Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.606
1.
Chem Biodivers ; : e202401119, 2024 Jun 08.
Article En | MEDLINE | ID: mdl-38850115

Paeoniae Radix Rubra (PRR) known as Chishao, in China, is the dried root of Paeonia lactiflora Pall. or Paeonia veitchii Lynch, with a history of over 2000 years in traditional Chinese medicine, is employed to clear heat, cool the blood, dispel blood stasis, and alleviate pain. Phytochemical investigations identified 264 compounds that contained monoterpenes and their glycosides, sesquiterpenes, triterpenes, steroids, flavonoids, lignans, tannins, volatile oils, and other compounds. It has been reported to have different pharmacological activities, including cardiovascular-protective, antidepressive, neuroprotective, antitumor, hepatoprotective, and anti-inflammatory effects. This study offers a comprehensive review covering ethnopharmacology, phytochemistry, pharmacological activities, therapeutic mechanism for blood stasis syndrome, and quality control of PRR. The comprehensive analysis aims to achieve a thorough understanding of its effects and serves as a foundation for future research and development.

2.
Cell Mol Gastroenterol Hepatol ; : 101367, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38849082

BACKGROUND & AIMS: Siglec-H is a receptor specifically expressed in mouse pDCs, which functions as a negative regulator of IFN-α production and plays a critical role in pDC maturation to become antigen-presenting cells. The function of pDCs in autoimmune and inflammatory diseases has been reported. However, the effect of Siglec-H expression in pDCs in liver inflammation and diseases remains unclear. METHODS: Using the model of concanavalin A (ConA)-induced acute liver injury (ALI), we investigated the Siglec-H/pDCs axis during ALI in BDCA2 transgenic mice and Siglec-H-/- mice. anti-BDCA2 antibody, anti-IL-21R antibody and Stat3 inhibitor were used to specifically deplete pDCs, block IL-21 receptor and inhibit Stat3 signaling respectively. Splenocytes and purified naïve CD4 T cells and bone marrow FLT3L-derived pDCs were cocultured and stimulated with PMA/Ionomycin and CD3/CD28 beads respectively. RESULTS: Data showed that specific depletion of pDCs aggravated ConA-induced ALI. Remarkably, ALT, hyaluronic acid, and proinflammatory cytokines IL-6 and TNF-α levels were lower in the blood and liver of SH KO mice. This was associated with attenuation of both IFN-γ/Th1 response and Stat1 signaling in the liver of SH KO mice while intrahepatic IL-21 and Stat3 signaling pathways were upregulated. Blocking IL-21R or Stat3 signaling in SH KO mice restored ConA-induced ALI. Finally, we observed that the Siglec-H-null pDCs exhibited immature and immunosuppressive phenotypes (CCR9LowCD40Low), resulting in reduction of CD4 T cell activation and promotion of IL-21+CD4 T cells in the liver. CONCLUSIONS: During T cell-mediated acute liver injury, Siglec-H-null pDCs enhance immune tolerance and promote IL21+CD4 T cells in the liver. Targeting Siglec-H/pDC axis may provide a novel approach to modulate liver inflammation and disease.

3.
Heliyon ; 10(11): e31320, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38841477

Background: collagen type I is a fundamental composition of extracellular matrix. Typically it exists in the form of a heterotrimer, consisting of two α1 chains encoded by COL1A1 and one α2 chain encoded by COL1A2. However, in cancer a homotrimeric form of collagen type I comprises three α1 chains encoded by COL1A1 was founded. There is still a lack of transcriptional and histologic methods for detecting homotrimeric collagen type I. Furthermore, a comprehensive analysis of the pan-cancer distribution pattern and clinical relevance of homotrimeric collagen type I is conspicuously absent. Method: Using transcriptional and immunoflourance method, we established homocol signature, which is able to transcriptionally and histologically detect homotrimeric collagen type I. We investigated the diagnostic and prognostic potential of homocol as a novel cancer biomarker in a pan-cancer cohort. Furthermore, we assessed its association with clinical manifestations in a liver cancer cohort undergoing treatment at our institute. Result: Homotrimer Collagen Type I is predominantly expressed by cancer cells and is linked to several critical cancer hallmarks, particularly inflammatory response and proliferation. Survival analyses have indicated that a high Homocol expression is correlated with poor outcomes in most types of cancer studied. In terms of cancer detection, Homocol demonstrated strong performance in Receiver Operating Characteristic (ROC) analysis, with an Area Under Curve (AUC) of 0.83 for pan-cancer detection and between 0.72 and 0.99 for individual cancers.In cohorts undergoing PD1 treatment, we noted a higher presence of Homocol in the response group. In a Hepatocellular Carcinoma (HCC) clinical set, high Homocol expression was associated with an increased formation of intra-tumor tertiary lymphoid structures (TLS), larger tumor sizes, more advanced Barcelona Clinic Liver Cancer (BCLC) stages, higher microvascular invasion (MVI) grades, absence of a capsule, and an enriched para-tumor collagen presence. Conclusion: our research has led to the development of a novel gene signature that facilitates the detection of Homotrimer Collagen Type I. This may greatly assist efforts in cancer detection, prognosis, treatment response prediction, and further research into Homotrimer Collagen Type I.

