × 108 CFU/mL (Vib2) concentrations of V. splendidus. The results showed that there was significant difference in intestinal flora diversity between Con group and Vib1 group, but no significant difference between Con group and Vib2 group. However, there were significant differences in the composition of intestinal flora among all groups. Bacteroidota, Proteobacteria and Firmicutes were the dominant phylum in the Con group. The abundance of Bacteroidota and Firmicutes decreased and Proteobacteria increased in Vib1 and Vib2 groups. The relative abundance of the potential probiotic bacteria Muribaculaceae and Alloprevotella was significantly lower in the Vib1 and Vib2 groups. In addition, the opportunistic pathogen Desulfovibrio was found in Vib1 and Vib2 groups. It is evident that V. splendidus infection not only alters the composition of the microbial community in the intestinal tract of S. intermedius, but may also lead to the production of opportunistic pathogens, which could be potentially harmful to the health of S. intermedius. The results of this study provide a foundation for exploring the diseases caused by V. splendidus stimulation leading to an imbalance in the intestinal flora of S. intermedius, and contribute to our further understanding of the role of Vibrio on the health of S. intermedius.

5.
Angew Chem Int Ed Engl ; : e202407612, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007237

ABSTRACT

The synthesis of multicarbon (C2+) products remains a substantial challenge in sustainable CO2 electroreduction owing to the need for sufficient current density and faradaic efficiency alongside carbon efficiency. Herein, we demonstrate ampere-level high-efficiency CO2 electroreduction to C2+ products in both neutral and strongly acidic (pH = 1) electrolytes using a hierarchical Cu hollow-fiber penetration electrode (HPE). High concentration of K+ could concurrently suppress hydrogen evolution reaction and facilitate C-C coupling, thereby promoting C2+ production in strong acid. By optimizing the K+ and H+ concentration and CO2 flow rate, a faradaic efficiency of 84.5% and a partial current density as high as 3.1 A cm-2 for C2+ products, alongside a single-pass carbon efficiency of 81.5% and stable electrolysis for 240 h were demonstrated in a strong acidic solution of H2SO4 and KCl (pH = 1). Experimental measurements and density functional theory simulations suggested that tensile-strained Cu HPE enhances the asymmetric C-C coupling to steer the selectivity and activity of C2+ products.

6.
J Agric Food Chem ; 72(28): 15530-15540, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38963795

ABSTRACT

The skeletal muscle is the major muscle tissue in animals, and its production is subject to a complex and strict regulation. The proliferation and differentiation of myoblasts are important factors determining chicken muscle development. Circular RNAs (circRNAs) are endogenous RNAs that are widely present in various tissues of organisms. Recent studies have shown that circRNA plays key roles in the development of skeletal muscles. The solute carrier (SLC) family functions in the transport of metabolites such as amino acids, glucose, nucleotides, and essential nutrients and is widely involved in various basic physiological metabolic processes within the body. In this study, we have cloned a novel chicken circular RNA circSLC2A13 generated from the solute carrier family 2 member 13 gene (SLC2A13). Also, circSLC2A1 was confirmed by sequencing verification, RNase R treatment, and reverse transcription analysis. Currently, our results show that circSLC2A13 promoted the proliferation and differentiation of chicken myoblasts. The double luciferase reporter system revealed that circSLC2A13 regulated the proliferation and differentiation of myoblasts by competitive binding with miR-34a-3p. In addition, results indicated that circSLC2A13 acts as a miR-34a-3p sponge to relieve its inhibitory effect on the target SMAD3 gene. In summary, this study found that chicken circSLC2A13 can bind to miR-34a-3p and weaken its inhibitory effect on the SMAD family member 3 gene (SMAD3), thereby promoting the proliferation and differentiation of myoblasts. This study laid foundations for broiler industry and muscle development research.


