Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Acta Psychol (Amst) ; 243: 104143, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38232509

ABSTRACT

Previous research on English as a foreign language (EFL) learning has predominantly focused on negative emotions such as anxiety and boredom, neglecting positive emotions. Self-regulation, a cognitive factor, has emerged as a key construct of positive psychology in recent years. However, few studies have examined the mechanisms by which positive emotions influence EFL performance, especially through cognitive factors. Given the high-stakes nature of Chinese college entrance examination and Chinese culture's value on effort, Chinese senior high school students may experience distinct EFL emotions. Therefore, this study, based on the control-value theory (CVT), explored the potential mediating role of self-regulatory capacity (boredom, awareness, goal, and emotion controls) in the relationship between the three focal positive emotions (enjoyment, hope, and pride) and EFL performance among Chinese senior high school students. A paper-and-pencil questionnaire survey was administered to 330 Chinese third-year senior high school students (male: n = 159; female: n = 171). The data were analyzed using descriptive statistics, correlation analysis, and mediation analysis with SPSS 26 and PROCESS V3.3. The results indicated that the students reported low levels of enjoyment and pride, moderate levels of hope, low levels of awareness, goal, and emotion controls, and moderate levels of boredom control. The results also revealed significant and large associations among the three positive emotions, the four components of self-regulatory capacity, and EFL performance. Furthermore, the results suggested that self-regulatory capacity partially mediated the effect of positive emotions on EFL performance, supporting the CVT framework. The study concluded with implications for educators and suggestions for future research.


Subject(s)
Emotions , Schools , Female , Humans , Male , Pleasure , Happiness , Language
2.
Chem Biol Drug Des ; 103(1): e14427, 2024 01.
Article in English | MEDLINE | ID: mdl-38230776

ABSTRACT

Fragment-based drug design is an emerging technology in pharmaceutical research and development. One of the key aspects of this technology is the identification and quantitative characterization of molecular fragments. This study presents a strategy for identifying important molecular fragments based on molecular fingerprints and decision tree algorithms and verifies its feasibility in predicting protein-ligand binding affinity. Specifically, the three-dimensional (3D) structures of protein-ligand complexes are encoded using extended-connectivity fingerprints (ECFP), and three decision tree models, namely Random Forest, XGBoost, and LightGBM, are used to quantitatively characterize the feature importance, thereby extracting important molecular fragments with high reliability. Few-shot learning reveals that the extracted molecular fragments contribute significantly and consistently to the binding affinity even with a small sample size. Despite the absence of location and distance information for molecular fragments in ECFP, 3D visualization, in combination with the reverse ECFP process, shows that the majority of the extracted fragments are located at the binding interface of the protein and the ligand. This alignment with the distance constraints critical for binding affinity further supports the reliability of the strategy for identifying important molecular fragments.


Subject(s)
Proteins , Ligands , Reproducibility of Results , Proteins/chemistry , Protein Binding , Decision Trees
3.
Nat Prod Res ; 38(10): 1727-1738, 2024 May.
Article in English | MEDLINE | ID: mdl-37328937

ABSTRACT

Six amides, including a new N-alkylamide (1), four known N-alkylamides (2-5) and one nicotinamide (6) were isolated from Litsea cubeba (Lour.) Pers., which is a pioneer herb traditionally utilized in medicine. Their structures were elucidated on the basis of 1D and 2D NMR experiments and by comparison of their spectroscopic and physical data with the literature values. Cubebamide (1) is a new cinnamoyltyraminealkylamide and possessed obvious anti-inflammatory activity against NO production with IC50 values of 18.45 µM. Further in-depth pharmacophore-based virtual screening and molecular docking were carried out to reveal the binding mode of the active compound inside the 5-LOX enzyme. The results indicate that L. cubeba, and the isolated amides might be useful in the development of lead compounds for the prevention of inflammatory diseases.


Subject(s)
Litsea , Litsea/chemistry , Molecular Docking Simulation , Anti-Inflammatory Agents , Amides
4.
Phytochemistry ; 207: 113581, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36592859

ABSTRACT

Four undescribed and two known cucurbitane-type triterpenoids, including two heterodimers, elaeocarpudubins A and B, were isolated from the branches of Elaeocarpus dubius (Elaeocarpaceae). The chemical structures of these undescribed isolates were determined by analyses of 1D and 2D NMR and MS data, electronic circular dichroism (ECD) calculations, and chemical transformation. Biogenetically, elaeocarpudubins A and B might be derived from cucurbitacin F through Michael addition with vitamin C and (-)-catechin, respectively. These six isolates were evaluated for their cytotoxic activities against human leukemia HL-60, human lung adenocarcinoma A549, human hepatoma SMMC-7721, human breast cancer MCF-7, human colon cancer SW480, and paclitaxel-resistant A549 (A549/Taxol) cell lines, for their antioxidant properties using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay, and for their differentiation effects on nerve growth factor (NGF)-mediated neurite outgrowth in rat pheochromocytoma PC12 cells. Cucurbitacins F (IC50 of 4.98-38.11 µM) and D (IC50 of 0.03-4.40 µM) showed growth-inhibitory activities against these six cancer cell lines. Elaeocarpudubin B (IC50 of 61.04 µM) and elaeocarpudoside B (IC50 of 6.93 µM) showed antioxidant activities. Elaeocarpudubin B and elaeocarpudoside B also showed neurite outgrowth-promoting activities in PC12 cells at a concentration of 10 µM.