4.
Cancer Gene Ther ; 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38834772

N6-methyladenosine (m6A), a posttranscriptional regulatory mechanism, is the most common epigenetic modification in mammalian mRNA. M6A modifications play a crucial role in the developmental network of immune cells. The expression of m6A-related regulators often affects carcinogenesis and tumour suppression networks. In the tumour microenvironment, m6A-modified enzymes can affect the occurrence and progression of tumours by regulating the activation and invasion of tumour-associated immune cells. Immunotherapy, which utilises immune cells, has been demonstrated to be a powerful weapon in tumour treatment and is increasingly being used in the clinic. Here, we provide an updated and comprehensive overview of how m6A modifications affect invasive immune cells and their potential role in immune regulation. In addition, we summarise the regulation of epigenetic regulators associated with m6A modifications in tumour cells on the antitumour response of immune cells in the tumour immune microenvironment. These findings provide new insights into the role of m6A modifications in the immune response and tumour development, leading to the development of novel immunotherapies for cancer treatment.

5.
Cell Biochem Biophys ; 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38837011

The CCN family is a group of matricellular proteins associated with the extracellular matrix. This study aims to explore the role of the CCN family in glioma development and its implications in the tumor microenvironment. Through analysis of bulk RNA-seq cohorts, correlations between CCN family expression and glioma subtypes, patient survival, and bioactive pathway enrichment were investigated. Additionally, single-cell datasets were employed to identify novel cell subgroups, followed by analyses of cell communication and transcription factors. Spatial transcriptomic analysis was utilized to validate the CCN family's involvement in glioma. Results indicate overexpression of CYR61,CTGF, and WISP1 in glioma, associated with unfavorable subtypes and reduced survival. Enrichment analyses revealed associations with oncogenic pathways, while CTGF and WISP1 expression correlated with increased infiltration of regulatory T cells and M2 macrophages. Single-cell analysis identified MES-like cells as the highest CCN expression. Moreover, intercellular signal transduction analysis demonstrated active pathways, including SPP1-CD44, in cell subgroups with elevated CYR61 and CTGF expression. Spatial transcriptomic analysis confirmed co-localization of CYR61,CTGF and SPP1-CD44 with high oncogenic pathway activity. These findings suggest that CCN family members may serve as potential prognostic biomarkers and therapeutic targets for glioma.

6.
Angew Chem Int Ed Engl ; : e202408271, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38837513

To explore the chirality induction and switching of topological chirality, poly[2]catenanes composed of helical poly(phenylacetylenes) (PPAs) main chain and topologically chiral [2]catenane pendants are described for the first time. These poly[2]catenanes with optically active [2]catenanes on side chains were synthesized by polymerization of enantiomerically pure topologically chiral [2]catenanes with ethynyl polymerization site and/or point chiral moiety. The chirality information of [2]catenane pendants was successfully transferred to the main chain of polyene backbones, leading to preferred-handed helical conformations, while the introduction of point chiral units has negligible effect on the overall helices. More interestingly, attributed to unique dynamic feature of the [2]catenane pendants, these polymers revealed dynamic response behaviors to solvents, temperature, and sodium ions, resulting in the fully reversible switching on/off of the chirality induction. This work provides not only new design strategy for novel chiroptical switches with topologically chiral molecules but also novel platforms for the development of smart chiral materials.