Subject(s)
Cell Differentiation , Cell Proliferation , Chickens , MicroRNAs , Muscle Development , Muscle, Skeletal , Myoblasts , RNA, Circular , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Chickens/genetics , Chickens/growth & development , Chickens/metabolism , Muscle Development/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/growth & development , Myoblasts/metabolism , Myoblasts/cytology
7.
J Environ Manage ; 366: 121791, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38991354

ABSTRACT

To clarify the impacts of tidal hydrological process shifts caused by sea level rise on the blue carbon cycle, a typical coastal wetland in Jiaozhou Bay was selected for this study. The soils of Suaeda salsa (SS) and Phragmites australis (PA) wetlands were collected to simulate the effects of three types of tidal hydrological processes (Neap tide group, NT; Middle tide group, MT; Spring tide group, ST) on the soil-water dissolved inorganic carbon (DIC) dynamic. The results showed that the concentration of water dissolved inorganic carbon (WDIC) increased rapidly (115% higher) at early stage (days 0-4) under the influence of the tidal hydrological processes. Significant differences were found in WDIC concentration during different tidal hydrological processes (P < 0.05), which were expressed as MT (52.7 ± 13.3 mg L-1) > ST (52.5 ± 12.9 mg L-1) > NT (48.4 ± 10.1 mg L-1). After experiencing the tidal hydrological processes, the soil DIC content showed a net accumulation (55.1 ± 1.29 mg L-1vs. 46.7 ± 1.76 mg L-1, P < 0.001), whereas the soil inorganic carbon (SIC) decreased (2.73 ± 1.64 mg L-1vs. 4.61 ± 1.71 mg L-1), which may be attributed to the dissolution of SIC caused by the uptake of CO2 to form DIC. The accumulation of soil DIC was directly related to the SIC (λ = 1.03, P < 0.01), and indirectly related to soil nutrients (SOC substrate, λ = -0.003) and microbes (microbial biomass, λ = -0.10), and was mainly dominated by abiotic processes (abiotic: 58.1 ± 1.8% to 82.7 ± 2.46% vs. biotic: 17.4 ± 2.46% to 41.9 ± 1.76%). The increase of tidal frequency generally inhibited the accumulation of soil DIC content and promoted the output of WDIC. However, the response of soil DIC in different wetland types to tidal frequency was divergent, which was mainly regulated by the trade-off between soil nutrients and SIC content. Taken together, tidal hydrological processes and their frequency changes reshaped DIC dynamics, promoted the dissolution of SIC and the potential uptake of CO2. These findings enhance the comprehension of the inorganic carbon cycle within coastal wetlands, particularly amidst the backdrop of climate change and the rising sea levels.

8.
Anal Chem ; 96(28): 11137-11145, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38953491

ABSTRACT

The Tn antigen, an immature truncated O-glycosylation, is a promising biomarker for cancer detection and diagnosis. However, reliable methods for analyzing O-GalNAcylation and complex O-glycosylation are lacking. Here, we develop a novel method, MOTAI, for the sequential analysis of O-glycosylation using different O-glycoproteases. MOTAI conjugates glycopeptides on a solid support and releases different types of O-glycosylation through sequential enzymatic digestion by O-glycoproteases, including OpeRATOR and IMPa. Because OpeRATOR has less activity on O-GalNAcylation, MOTAI enriches O-GalNAcylation for subsequent analysis. We demonstrate the effectiveness of MOTAI by analyzing fetuin O-glycosylation and Jurkat cell lines. We then apply MOTAI to analyze colorectal cancer and benign colorectal polyps. We identify 32 Tn/sTn-glycoproteins and 43 T/sT-glycoproteins that are significantly increased in tumor tissues. Gene Ontology analysis reveals that most of these proteins are ECM proteins involved in the adhesion process of the intercellular matrix. Additionally, the protein disulfide isomerase CRELD2 has a significant difference in Tn expression, and the abnormally glycosylated T345 and S349 O-glycosylation sites in cancer group samples may promote the secretion of CRELD2 and ultimately tumorigenesis through ECM reshaping. In summary, MOTAI provides a powerful new tool for the in-depth analysis of O-GalNAcylation and complex O-glycosylation. It also reveals the upregulation of Tn/sTn-glycoproteins in colorectal cancer, which may provide new insights into cancer biology and biomarker discovery.


