Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 197
Filter
1.
J Hazard Mater ; 477: 135402, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39096632

ABSTRACT

Biochar is an effective and economical strategy for in situ soil cadmium (Cd) remediation. It is essential to comprehensively investigate how biochar mitigates Cd uptake of the main rice subspecies. A pot experiment was established via adding corn stalk biochar into Cd-contaminated soil growing indica Yangdao 6 (YD) and japonica Nangeng 9108 (9108). 9108 had lower shoot biomass (-17.9%) but higher root biomass (+14.4%) and shoot Cd concentration (+29.4%) than YD. Biochar decreased soil available Cd by 25.2% and shoot Cd concentration by 13.6% through the liming and passivation effects. Biochar also favored Cd mitigation by recruiting Fe reducer, Cd remover and plant growth-promoting rhizobacteria (e.g. Bacteroides, Deferrisomatota, Bacillus and Allorhizobium). Besides, biochar reduced Cd uptake by stimulating iron plaques formation for 9108. Moreover, biochar did not reduce Cd uptake by inhibiting Cd transporter genes' expressions and it increased OsHMA2 expression in YD. In conclusion, biochar had great capacity in mitigating Cd pollution and rice subspecies responded differently to biochar in iron plaque formation and Cd transporter genes. The research established a comprehensive understanding of the mechanisms underlying Cd mitigation by biochar and helped to breed low Cd-accumulated rice cultivars to safeguard rice production.

2.
J Colloid Interface Sci ; 675: 419-428, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38981251

ABSTRACT

The photocatalytic CO2 reduction reaction is severely limited by sluggish charge kinetics. To address this issue, a strategy utilizing non-metal-doped layered double hydroxide (LDH) has been developed to control the electronic structure of spindle-shaped nanoflowers, resulting in efficient photocatalytic CO2 reduction. The results demonstrate that the designed catalyst yields 263.16 µmol g-1 h-1 for the photoreduction of CO2 to CO. Furthermore, the in situ Fourier transform infrared spectrum (FT-IR) analysis demonstrate that the specific S-ligand (S-bridge) facilitates CO2 activation, ensuring the continuous production of *COOH. The hydrothermal-assisted ionic liquid method proposed in this study offers guidance for modifying catalysts.

3.
Nat Commun ; 15(1): 6075, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39025871

ABSTRACT

Although numerous ambient ionization mass spectroscopy technologies have been developed over the past 20 years to address diverse analytical circumstances, a single-ion source technique that can handle all analyte types is still lacking. Here, a wide-energy programmable microwave plasma-ionization mass spectrometry (WPMPI-MS) system is presented, through which MS analysis can achieve high coverage of substances with various characteristics by digitally regulating the microwave energy. In addition, ionization energy can be rapidly scanned using programmable waveforms, enabling the simultaneous detection of biomolecules, heavy metals, non-polar molecules, etc., in seconds. WPMPI-MS performs well in analyzing real samples, rapidly analyzing nine toxicological standards in one drop of serum, and demonstrating good quantification and liquid chromatography coupling capability. The WPMPI-MS has also been used to detect soil extracts, solid pharmaceuticals, and landfill leachate, further demonstrating its robust analytical capabilities for real samples. The prospective uses of the technology in biological and chemical analysis are extensive, and it is anticipated to emerge as a viable alternative to commercially available ion sources.


Subject(s)
Mass Spectrometry , Microwaves , Mass Spectrometry/methods , Humans , Metals, Heavy/analysis
4.
ACS Biomater Sci Eng ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013628

ABSTRACT

Conducting/insulating inks have received significant attention for the fabrication of a wide range of additive manufacturing technology. However, current inks often demonstrate poor biocompatibility and face trade-offs between conductivity and mechanical stiffness under physiological conditions. Here, conductive/insulating bioinks based on two-dimensional materials are proposed. The conductive bioink, graphene (GR)-poly(lactic-co-glycolic acid) (PLGA), is prepared by introducing conductive GR into a degradable polymer matrix, PLGA, while the insulating bioink, boron nitride (BN)-PLGA, is synthesized by adding insulating BN. By optimizing the material ratios, this work achieves precise control of the electromechanical properties of the bioinks, thereby enabling the flexible construction of conductive networks according to specific requirements. Furthermore, these bioinks are compatible with a variety of manufacturing technologies such as 3D printing, electrospinning, spin coating, and injection molding, expanding their application range in the biomedical field. Overall, the results suggest that these conducting/insulating bioinks offer improved mechanical, electronic, and biological properties for various emerging biomedical applications.