7.
Microcirculation ; : e12860, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38837938

OBJECTIVE: Diabetic foot ulcer (DFU) is a severe complication with high mortality. High plantar pressure and poor microcirculation are considered main causes of DFU. The specific aims were to provide a novel technique for real-time measurement of plantar skin blood flow (SBF) under walking-like pressure stimulus and delineate the first plantar metatarsal head dynamic microcirculation characteristics because of life-like loading conditions in healthy individuals. METHODS: Twenty young healthy participants (14 male and 6 female) were recruited. The baseline (i.e., unloaded) SBF of soft tissue under the first metatarsal head were measured using laser Doppler flowmetry (LDF). A custom-made machine was utilized to replicate daily walking pressure exertion for 5 min. The exerted plantar force was adjusted from 10 N (127.3 kPa) to 40 N (509.3 kPa) at an increase of 5 N (63.7 kPa). Real-time SBF was acquired using the LDF. After each pressure exertion, postload SBF was measured for comparative purposes. Statistical analysis was performed using the R software. RESULTS: All levels of immediate-load and postload SBF increased significantly compared with baseline values. As the exerted load increased, the postload and immediate-load SBF tended to increase until the exerted load reached 35 N (445.6 kPa). However, in immediate-load data, the increasing trend tended to level off as the exerted pressure increased from 15 N (191.0 kPa) to 25 N (318.3 kPa). For postload and immediate-load SBF, they both peaked at 35 N (445.6 kPa). However, when the exerted force exceeds 35 N (445.6 kPa), both the immediate-load and postload SBF values started to decrease. CONCLUSIONS: Our study offered a novel real-time plantar soft tissue microcirculation measurement technique under dynamic conditions. For the first metatarsal head of healthy people, 20 N (254.6 kPa)-plantar pressure has a fair microcirculation stimulus compared with higher pressure. There might be a pressure threshold at 35 N (445.6 kPa) for the first metatarsal head, and soft tissue microcirculation may decrease when local pressure exceeds it.

8.
J Adv Res ; 2024 May 31.
Article En | MEDLINE | ID: mdl-38825314

BACKGROUND: Tumor metastasis represents a stepwise progression and stands as a principal determinant of unfavorable prognoses among cancer patients. Consequently, an in-depth exploration of its mechanisms holds paramount clinical significance. Cancer-associated fibroblasts (CAFs), constituting the most abundant stromal cell population within the tumor microenvironment (TME), have garnered robust evidence support for their pivotal regulatory roles in tumor metastasis. AIM OF REVIEW: This review systematically explores the roles of CAFs at eight critical stages of tumorigenic dissemination: 1) extracellular matrix (ECM) remodeling, 2) epithelial-mesenchymal transition (EMT), 3) angiogenesis, 4) tumor metabolism, 5) perivascular migration, 6) immune escape, 7) dormancy, and 8) premetastatic niche (PMN) formation. Additionally, we provide a compendium of extant strategies aimed at targeting CAFs in cancer therapy. KEY SCIENTIFIC CONCEPTS OF REVIEW: This review delineates a structured framework for the interplay between CAFs and tumor metastasis while furnishing insights for the potential therapeutic developments. It contributes to a deeper understanding of cancer metastasis within the TME, facilitating the utilization of CAF-targeting therapies in anti-metastatic approaches.

9.
Fish Shellfish Immunol ; 151: 109665, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38830521

Bacterial septicemia in freshwater fish is mainly caused by Aeromonas hydrophila infection, which affects the development of aquaculture industry. In the context of sustainable aquaculture, subunit vaccines are of great values because they play positive roles in reducing the overuse of antibiotics and protecting aquatic animals against bacterial infection. In this study, the recombinant outer membrane protein OmpTS of A. hydrophila were used as subunit vaccine to immunize Megalobrama amblycephala, and its immunoprotective effect and host immune responses were evaluated. The survival rates of the vaccinated groups after bacterial infection were significantly higher than that of the control group, especially of the OmpTS high-dose vaccinated group. The better protective effects of vaccinated groups might be attributed to the increased levels of serum IgM-specific antibody titer, the reduced relative abundance of A. hydrophila in various tissues, the increased number of immune-positive cells with different epitopes, the up-regulated expression levels of immune-related genes, and the enhanced activities of antibacterial enzymes. In conclusion, OmpTS subunit vaccine could strongly induce host immune responses in M. amblycephala, thereby enhancing both cellular and humoral immunity, which exhibited excellent and effective immunoprotective efficacy.