Subject(s)
Antigens, Tumor-Associated, Carbohydrate , Humans , Glycosylation , Antigens, Tumor-Associated, Carbohydrate/metabolism , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Jurkat Cells
9.
Anal Chem ; 96(28): 11533-11541, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38973171

ABSTRACT

In the landscape of biomolecular detection, surface-enhanced Raman spectroscopy (SERS) confronts notable obstacles, particularly in the label-free detection of biomolecules, with glucose and other sugars presenting a quintessential challenge. This study heralds the development of a pioneering SERS substrate, ingeniously engineered through the self-assembly of nanoparticles of diverse sizes (Ag1@Ag2NPs). This configuration strategically induces 'hot spots' within the interstices of nanoparticles, markedly amplifying the detection signal. Rigorous experimental investigations affirm the platform's rapidity, precision, and reproducibility, and the detection limit of this detection method is calculated to be 6.62 pM. Crucially, this methodology facilitates nondestructive glucose detection in simulated samples, including phosphate-buffered saline and urine. Integrating machine learning algorithms with simulated serum samples, the approach adeptly discriminates between hypoglycemic, normoglycemic, and hyperglycemic states. Moreover, the platform's versatility extends to the detection and differentiation of monosaccharides, disaccharides, and methylated glycosides, underscoring its universality and specificity. Comparative Raman spectroscopic analysis of various carbohydrate structures elucidates the unique SERS characteristics pertinent to these molecules. This research signifies a major advance in nonchemical, label-free glucose determination with enhanced sensitivity via SERS, laying a new foundation for its application in precision medicine and advancing structural analysis in the sugar domain.


Subject(s)
Glucose , Metal Nanoparticles , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Metal Nanoparticles/chemistry , Glucose/analysis , Humans , Silver/chemistry , Surface Properties , Limit of Detection , Blood Glucose/analysis
10.
Fish Shellfish Immunol ; 152: 109764, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39002558

ABSTRACT

NF-κB (Nuclear factor-kappa B) family proteins are versatile transcription factors that play crucial regulatory roles in cell development, growth, apoptosis, inflammation, and immune response. However, there is limited research on the function of these key genes in echinoderms. In this study, an NF-κB family gene (SiRel) was identified in sea urchin Strongylocentrotus intermedius. The gene has an open reading frame length of 1809 bp and encodes for 602 amino acids. Domain prediction results revealed that the N-terminal of SiRel protein encodes a conserved Rel homology domain (RHD), including the RHD-DNA binding domain and the RHD-dimerization domain. Multiple sequence comparison results showed that the protein sequences of these two domains were conserved. Phylogenetic analysis indicated that SiRel clustered with Strongylocentrotus purpuratus p65 protein and Rel protein of other echinoderms. Results from quantitative real-time PCR demonstrated detectable SiRel mRNA expression in all tested sea urchin tissues, with the highest expression level found in the gills. And SiRel mRNA expression levels were significantly induced after LPS (Lipopolysaccharide) and poly(I:C) (Polyinosinic:polycytidylic acid) stimulation. In addition, SiRel protein expression can be found in cytoplasm and nucleus of HEK293T cells. Co-immunoprecipitation results showed that SiRel could interact with sea urchin IκB (Inhibitor of NF-κB) protein. Western blotting and dual-luciferase reporter gene assay results indicated that overexpression of SiRel in HEK293T cells could impact the phosphorylation levels of JNK (c-Jun N-terminal kinase) and Erk1/2 (Extracellular signal-regulated kinases1/2) and activate interleukin-6 (IL-6), activating protein 1 (AP-1), interferon (IFN)α/ß/γ, and signal transducer and activator of transcription 3 (STAT3) reporter genes in HEK293T cells. In conclusion, this study reveals that SiRel plays an important role in the innate immune response of sea urchins and enriches our understanding of comparative immunology theory.