5.
Int Immunopharmacol ; 137: 112508, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38889512

ABSTRACT

BACKGROUND: MicroRNA plays an important role in the progression of sepsis. We found a significant increase of in miR-625-5p expression in the blood of patients with sepsis, and lipopolysaccharide (LPS)-stimulated EA.hy926 cells. To date, little is known about the specific biological function of miR-625-5p in sepsis. METHODS: Changes in miR-625-5p expression were verified through quantitative real-time polymerase chain reaction in 45 patients with sepsis or septic shock and 30 healthy subjects. In vitro, EA.hy926 cells were treated with LPS. Transendothelial electrical resistance assay and FITC-dextran were used in evaluating endothelial barrier function. RESULTS: Herein, patients with sepsis or septic shock had significantly higher miR-625-5p expression levels, chemokine (C-X-C motif) ligand 16 (CXCL16) levels, and glycocalyx components than the healthy controls, and miR-625-5p level was positively correlated with disease. Kaplan-Meier analysis demonstrated a strong association between miR-625-5p level and 28-day mortality. Furthermore, the miR-625-5p inhibitor significantly alleviated LPS-induced endothelial barrier injury in vitro. Then, miR-625-5p positively regulated CXCL16 and down-regulated miR-625-5p attenuated CXCL16 transcription and expression in EA.hy926 cells. CXCL16 knockout significantly alleviated vascular barrier dysfunction in the LPS-induced EA.hy926 cells. sCXCL16 treatment in EA.hy926 cells significantly increased endothelial hyperpermeability by disrupting endothelial glycocalyx, tight junction proteins, and adherens junction proteins through the modulation of C-X-C chemokine receptor type 6 (CXCR6). CONCLUSIONS: Increase in miR-625-5p level may be an effective biomarker for predicting 28-day mortality in patients with sepsis/septic shock. miR-625-5p is a critical pathogenic factor for endothelial barrier dysfunction in LPS-induced EA.hy926 cells because it activates the CXCL16/CXCR6 axis.


Subject(s)
Chemokine CXCL16 , Lipopolysaccharides , MicroRNAs , Receptors, CXCR6 , Sepsis , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Chemokine CXCL16/metabolism , Chemokine CXCL16/genetics , Sepsis/metabolism , Male , Female , Middle Aged , Receptors, CXCR6/metabolism , Receptors, CXCR6/genetics , Aged , Cell Line , Endothelial Cells/metabolism , Signal Transduction
6.
Sci Total Environ ; 946: 174178, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38917905

ABSTRACT

Agricultural management practices can induce changes in soil aggregation structure that alter the microbial nitrous oxide (N2O) production and reduction processes occurring at the microscale, leading to large-scale consequences for N2O emissions. However, the mechanistic understanding of how organic fertilization affects these context-dependent small-scale N2O emissions and associated key nitrogen (N) cycling microbial communities is lacking. Here, denitrification gas (N2O, N2) and potential denitrification capacity N2O/(N2O + N2) were assessed by automated gas chromatography in different soil aggregates (>2 mm, 2-0.25 and <0.25 mm), while associated microbial communities were assessed by sequencing and qPCR of N2O-producing (nirK and nirS) and reducing (nosZ clade I and II) genes. The results indicated that organic fertilization reduced N2O emissions by enhancing the conversion of N2O to N2 in all aggregate sizes. Moreover, potential N2O production and reduction hotspots occurred in smaller soil aggregates, with the degree depending on organic fertilizer type and application rate. Further, significantly higher abundance and diversity of nosZ clades relative to nirK and nirS revealed complete denitrification promoted through selection of denitrifying communities at microscales favouring N2O reduction. Communities associated with high and low emission treatments form modules with specific sequence types which may be diagnostic of emission levels. Taken together, these findings suggest that organic fertilizers reduced N2O emissions through influencing soil factors and patterns of niche partitioning between N2O-producing and reducing communities within soil aggregates, and selection for communities that overall are more likely to consume than emit N2O. These findings are helpful in strengthening the ability to predict N2O emissions from agricultural soils under organic fertilization as well as contributing to the development of net-zero carbon strategies for sustainable agriculture.