10.
Discov Oncol ; 15(1): 205, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38831128

The secretagogin (SCGN) was originally identified as a secreted calcium-binding protein present in the cytoplasm. Recent studies have found that SCGN has a close relationship with cancer. However, its role in the occurrence, progression, and prognosis of clear cell renal cell carcinoma (ccRCC) remains unclear. In this study, we utilized a mutual authentication method based on public databases and clinical samples to determine the role of SCGN in the progression and prognosis of ccRCC. Firstly, we comprehensively analyzed the expression characteristics of SCGN in ccRCC in several public databases. Subsequently, we systematically evaluated SCGN expression on 252 microarrays of ccRCC tissues from different grades. It was found that SCGN was absent in all the normal kidney tissues and significantly overexpressed in ccRCC tumor tissues. In addition, the expression level of SCGN gradually decreased with an increase in tumor grade, and the percentage of SCGN staining positivity over 50% was 86.7% (13/15) and 73.4% (58/79) in Grade1 and Grade2, respectively, while it was only 8.3% (12/144) in Grade3, and the expression of SCGN was completely absent in Grade4 (0/14) and distant metastasis group (0/4). Additionally, the expression of SCGN was strongly correlated with the patient's prognosis, with the higher the expression levels of SCGN being associated with longer overall survival and disease-free survival of patients. In conclusion, our results suggest that reduced expression of SCGN in cancer cells is correlated with the progression and prognosis of ccRCC.

11.
Cell Mol Immunol ; 2024 Jun 13.
Article En | MEDLINE | ID: mdl-38871810

Managing renal fibrosis is challenging owing to the complex cell signaling redundancy in diseased kidneys. Renal fibrosis involves an immune response dominated by macrophages, which activates myofibroblasts in fibrotic niches. However, macrophages exhibit high heterogeneity, hindering their potential as therapeutic cell targets. Herein, we aimed to eliminate specific macrophage subsets that drive the profibrotic immune response in the kidney both temporally and spatially. We identified the major profibrotic macrophage subset (Fn1+Spp1+Arg1+) in the kidney and then constructed a 12-mer glycopeptide that was designated as bioactivated in vivo assembly PK (BIVA-PK) to deplete these cells. BIVA-PK specifically binds to and is internalized by profibrotic macrophages. By inducing macrophage cell death, BIVA-PK reshaped the renal microenvironment and suppressed profibrotic immune responses. The robust efficacy of BIVA-PK in ameliorating renal fibrosis and preserving kidney function highlights the value of targeting macrophage subsets as a potential therapy for patients with CKD.

12.
BMC Cancer ; 24(1): 731, 2024 Jun 14.
Article En | MEDLINE | ID: mdl-38877482

BACKGROUND: This study sought to investigate the prognostic value of basement membrane (BM)-associated gene expressions in oral cancer. METHODS: We harvested and integrated data on BM-associated genes (BMGs), the oral cancer transcriptome, and clinical information from public repositories. After identifying differentially expressed BMGs, we used Cox and Lasso regression analyses to create a BMG-based risk score for overall survival at various intervals. We then validated this score using the GSE42743 cohort as a validation set. The prognostic potential of the risk scores and their relations to clinical features were assessed. Further, we conducted functional pathway enrichment, immune cell infiltration, and immune checkpoint analyses to elucidate the immunological implications and therapeutic potential of the BMG-based risk score and constituent genes. To confirm the expression levels of the BMG LAMA3 in clinical samples of oral cancer tissue, we performed quantitative real-time PCR (qRT-PCR) and immunohistochemical staining. RESULTS: The BMGs LAMA3, MMP14, and GPC2 demonstrated notable prognostic significance, facilitating the construction of a BMG-based risk score. A higher risk score derived from BMGs correlated with a poorer survival prognosis for oral cancer patients. Moreover, the risk-associated BMGs exhibited a significant relationship with immune function variability (P < 0.05), discrepancies in infiltrating immune cell fractions, and immune checkpoint expressions (P < 0.05). The upregulated expression levels of LAMA3 in oral cancer tissues were substantiated through qRT-PCR and immunohistochemical staining. CONCLUSION: The BMG-based risk score emerged as a reliable prognostic tool for oral cancer, meriting further research for validation and potential clinical application.