11.
Int J Biol Macromol ; 275(Pt 1): 133645, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38964686

ABSTRACT

Fas-associated protein with death domain (FADD) was initially identified as a crucial adaptor protein in the apoptotic pathway mediated by death receptor (DR). Subsequently, many studies have confirmed that FADD plays a vital role in innate immunity and inflammatory responses in animals. However, the function of this pleiotropic molecule in mollusk species has not been well explored. In this study, we successfully verified the gene sequence of FADD in the Zhikong scallop (Chlamys farreri) and designated it as CfFADD. The CfFADD protein contains a conserved death effector and death domains. Phylogenetic analysis showed that CfFADD is a novel addition to the molluscan FADD family with a close evolutionary relationship with molluscan FADD subfamily proteins. CfFADD mRNA expression in various scallop tissues was significantly induced by challenge with pathogen-associated molecular patterns (lipopolysaccharide, peptidoglycan, and poly(I:C)), suggesting its role in innate immunity in scallops. Co-immunoprecipitation showed that CfFADD interacted with the scallop DR (tumor necrosis factor receptor) and a signaling molecule involved in the Toll-like receptor pathway (interleukin-1 receptor-associated kinase), confirming that CfFADD may be involved in DR-mediated apoptosis and innate immune signaling pathways. Further studies showed that CfFADD interacted with CfCaspase-8 and activated caspase-3. HEK293T cells exhibited distinct apoptotic features after transfection with a CfFADD-expression plasmid, suggesting a functional DR-FADD-caspase apoptotic pathway in scallops. Overexpression of CfFADD led to a significant dose-dependent activation of interferon ß and nuclear factor-κB reporter genes, demonstrating the key role of CfFADD in innate immunity. In summary, our research has confirmed the critical roles of CfFADD in innate immunity and apoptosis and provides valuable information for developing comparative immunology theories.

12.
Int J Mol Sci ; 25(14)2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39062957

ABSTRACT

The AT-hook motif nuclear-localized (AHL) family is pivotal for the abiotic stress response in plants. However, the function of the cassava AHL genes has not been elucidated. Promoters, as important regulatory elements of gene expression, play a crucial role in stress resistance. In this study, the promoter of the cassava MeAHL31 gene was cloned. The MeAHL31 protein was localized to the cytoplasm and the nucleus. qRT-PCR analysis revealed that the MeAHL31 gene was expressed in almost all tissues tested, and the expression in tuber roots was 321.3 times higher than that in petioles. Promoter analysis showed that the MeAHL31 promoter contains drought, methyl jasmonate (MeJA), abscisic acid (ABA), and gibberellin (GA) cis-acting elements. Expression analysis indicated that the MeAHL31 gene is dramatically affected by treatments with salt, drought, MeJA, ABA, and GA3. Histochemical staining in the proMeAHL31-GUS transgenic Arabidopsis corroborated that the GUS staining was found in most tissues and organs, excluding seeds. Beta-glucuronidase (GUS) activity assays showed that the activities in the proMeAHL31-GUS transgenic Arabidopsis were enhanced by different concentrations of NaCl, mannitol (for simulating drought), and MeJA treatments. The integrated findings suggest that the MeAHL31 promoter responds to the abiotic stresses of salt and drought, and its activity is regulated by the MeJA hormone signal.


Subject(s)
Arabidopsis , Gene Expression Regulation, Plant , Manihot , Plant Growth Regulators , Plant Proteins , Plants, Genetically Modified , Promoter Regions, Genetic , Stress, Physiological , Arabidopsis/genetics , Arabidopsis/metabolism , Plants, Genetically Modified/genetics , Stress, Physiological/genetics , Manihot/genetics , Manihot/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Droughts , Cyclopentanes/pharmacology , Cyclopentanes/metabolism , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Oxylipins/pharmacology , Oxylipins/metabolism , Acetates/pharmacology
13.
J Cancer ; 15(13): 4301-4312, 2024.
Article in English | MEDLINE | ID: mdl-38947376

ABSTRACT

Background: SIVA-1 has been reported to play a key role in cell apoptosis and gastric cancer (GC) chemoresistance in vitro. Nevertheless, the clinical significance of SIVA-1 in GC chemotherapy remains unclear. Methods and results: Immunohistochemistry and histoculture drug response assays were used to determine SIVA-1 expression and the inhibition rate (IR) of agents to GC and to further analyze the relationship between these two phenomena. Additionally, cisplatin (DDP)-resistant GC cells were used to elucidate the role and mechanism of SIVA-1 in vivo. The results demonstrated that SIVA-1 expression was positively correlated with the IR of DDP to GC but not with those of 5-fluorouracil (5-FU) or adriamycin (ADM). Furthermore, SIVA-1 overexpression with DDP treatment synergistically inhibited tumor growth in vivo by increasing PCBP1 and decreasing Bcl-2 and Bcl-xL expression. Conclusions: Our study demonstrated that SIVA-1 may serve as an indicator of the GC sensitivity to DDP, and the mechanism of SIVA-1 in GC resistance to DDP was preliminarily revealed.