Subject(s)
Denitrification , Fertilizers , Nitrous Oxide , Soil Microbiology , Soil , Nitrous Oxide/analysis , Fertilizers/analysis , Soil/chemistry , Nitrogen Cycle , Agriculture/methods , Air Pollutants/analysis , Nitrogen/analysis , Microbiota
7.
Inorg Chem ; 63(20): 9307-9314, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38718357

ABSTRACT

Single atom site catalysts (SACs) with atomically dispersed active sites can be expected to be potential ideal catalysts for accurately modulating the persulfate activation pathway during the water remediation process because of their well-defined structure and the maximum metallic atom utilization. In this paper, a series of Cu SACs with different coordination environments were synthesized to elaborately regulate the peroxymonosulfate activation pathway in AOPs to clarify active species generation and transformation in water remediation. The degradation rate constants (kobs) of Cu-N2, Cu-N3, and Cu-N4 were 0.028, 0.021, and 0.015 min-1, respectively. Cu-N2 SACs exhibited a noticeable enhanced performance for bisphenol A (BPA) removal from water compared to that of the Cu-Nx SACs (x = 3, 4), accompanied by peroxymonosulfate (PMS) activation pathway variation. As shown by experimental and theoretical results, the PMS activation pathway was transformed from ROS to electron transfer with nitrogen coordination numbers decreasing from 4 to 2, which can be ascribed to the uneven charge distribution of Cu sites as well as upshifts in the d-band center, and thereby optimized electron transfer for PMS activation. Furthermore, the increasing nitrogen vacancies of single Cu site catalysts can also result in more unoccupied 3d orbitals of Cu atoms in SACs, thereby improving the intermediates' (PMS and BPA) adsorption-desorption process and BPA removal performance. These findings provided a beneficial approach for the coordination number regulation of SACs in water remediation.

8.
J Colloid Interface Sci ; 668: 492-501, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38691959

ABSTRACT

The improvement of surface reactivity in noble-metal-free cocatalysts is crucial for the development of efficient and cost-effective photocatalytic systems. However, the influence of crystallinity on catalytic efficacy has received limited attention. Herein, we report the utilization of structurally disordered MoSe2 with abundant 1T phase as a versatile cocatalyst for photocatalytic hydrogen evolution. Using MoSe2/carbon nitride (CN) hybrids as a case study, it is demonstrated that amorphous MoSe2 significantly enhances the hydrogen evolution rate of CN, achieving up to 11.37 µmol h-1, surpassing both low crystallinity (8.24 µmol h-1) and high crystallinity MoSe2 (3.86 µmol h-1). Experimental analysis indicates that the disordered structure of amorphous MoSe2, characterized by coordination-unsaturated surface sites and a rich 1T phase with abundant active sites at the basal plane, predominantly facilitates the conversion of surface-bound protons to hydrogen. Conversely, the heightened charge transfer capacity of the highly crystalline counterpart plays a minor role in enhancing practical catalytic performance. This approach is applicable for enhancing the photocatalytic hydrogen evolution performance of various semiconducting photocatalysts, including CdS, TiO2, and ZnIn2S4, thereby offering novel insights into the advancement of high-performance non-precious catalysts through phase engineering.