Basement Membrane , Biomarkers, Tumor , Mouth Neoplasms , Humans , Mouth Neoplasms/genetics , Mouth Neoplasms/mortality , Mouth Neoplasms/pathology , Prognosis , Basement Membrane/metabolism , Basement Membrane/pathology , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Transcriptome , Female , Gene Expression Profiling , Male , Laminin/genetics
13.
Pestic Biochem Physiol ; 202: 105960, 2024 Jun.
Article En | MEDLINE | ID: mdl-38879342

Dermanyssus gallinae, a worldwide pest in birds, has developed varying degrees of resistance to insecticides. The ATP-binding cassette (ABC) transporters are essential for the removal of xenobiotics from arthropods. However, our knowledge about ABC transporter proteins in D. gallinae is limited. Forty ABC transporters were identified in the transcriptome and genome of D. gallinae. The resistant population displayed an augmented metabolic rate for beta-cypermethrin compared to the susceptible group, with a remarkable increase in the content of ABC transporters. Verapamil was found able to increase the toxicity of beta-cypermethrin in the resistant population. Results from qRT-PCR analysis showed that eleven ABC transcripts were more highly expressed in the resistant population than the susceptible group at all stages of development, and beta-cypermethrin was observed to be able to induce the expression of DgABCA5, DgABCB4, DgABCD3, DgABCE1 and DgABCG5 in D. gallinae. RNAi-mediated knockdown of the five genes was observed to increase the susceptibility of resistant mites to beta-cypermethrin. These results suggest that ABC transporters, DgABCA5, DgABCB4, DgABCD3, DgABCE1 and DgABCG5 genes, may be related to beta-cypermethrin resistance in D. gallinae. This research will serve as a foundation for further studies on mechanism of insecticide resistance, which could be beneficial for controlling D. gallinae.


ATP-Binding Cassette Transporters , Mites , Pyrethrins , Animals , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Pyrethrins/pharmacology , Pyrethrins/toxicity , Mites/drug effects , Mites/genetics , Insecticides/pharmacology , Insecticides/toxicity , Poultry , Insecticide Resistance/genetics
14.
Bioorg Med Chem ; 108: 117776, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38852257

Myocardial ischemia/reperfusion (MI/R) is a common cardiovascular disease that seriously affects the quality of life and prognosis of patients. In recent years, matrine has attracted widespread attention in the treatment of cardiovascular diseases. This study designed, synthesized, and characterized 20 new matrine derivatives and studied their protective effects on ischemia-reperfusion injury through in vivo and in vitro experiments. Based on cellular assays, most newly synthesized derivatives have a certain protective effect on Hypoxia/Reoxygenation (H/R) induced H9C2 cell damage, with compound 22 having the best activity and effectively reducing cell apoptosis and necrosis. In vitro experimental data shows that compound 22 can significantly reduce the infarct size of rat myocardium and improve cardiac function after MI/R injury. In summary, compound 22 is a new potential cardioprotective agent that can promote angiogenesis and enhance antioxidant activity by activating ADCY5, CREB3l4, and VEGFA, thereby protecting myocardial cell apoptosis and necrosis induced by MI/R.


Alkaloids , Apoptosis , Drug Design , Matrines , Myocardial Reperfusion Injury , Quinolizines , Rats, Sprague-Dawley , Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/chemical synthesis , Animals , Quinolizines/pharmacology , Quinolizines/chemical synthesis , Quinolizines/chemistry , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/pathology , Rats , Apoptosis/drug effects , Male , Structure-Activity Relationship , Molecular Structure , Cardiotonic Agents/pharmacology , Cardiotonic Agents/chemical synthesis , Cardiotonic Agents/chemistry , Dose-Response Relationship, Drug , Cell Line , Neovascularization, Physiologic/drug effects , Angiogenesis
15.
Pest Manag Sci ; 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38828899