14.
J Med Food ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949913

ABSTRACT

Excessive fat deposition leads to obesity and cardiovascular diseases with abnormal metabolism. Pantothenic acid (PA) is a major B vitamin required for energy metabolism. However, the effect of PA on lipid metabolism and obesity has not been explored. We investigated the effects and molecular mechanism of PA on fat accumulation as well as the influence of adipogenic marker genes in both adult male mice and primary adipocytes. First, we demonstrated that PA attenuates weight gain in mice fed high-fat diet (HFD). Besides, PA supplementation substantially improved glucose tolerance and lipid metabolic disorder in obese mice. Furthermore, PA significantly inhibited white adipose tissue (WAT) deposition as well as fat droplets visualized by magnification in both chow and HFD group. More importantly, PA obviously suppressed the mRNA levels of CD36, IL-6, and TNF-α to alleviate inflammation and reduced the levels of PPARγ, aP2, and C/EBPα genes that are related to lipid metabolism in inguinal white adipose tissue (ing-WAT) and epididymal white adipose tissue (ei-WAT). In vitro, PA supplementation showed a lower lipid droplet aggregation as well as reduced expression levels of adipogentic genes. Finally, we identified that PA inhibits the phosphorylation levels of p38 and JNK in murine primary adipocytes. Collectively, our data demonstrated for the first time that PA attenuates lipid metabolic disorder as well as fat deposition by JNK/p38 MAPK signaling pathway.

15.
Sci China Life Sci ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38951428

ABSTRACT

Cancer stem cells (CSCs) play an important role in metastasis development, tumor recurrence, and treatment resistance, and are essential for the eradication of cancer. Currently, therapies fail to eradicate CSCs due to their therapeutic stress-induced cellular escape, which leads to enhanced aggressive behaviors compared with CSCs that have never been treated. However, the underlying mechanisms regulating the therapeutic escape remain unknown. To this end, we established a model to isolate the therapeutic escaped CSCs (TSCSCs) from breast CSCs and performed the transcription profile to reveal the mechanism. Mechanistically, we demonstrated that the behavior of therapeutic escape was regulated through the p38/MAPK signaling pathway, resulting in TSCSCs exhibiting enhanced motility and metastasis. Notably, blocking the p38/MAPK signaling pathway effectively reduced motility and metastasis ability both in vitro and in vivo, which were further supported by downregulated motility-related genes and epithelial-mesenchymal transition (EMT)-related proteins vimentin and N-cadherin. The obtained findings reveal the p38/MAPK pathway as a potential therapeutic target for TSCSCs and would provide profound implications for cancer therapy.

16.
BMC Immunol ; 25(1): 52, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075358

ABSTRACT

Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by hyperglycemia resulting from defects in insulin secretion and/or insulin action. Increasing evidence suggests that inflammation played an important role in the pathogenesis of T2DM. Prospective studies on the link between immunoglobulins concentrations and the risk of T2DM in adults are limited. We developed a cohort study including 7,093 adults without T2DM history. The incidence of T2DM was 16.45 per 1,000 person-years. Compared with the lowest quartiles, the hazard ratios (95% confidence intervals) of T2DM for the highest quartiles of IgG, IgE, IgM and IgA were 0.64 (0.48-0.85), 0.94 (0.72-1.23), 0.68 (0.50-0.92) and 1.62 (1.24-2.11) (P for trend was < 0.01, 0.84, 0.02 and < 0.0001), respectively, suggesting that serum IgG and IgM concentrations were inversely associated with the incidence of T2DM, and IgA levels were positively associated with the risk of T2DM in a general adult population.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/immunology , Diabetes Mellitus, Type 2/blood , Female , Male , Prospective Studies , Middle Aged , Adult , Incidence , Risk Factors , Immunoglobulins/blood , Aged , Cohort Studies
17.
J Appl Clin Med Phys ; : e14450, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-39031891