9.
Biochem Biophys Res Commun ; 716: 150019, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38703555

ABSTRACT

- Acute respiratory distress syndrome (ARDS)/acute lung injury (ALI) is a life-threatening condition marked by severe lung inflammation and increased lung endothelial barrier permeability. Endothelial glycocalyx deterioration is the primary factor of vascular permeability changes in ARDS/ALI. Although previous studies have shown that phospholipase D2 (PLD2) is closely related to the onset and progression of ARDS/ALI, its role and mechanism in the damage of endothelial cell glycocalyx remains unclear. We used LPS-induced ARDS/ALI mice (in vivo) and LPS-stimulated injury models of EA.hy926 endothelial cells (in vitro). We employed C57BL/6 mice, including wild-type and PLD2 knockout (PLD2-/-) mice, to establish the ARDS/ALI model. We applied immunofluorescence and ELISA to examine changes in syndecan-1 (SDC-1), matrix metalloproteinase-9 (MMP9), inflammatory cytokines (TNF-α, IL-6, and IL-1ß) levels and the effect of external factors, such as phosphatidic acid (PA), 1-butanol (a PLD inhibitor), on SDC-1 and MMP9 expression levels. We found that PLD2 deficiency inhibits SDC-1 degradation and MMP9 expression in LPS-induced ARDS/ALI. Externally added PA decreases SDC-1 levels and increases MMP9 in endothelial cells, hence underlining PA's role in SDC-1 degradation. Additionally, PLD2 deficiency decreases the production of inflammatory cytokines (TNF-α, IL-6, and IL-1ß) in LPS-induced ARDS/ALI. In summary, these findings suggest that PLD2 deficiency plays a role in inhibiting the inflammatory process and protecting against endothelial glycocalyx injury in LPS-induced ARDS/ALI.


Subject(s)
Acute Lung Injury , Glycocalyx , Lipopolysaccharides , Mice, Inbred C57BL , Mice, Knockout , Phospholipase D , Respiratory Distress Syndrome , Animals , Phospholipase D/metabolism , Phospholipase D/genetics , Glycocalyx/metabolism , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/chemically induced , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Acute Lung Injury/chemically induced , Acute Lung Injury/etiology , Mice , Humans , Male , Matrix Metalloproteinase 9/metabolism , Endothelial Cells/metabolism , Endothelial Cells/pathology , Syndecan-1/metabolism , Syndecan-1/genetics , Cytokines/metabolism , Cell Line
10.
Biomed Pharmacother ; 175: 116621, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677244

ABSTRACT

BACKGROUND: Extracellular neutrophil extracellular traps (NETs) play an important role in acute lung injury (ALI), but their mechanisms are still unclear. The aim of this study is to explore the effects of NETs on endothelial glycocalyx/HGF/cMET pathway and ferroptosis in ALI and elucidate their potential mechanisms. METHODS: Plasma was collected from healthy and sepsis patients to test for differences in neutrophil elastase (NE) expression of NETs components. In addition, LPS-ALI mice and endothelial cell injury models were established, and NETs were disrupted by siPAD4 (a driver gene for NETs) and sivelestat (an inhibitor of the NETs component) in the mice and by sivelestat in the endothelial cell injury models, and the effects of NETs on the SDC-1/HS/HGF/cMET pathway were studied. To verify the relationship between NETs and ferroptosis, Fer1, a ferroptosis inhibitor, was added as a positive control to observe the effect of NETs on ferroptosis indicators. RESULTS: The expression level of NE was significantly higher in the plasma of sepsis patients. In ALI mice, intervention in the generation of NETs reduced pulmonary vascular permeability, protected the integrity of SDC-1/HS and promoted the downstream HGF/cMET pathway. In addition, sivelestat also improved the survival rate of mice, decreased the serious degree of ferroptosis. In the endothelial cells, the results were consistent with those of the ALI mice. CONCLUSION: The study indicates that inhibiting the production of NETs can protect the normal conduction of the SDC-1/HS/HGF/cMET signalling pathway and reduce the severity of ferroptosis.