BACKGROUND: Dermanyssus gallinae, the poultry red mite (PRM), is a worldwide ectoparasite posing significant economic challenges in poultry farming. The extensive use of pyrethroids for PRM control has led to the emergence of pyrethroid resistance. The objective of this study is to detect the pyrethroid resistance and explore its associated point mutations in the voltage-gated sodium channel (VGSC) gene among PRM populations in China. RESULTS: Several populations of D. gallinae, namely CJF-1, CJP-2, CJP-3, CSD-4 and CLD-5, displayed varying degrees of resistance to beta-cypermethrin compared to a susceptible field population (CBP-5). Mutations of VGSC gene in populations of PRMs associated with pyrethroid resistance were identified through sequencing its fragments IIS4-IIS5 and IIIS6. The mutations I917V, M918T/L, A924G and L925V were present in multiple populations, while no mutations were found at positions T929, I936, F1534 and F1538. CONCLUSION: The present study confirmed the presence of extremely high levels of pyrethroid resistance in PRM populations in China, and for the first time detected four pyrethroid resistance mutations in the VGSC gene. Identifying pyrethroid resistance in the field population of PRM in China can be achieved through screening for VGSC gene mutations as an early detection method. Our findings underscore the importance of implementing chemical PRM control strategies based on resistance evidence, while also considering the management of acaricide resistance in the control of PRMs. © 2024 Society of Chemical Industry.

16.
Proc Natl Acad Sci U S A ; 121(25): e2314314121, 2024 Jun 18.
Article En | MEDLINE | ID: mdl-38865262

Pyruvate lies at a pivotal node of carbon metabolism in eukaryotes. It is involved in diverse metabolic pathways in multiple organelles, and its interorganelle shuttling is crucial for cell fitness. Many apicomplexan parasites harbor a unique organelle called the apicoplast that houses metabolic pathways like fatty acid and isoprenoid precursor biosyntheses, requiring pyruvate as a substrate. However, how pyruvate is supplied in the apicoplast remains enigmatic. Here, deploying the zoonotic parasite Toxoplasma gondii as a model apicomplexan, we identified two proteins residing in the apicoplast membranes that together constitute a functional apicoplast pyruvate carrier (APC) to mediate the import of cytosolic pyruvate. Depletion of APC results in reduced activities of metabolic pathways in the apicoplast and impaired integrity of this organelle, leading to parasite growth arrest. APC is a pyruvate transporter in diverse apicomplexan parasites, suggesting a common strategy for pyruvate acquisition by the apicoplast in these clinically relevant intracellular pathogens.


Apicoplasts , Pyruvic Acid , Toxoplasma , Apicoplasts/metabolism , Toxoplasma/metabolism , Pyruvic Acid/metabolism , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Animals , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics , Biological Transport , Metabolic Networks and Pathways
17.
Biomaterials ; 311: 122646, 2024 Jun 02.
Article En | MEDLINE | ID: mdl-38852553

Anastomotic leaks are among the most dreaded complications following gastrointestinal (GI) surgery, and contrast-enhanced X-ray gastroenterography is considered the preferred initial diagnostic method for GI leaks. However, from fundamental research to clinical practice, the only oral iodinated contrast agents currently available for GI leaks detection are facing several challenges, including low sensitivity, iodine allergy, and contraindications in patients with thyroid diseases. Herein, we propose a cinematic contrast-enhanced X-ray gastroenterography for the real-time detection of GI leaks with an iodine-free bismuth chelate (Bi-DTPA) for the first time. The Bi-DTPA, synthesized through a straightforward one-pot method, offers distinct advantages such as no need for purification, a nearly 100 % yield, large-scale production capability, and good biocompatibility. The remarkable X-ray attenuation properties of Bi-DTPA enable real-time dynamic visualization of whole GI tract under both X-ray gastroenterography and computed tomography (CT) imaging. More importantly, the leaky site and severity can be both clearly displayed during Bi-DTPA-enhanced gastroenterography in a rat model with esophageal leakage. The proposed movie-like Bi-DTPA-enhanced X-ray imaging approach presents a promising alternative to traditional GI radiography based on iodinated molecules. It demonstrates significant potential in addressing concerns related to iodine-associated adverse effects and offers an alternative method for visually detecting gastrointestinal leaks.