ABSTRACT

The purpose of this study is to develop an electronic portal imaging device-based multi-leaf collimator calibration procedure using log files. Picket fence fields with 2-14 mm nominal strip widths were performed and normalized by open field. Normalized pixel intensity profiles along the direction of leaf motion for each leaf pair were taken. Three independent algorithms and an integration method derived from them were developed according to the valley value, valley area, full-width half-maximum (FWHM) of the profile, and the abutment width of the leaf pairs obtained from the log files. Three data processing schemes (Scheme A, Scheme B, and Scheme C) were performed based on different data processing methods. To test the usefulness and robustness of the algorithm, the known leaf position errors along the direction of perpendicular leaf motion via the treatment planning system were introduced in the picket fence field with nominal 5, 8, and 11 mm. Algorithm tests were performed every 2 weeks over 4 months. According to the log files, about 17.628% and 1.060% of the leaves had position errors beyond ± 0.1 and ± 0.2 mm, respectively. The absolute position errors of the algorithm tests for different data schemes were 0.062 ± 0.067 (Scheme A), 0.041 ± 0.045 (Scheme B), and 0.037 ± 0.043 (Scheme C). The absolute position errors of the algorithms developed by Scheme C were 0.054 ± 0.063 (valley depth method), 0.040 ± 0.038 (valley area method), 0.031 ± 0.031 (FWHM method), and 0.021 ± 0.024 (integrated method). For the efficiency and robustness test of the algorithm, the absolute position errors of the integration method of Scheme C were 0.020 ± 0.024 (5 mm), 0.024 ± 0.026 (8 mm), and 0.018 ± 0.024 (11 mm). Different data processing schemes could affect the accuracy of the developed algorithms. The integration method could integrate the benefits of each algorithm, which improved the level of robustness and accuracy of the algorithm. The integration method can perform multi-leaf collimator (MLC) quality assurance with an accuracy of 0.1 mm. This method is simple, effective, robust, quantitative, and can detect a wide range of MLC leaf position errors.

18.
Carbohydr Polym ; 342: 122417, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39048243

ABSTRACT

RSA-1 is a polysaccharide obtained from Raphani semen with a relatively clear structure and anti-colon cancer activity. In this study, high-performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS), and nuclear magnetic resonance (NMR) spectroscopy were applied to characterise the complex chain structure of RSA-1. Subsequently, the inhibitory effect on colon cancer growth through apoptosis induction in colon cancer cells was explored. The findings indicate that the main chain of RSA-1 consists of →3)-ß-D-Galp-(1 â†’ and 3,6)-ß-D-Galp-(1 â†’ substituted at C-6 with branched α-L-Araf side chains. RSA-1 disrupts the Bax/Bcl-2 ratio and thus inhibits the viability of colon cancer cells in vitro. Furthermore, it inhibits colon cancer migration by attenuating epithelial-mesenchymal transition. Notably, RSA-1 exhibited negligible impact on the growth of human intestinal epithelial cells within a relevant concentration range. This study establishes a theoretical foundation and provides technical support for the prospective development and application of RSA-1 as a dual-purpose anti-colon cancer drug and functional food.


Subject(s)
Colonic Neoplasms , Galactans , Humans , Galactans/chemistry , Galactans/pharmacology , Galactans/isolation & purification , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Apoptosis/drug effects , Cell Proliferation/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Line, Tumor , Cell Movement/drug effects , Cell Survival/drug effects , Epithelial-Mesenchymal Transition/drug effects
20.
Biomed Opt Express ; 15(5): 2977-2999, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38855696

ABSTRACT

Accurate segmentation of polyp regions in gastrointestinal endoscopic images is pivotal for diagnosis and treatment. Despite advancements, challenges persist, like accurately segmenting small polyps and maintaining accuracy when polyps resemble surrounding tissues. Recent studies show the effectiveness of the pyramid vision transformer (PVT) in capturing global context, yet it may lack detailed information. Conversely, U-Net excels in semantic extraction. Hence, we propose the bilateral fusion enhanced network (BFE-Net) to address these challenges. Our model integrates U-Net and PVT features via a deep feature enhancement fusion module (FEF) and attention decoder module (AD). Experimental results demonstrate significant improvements, validating our model's effectiveness across various datasets and modalities, promising advancements in gastrointestinal polyp diagnosis and treatment.

SELECTION OF CITATIONS
SEARCH DETAIL