Subject(s)
Acute Lung Injury , Endothelial Cells , Extracellular Traps , Ferroptosis , Lipopolysaccharides , Mice, Inbred C57BL , Signal Transduction , Syndecan-1 , Animals , Ferroptosis/drug effects , Ferroptosis/physiology , Humans , Lipopolysaccharides/pharmacology , Male , Mice , Acute Lung Injury/pathology , Acute Lung Injury/metabolism , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Endothelial Cells/pathology , Extracellular Traps/metabolism , Extracellular Traps/drug effects , Signal Transduction/drug effects , Syndecan-1/metabolism , Sepsis/metabolism , Sepsis/pathology , Female , Middle Aged , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Disease Models, Animal
11.
J Am Soc Mass Spectrom ; 35(5): 951-959, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38597607

ABSTRACT

C-H bond ortho-substitution reaction has always been a significant and challenging topic in organic chemistry. We proposed a synthesis method based on microwave plasma torches. High-resolution mass spectrometry was used to monitor rapid reaction products. 2-Alkylbenzimidazole can be formed through the reaction of phenylnitrenium ion and nitriles on a millisecond scale. This reaction can achieve the one-step formation of benzimidazoles from benzene ring single-substituted compounds without the addition of external oxidants or catalysts. A similar C-H bond activation reaction can be accomplished with ketones. Meanwhile, the microwave plasma reactor was modified, and the resulting 2-methylbenzimidazole was successfully collected, indicating the device has good application potential in organic reactions such as C-H bond activation reaction.

13.
Anal Chem ; 96(14): 5664-5668, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38530953

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) have caused widespread environmental concern in recent years. Among them, the levels of perfluoroalkane sulfonyl fluorides (PFASFs) in the environment have rarely been reported due to the lack of sensitive analytical methods. Herein, a novel liquid chromatography-microwave plasma torch ionization-mass spectrometry (LC-MPTI-MS) technique was designed for the direct analysis of PFASFs in the environment. The collaborative action of reactive oxygen species (such as hydroxyl radicals) and the elevated temperature within the ambient MPTI environment results in the replacement of the fluorine atom in sulfonyl fluoride by oxygen, leading to the detection of perfluoroalkanesulfonic acid (PFSA) ions by MS. Concurrently, LC was employed to separate other PFSAs that are present in the environment. Three PFASFs exhibited good linearity within the range of 1-500 µg/L with R2 > 0.994. The limit of detections (LODs) and the limit of quantifications (LOQs) were measured at 39.32-87.87 and 131.07-292.90 ng/L, respectively. The method was utilized for the direct detection of spiked perfluorooctane sulfonyl fluoride (PFOSF) in wastewater with recoveries of 77.16 to 124.81%. Our approach circumvents the laborious process of chemical derivatization and is anticipated to serve as a robust tool for determining the levels and behaviors of PFASFs in the environment.

14.
ACS Appl Mater Interfaces ; 16(14): 17787-17796, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38533892

ABSTRACT

PbZrO3-based antiferroelectric (AFE) ceramic materials have emerged as potential candidates for the next generation of high-energy multilayer ceramic capacitors (MLCCs) because of their distinctive characteristics of double hysteresis loops. The energy storage efficiency of orthorhombic AFE ceramics with ultrahigh storage density is relatively low, which hinders their practical application. In this study, the low efficiency limit of PLZST-based orthorhombic ceramics was overcome by precisely adjusting the Sn4+ content in the (Pb0.95Ca0.02La0.02)(Zr0.99-xSnxTi0.01)O3 AFE ceramics. On one hand, the addition of Sn4+ disrupts the original long-range dipole and improves the rapid response of polarization reversal under the applied voltage. As a result, the difference in electric hysteresis under an electric field is reduced, leading to a significant improvement in energy storage efficiency. On the other hand, increasing the Sn4+ content suppresses the formation of oxygen vacancies, inhibiting grain growth and strengthening grain bonding. This results in ceramics with a high breakdown field strength. Ultimately, the resulting PLCZST ceramics reveal an expressively improved recoverable energy density of 10.2 J cm-3 together with a high energy efficiency of 91.4% under a high applied electric field of 560 kV cm-1. The present study demonstrates the tunability of performance in orthorhombic PLZST AFE ceramics, thereby introducing a ceramic material with exceptional energy storage capabilities for MLCC applications.