18.
BMC Genomics ; 25(1): 593, 2024 Jun 12.
Article En | MEDLINE | ID: mdl-38867153

BACKGROUND: Terpenes are important components of plant aromas, and terpene synthases (TPSs) are the key enzymes driving terpene diversification. In this study, we characterized the volatile terpenes in five different Chrysanthemum nankingense tissues. In addition, genome-wide identification and expression analysis of TPS genes was conducted utilizing an improved chromosome-scale genome assembly and tissue-specific transcriptomes. The biochemical functions of three representative TPSs were also investigated. RESULTS: We identified tissue-specific volatile organic compound (VOC) and volatile terpene profiles. The improved Chrysanthemum nankingense genome assembly was high-quality, including a larger assembled size (3.26 Gb) and a better contig N50 length (3.18 Mb) compared to the old version. A total of 140 CnTPS genes were identified, with the majority representing the TPS-a and TPS-b subfamilies. The chromosomal distribution of these TPS genes was uneven, and 26 genes were included in biosynthetic gene clusters. Closely-related Chrysanthemum taxa were also found to contain diverse TPS genes, and the expression profiles of most CnTPSs were tissue-specific. The three investigated CnTPS enzymes exhibited versatile activities, suggesting multifunctionality. CONCLUSIONS: We systematically characterized the structure and diversity of TPS genes across the Chrysanthemum nankingense genome, as well as the potential biochemical functions of representative genes. Our results provide a basis for future studies of terpene biosynthesis in chrysanthemums, as well as for the breeding of improved chrysanthemum varieties.


Alkyl and Aryl Transferases , Chrysanthemum , Genome, Plant , Multigene Family , Terpenes , Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/metabolism , Chrysanthemum/genetics , Chrysanthemum/enzymology , Terpenes/metabolism , Phylogeny , Volatile Organic Compounds/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcriptome
19.
Science ; 384(6701): 1196-1202, 2024 Jun 14.
Article En | MEDLINE | ID: mdl-38870301

In vivo genome correction holds promise for generating durable disease cures; yet, effective stem cell editing remains challenging. In this work, we demonstrate that optimized lung-targeting lipid nanoparticles (LNPs) enable high levels of genome editing in stem cells, yielding durable responses. Intravenously administered gene-editing LNPs in activatable tdTomato mice achieved >70% lung stem cell editing, sustaining tdTomato expression in >80% of lung epithelial cells for 660 days. Addressing cystic fibrosis (CF), NG-ABE8e messenger RNA (mRNA)-sgR553X LNPs mediated >95% cystic fibrosis transmembrane conductance regulator (CFTR) DNA correction, restored CFTR function in primary patient-derived bronchial epithelial cells equivalent to Trikafta for F508del, corrected intestinal organoids and corrected R553X nonsense mutations in 50% of lung stem cells in CF mice. These findings introduce LNP-enabled tissue stem cell editing for disease-modifying genome correction.


Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Gene Editing , Lung , Nanoparticles , Stem Cells , Animals , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Mice , Cystic Fibrosis/therapy , Cystic Fibrosis/genetics , Lung/metabolism , Stem Cells/metabolism , Humans , Lipids , Organoids , Epithelial Cells/metabolism , CRISPR-Cas Systems , Genetic Therapy/methods , Liposomes
20.
Opt Express ; 32(11): 20268-20278, 2024 May 20.
Article En | MEDLINE | ID: mdl-38859141

Metasurfaces play a crucial role in trapping electromagnetic waves with specific wavelengths, serving as a significant platform for enhancing light-matter interactions. In all kinds of dynamic modulation metasurfaces, electro-optic modulation metasurfaces have attracted much attention due to its advantages of fast, stable and high efficiency. In order to respond to the extremely weak refractive index change of the electro-optical effect of the materials, the metasurfaces are required to support optical signals with high Q values. The quasi-bound state in the continuum (Q-BIC) is often used to enhance the light-field modulation capability of metasurfaces and to improve the modulation sensitivity of electro-optic modulators due to its ability to generate high Q-factor resonances. However, the design of an electro-optic modulation metasurface that facilitates the application of voltage and achieves modulation efficiency of nearly 100% is still in urgent need of development. In this study, single-crystal BTO metasurfaces are modeled using finite-difference time-domain method, and the structural symmetry is broken to introduce a Q-BIC resonance to generate a high Q-factor optical signal of 2.45 × 104 for high-depth electro-optic modulation. By simulating an applied electric field of 143 V/mm on the metasurface, a slight refractive index change of BTO of 8 × 10-4 was produced, leading to an electro-optical intensity modulation depth of 100%. Furthermore, the nanostructure of the metasurface was carefully designed to facilitate nano-fabrication and voltage application, and it is ideal for the development of low-power, CMOS-compatible, and miniaturized electro-optic modulation devices. Although the results of this study are based on simulations, they provide a crucial theoretical basis and guidance for the realization of efficient and realistic design of dynamic metasurfaces.

...