15.
Sci Total Environ ; 924: 171700, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38490408

ABSTRACT

The speciation, bioaccumulation, and toxicity of the newly deposited atmospheric heavy metals in the soil-earthworm (Eisenia fetida) system were investigated by a fully factorial atmospheric exposure experiment using soils exposed to 0.8-year and 1.8-year atmospheric depositions. The results shown that the newly deposited metals (Cu, Cd, and Pb) primarily accumulated in the topsoil (0-6 cm) and were present as the highly bioavailable speciation. They can migrate further to increase the concentrations of Cu, Cd, and Pb in soil solution of the deeper layer (at 10 cm) by 12 %-436 %. Earthworms tended to preferentially accumulate the newly deposited metals, which contributed 10 %-61 % of Cu, Cd, and Pb in earthworms. Further, for the unpolluted and moderately polluted soils, the newly deposited metals induced the significant oxidative stress in earthworms, resulting in significant increases in antioxidant enzyme activities (SOD, CAT, and GSH-Px). No significant differences were observed in the levels of heavy metals in soil solutions, bioaccumulation, and enzyme activities in earthworms exposed to 0.8-year and 1.8-year depositions, indicating the bioavailability of atmospheric metals deposited into soils was rapidly decreased with time. This study highlights the high bioaccumulation and toxicity of heavy metals to earthworm from the new atmospheric deposition during the earthworm growing period.


Subject(s)
Metals, Heavy , Oligochaeta , Soil Pollutants , Animals , Copper/toxicity , Copper/analysis , Cadmium , Soil , Bioaccumulation , Lead , Soil Pollutants/toxicity , Soil Pollutants/analysis , Metals, Heavy/toxicity , Metals, Heavy/analysis
16.
Int Immunopharmacol ; 129: 111603, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38310766

ABSTRACT

Acute lung injury (ALI) has received considerable attention in intensive care owing to its high mortality rate. It has been demonstrated that the selective alpha7 nicotinic acetylcholine receptor agonist Gainesville Tokushima scientists (GTS)-21 is promising for treating ALI caused by lipopolysaccharides (LPS). However, the precise underlying mechanism remains unknown. This study aimed to investigate the potential efficacy of GTS-21 in the treatment of ALI. We developed mouse models of ALI and alveolar epithelial type II cells (AT2s) injury following treatment with LPS and different polarized macrophage supernatants, respectively. Pathological changes, pulmonary edema, and lung compliance were assessed. Inflammatory cells count, protein content, and pro-inflammatory cytokine levels were analysed in the bronchoalveolar lavage fluid. The expression of angiotensin-converting enzyme (ACE), ACE2, syndecan-1 (SDC-1), heparan sulphate (HS), heparanase (HPA), exostosin (EXT)-1, and NF-κB were tested in lung tissues and cells. GTS-21-induced changes in macrophage polarization were verified in vivo and in vitro. Polarized macrophage supernatants with or without recombination a disintegrin and metalloproteinase-17 (ADAM-17) and small interfering (si)RNA ADAM-17 were used to verify the role of ADAM-17 in AT2 injury. By reducing pathological alterations, lung permeability, inflammatory response, ACE/ACE2 ratio, and glycocalyx shedding, as well as by downregulating the HPA and NF-κB pathways and upregulating EXT1 expression in vivo, GTS-21 significantly diminished LPS-induced ALI compared to that of the LPS group. GTS-21 significantly attenuated macrophage M1 polarization and augmented M2 polarization in vitro and in vivo. The destructive effects of M1 polarization supernatant can be inhibited by GTS-21 and siRNA ADAM-17. GTS-21 exerted a protective effect against LPS-induced ALI, which was reversed by recombinant ADAM-17. Collectively, GTS-21 alleviates LPS-induced ALI by attenuating AT2s ACE/ACE2 ratio and glycocalyx shedding through the inhibition of macrophage M1 polarization derived ADAM-17.


Subject(s)
Acute Lung Injury , Benzylidene Compounds , Glycocalyx , Pyridines , Animals , Mice , Lipopolysaccharides , ADAM17 Protein , Angiotensin-Converting Enzyme 2 , NF-kappa B , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Lung
17.
Int Urol Nephrol ; 56(6): 2045-2053, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38206525

ABSTRACT

PURPOSE: Keratin 14 (KRT14) is hypothesized to be involved in the pathogenesis of renal cell carcinoma (RCC) based on its tumorigenic role in various cancers and its relationship with the prognosis of other urinary system malignancies. This study aimed to evaluate the correlation of KRT14 with tumor properties and prognosis in RCC patients. METHODS: Data from 180 RCC patients who received tumor resection were retrospectively reviewed. The KRT14 was assessed by immunohistochemistry (IHC) staining in tumor tissues and non-tumor tissues. RESULTS: KRT14 was insufficiently expressed in both tumor and non-tumor tissues, with median (interquartile range) IHC score of 2.0 (0.0-3.4) and 1.0 (0.0-2.0), respectively. While it was relatively higher in tumor versus non-tumor tissues (P < 0.001). Besides, tumor KRT14 was positively correlated with the pathological grade (P = 0.038), tumor size (P = 0.012), T stage (P = 0.006), and TNM stage (P = 0.018). Interestingly, tumor KRT14 high predicted shorter accumulating recurrence-free survival (RFS) (P = 0.003) and accumulating overall survival (OS) (P = 0.001), which was further verified by the multivariate Cox's regression analysis (both P < 0.05). Furthermore, tumor KRT14 high estimated shorter RFS and OS from the Gene Expression Profiling Interactive Analysis and Human Protein ATLAS databases (all P < 0.05). Subgroup analyses indicated that the correlation of tumor KRT14 with accumulating RFS and accumulating OS was more pronounced in RCC patients with better physical status (such as age < 65 years and better eastern cooperative oncology group performance status) and higher tumor stages (such as higher pathological grade). CONCLUSION: High KRT14 in tumor tissue could reflect an advanced tumor features and unsatisfying survival in RCC patients.


Subject(s)
Carcinoma, Renal Cell , Keratin-14 , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/mortality , Kidney Neoplasms/pathology , Kidney Neoplasms/mortality , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Male , Female , Middle Aged , Prognosis , Retrospective Studies , Follow-Up Studies , Aged , Keratin-14/analysis , Neoplasm Staging , Time Factors , Survival Rate , Immunohistochemistry , Biomarkers, Tumor/metabolism
18.
Respir Res ; 25(1): 40, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38238740

ABSTRACT

BACKGROUND: Although EGFR-TKI resistance mechanisms in non-small cell lung cancer (NSCLC) have been extensively studied, certain patient subgroups remain with unclear mechanisms. This retrospective study analysed mutation data of NSCLC patients with EGFR-sensitive mutations and high programmed death-ligand 1 (PD-L1) expression or high TMB to identify primary resistance mechanisms. METHODS: Hybrid capture-based next-generation sequencing (NGS) was used to analyse mutations in 639 genes in tumor tissues and blood samples from 339 NSCLC patients. PD-L1 immunohistochemical staining was also performed on the same cell blocks. Molecular and pathway profiles were compared among patient subgroups. RESULTS: TMB was significantly higher in lung cancer patients with EGFR-sensitive mutations and high PD-L1 expression. Compared with the high-expression PD-L1 or high TMB and low-expression or TMB groups, the top 10 genes exhibited differences in both gene types and mutation rates. Pathway analysis revealed a significant mutations of the PI3K signaling pathway in the EGFR-sensitive mutation group with high PD-L1 expression (38% versus 12%, p < 0.001) and high TMB group (31% versus 13%, p < 0.05). Notably, PIK3CA and PTEN mutations emerged as the most important differentially mutated genes within the PI3K signaling pathway. CONCLUSIONS: Our findings reveal that the presence of PI3K signaling pathway mutations may be responsible for inducing primary resistance to EGFR-TKIs in NSCLC patients with EGFR-sensitive mutations along with high PD-L1 expression or high TMB. This finding is of great significance in guiding subsequent precision treatments in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , B7-H1 Antigen , Retrospective Studies , Phosphatidylinositol 3-Kinases/genetics , ErbB Receptors/genetics , ErbB Receptors/metabolism , Mutation/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
19.
Environ Sci Pollut Res Int ; 31(1): 433-444, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38012484

ABSTRACT

Cadmium (Cd) pollution induced by smelting process is of great concern worldwide. However, the comprehensive risk assessment of Cd exposures in smelting areas with farming coexist is lacking. In this study, atmospheric deposition, soil, surface and drinking water, rice, wheat, vegetable, fish, pork, and human hair samples were collected in rice-wheat rotation area near nonferrous smelter to investigate smelting effect on environmental Cd pollution and human health. Results showed high Cd deposition (0.88-2.61 mg m-2 year-1) combined with high bioavailability (37-42% totality) in study area. Moreover, 90%, 83%, 57%, and 3% of sampled soil, wheat, rice, and vegetable of Cd were higher than national allowable limits of China, respectively, indicating smelting induced serious environmental Cd pollution. Especially, higher Cd accumulation occurred in wheat compared to rice by factors of 1.5-2.0. However, as for Cd exposure to local residents, due to rice as staple food, rice intake ranked as main route and accounted for 49-53% of total intake, followed by wheat and vegetable. Cd exposure showed high potential noncarcinogenic risks with hazard quotient (HQ) of 0.63-4.99 using Monte Carlo probabilistic simulation, mainly from crop food consumption (mean 94% totality). Further, residents' hair Cd was significant correlated with HQ of wheat and rice ingestion, highlighting negative impact of cereal pollution to resident health. Therefore, smelting process should not coexist with cereal cultivating.


Subject(s)
Oryza , Soil Pollutants , Animals , Humans , Cadmium/analysis , Triticum , Soil Pollutants/analysis , Soil , Edible Grain/chemistry , Vegetables , Risk Assessment , China , Environmental Monitoring
20.
J Environ Sci (China) ; 138: 418-427, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38135407

ABSTRACT

Bi2O2CO3(BOC)/Bi4O5Br2(BOB)/reduced graphene oxide (rGO) Z-scheme heterojunction with promising photocatalytic properties was synthesized via a facile one-pot room-temperature method. Ultra-thin nanosheets of BOC and BOB were grown in situ on rGO. The formed 2D/2D direct Z-scheme heterojunction of BOC/BOB with oxygen vacancies (OVs) effectively leads to lower negative electron reduction potential of BOB as well as higher positive hole oxidation potential of BOC, showing improved reduction/oxidation ability. Particularly, rGO is an acceptor of the electrons from the conduction band of BOC. Its dual roles significantly improve the transfer performance of photo-induced charge carriers and accelerate their separation. With layered nanosheet structure, rich OVs, high specific surface area, and increased utilization efficiency of visible light, the multiple synergistic effects of BOC/BOB/rGO can achieve effective generation and separation of the electron-holes, thereby generating more •O2- and h+. The photocatalytic reduction efficiency of CO2 to CO (12.91 µmol/(g·hr)) is three times higher than that of BOC (4.18 µmol/(g·hr)). Moreover, it also achieved almost 100% removal of Rhodamine B and cyanobacterial cells within 2 hours.


Subject(s)
Electrons , Graphite , Temperature , Oxygen
SELECTION OF CITATIONS
SEARCH DETAIL