Subject(s)
Elaeocarpaceae , Triterpenes , Rats , Animals , Humans , Antioxidants/pharmacology , Molecular Structure , Triterpenes/chemistry , PC12 Cells , Skeleton , Elaeocarpaceae/chemistry
5.
Molecules ; 27(15)2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35956898

ABSTRACT

Rutaceae plants are known for being a rich source of coumarins. Preliminary molecular docking showed that there was no significant difference for coumarins in Clausena and Murraya, both of which had high scoring values and showed good potential inhibitory activity to the MAO-B enzyme. Overall, 32 coumarins were isolated from Murraya exotica L., including a new coumarin 5-demethoxy-10'-ethoxyexotimarin F (1). Their structures were elucidated on the basis of a comprehensive analysis of 1D and 2D NMR and HRMS spectroscopic data, and the absolute configurations were assigned via a comparison of the specific rotations and the ECD exciton coupling method. The potential of new coumarin (1) as a selective inhibitor of MAO-B was initially evaluated through molecular docking and pharmacophore studies. Compound (1) showed selectivity for the MAO-B isoenzyme and inhibitory activity in the sub-micromolar range with an IC50 value of 153.25 ± 1.58 nM (MAO-B selectivity index > 172).


Subject(s)
Murraya , Coumarins/chemistry , Molecular Docking Simulation , Molecular Structure , Monoamine Oxidase , Murraya/chemistry
6.
J Am Heart Assoc ; 11(1): e021997, 2022 01 04.
Article in English | MEDLINE | ID: mdl-34971315

ABSTRACT

Background Subclinical atrial fibrillation (SCAF) is often asymptomatic nonetheless harmful. In patients with cardiac implantable electronic devices, we evaluated the combined performance of homocysteine and uric acid (UA) biomarkers to discriminate high-risk patients for SCAF. Methods and Results We enrolled 1224 consecutive patients for evaluation of SCAF in patients with cardiac implantable electronic devices in Dalian, China, between January 2013 and December 2019. Clinical data and blood samples were obtained from patients selected according to the absence or presence of atrial high-rate episodes >6 minutes. Blood samples were obtained, and homocysteine and UA biomarkers were tested in all patients to distinguish their prognostic performance for SCAF. Homocysteine and UA biomarkers were significantly different in SCAF versus no SCAF. On multivariable Cox regression analysis with potential confounders, elevated homocysteine and UA biomarkers were significantly associated with an increased risk of SCAF. A rise of 1 SD in homocysteine (5.7 µmol/L) was associated with an increased risk of SCAF in men and women regardless of their UA levels. Similarly, a 1-SD increase in UA (91 µmol/L) was associated with an increased risk of SCAF among the patients with high levels of homocysteine in men (hazard ratio, 1.81; 95% CI, 1.43-2.30) and women (hazard ratio, 2.11; 95% CI, 1.69-2.62). The addition of homocysteine and UA to the atrial fibrillation risk factors recommended by the 2020 European Society of Cardiology Guidelines significantly improved risk discrimination for SCAF. Conclusions Homocysteine and UA biomarkers were strongly associated with SCAF. The prediction performance of the European Society of Cardiology model for SCAF was increased by the addition of the selected biomarkers. Registration URL: https://www.chictr.org.cn; Unique identifier: Chi-CTR200003837.


Subject(s)
Atrial Fibrillation , Pacemaker, Artificial , Atrial Fibrillation/complications , Female , Homocysteine , Humans , Male , Risk Factors , Uric Acid
7.
Nat Prod Bioprospect ; 11(5): 545-555, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34061296

ABSTRACT

One novel spirolactone, aquilarisinolide (1), three new sesquiterpenoids, (2R,4S,5R,7R)-2-hydroxyeremophila-9,11-dien-8-one (2), (1R,4S,5S,7R,11R)-13-hydroxyepidaphnauran-9-en-8-one (3), and (4R,5S,7R,8S,10S,13R)-8,13-dihydroxyrotunda-1,11-dien-3-one (4), together with 13 known compounds (5-17) were isolated from the resinous heartwood of Aquilaria sinensis (Thymelaeaceae). The structures of the new compounds were elucidated based on the analysis of NMR and MS data and theoretical calculations their ECD spectra. The isolated compounds were evaluated for their protective activities against PC12 cell injury induced by corticosterone (CORT) and 1-methyl-4-phenylpyridine ion (MPP+), as well as inhibitory activities against BACE1. Compound 4, 5,6-dihydroxy-2-(2-phenylethyl)chromone (5), daphnauranol B (7), 6-methoxy-2-[2-(3-methyoxyphenyl)ethyl]chromone (10), isoagarotetrol (14), and 1-hydroxy-1,5-diphenylpentan-3-one (16) showed significant protective effects on CORT-induced injury in PC12 cells at a concentration of 20 µM (P < 0.001). Isoagarotetrol (14) showed a significant protective effect on MPP+-induced injury in PC12 cells at a concentration of 20 µM (P < 0.001), while compound 4 showed a moderate activity (P < 0.01). The BACE1-inhibitory activities of all tested compounds were very weak with less than 30% inhibition at a concentration of 20 µM.

8.
Small ; 17(26): e2100911, 2021 07.
Article in English | MEDLINE | ID: mdl-34038614

ABSTRACT

Compressible energy devices have received increasing attention with the rapid development of flexible electronics and wearable devices due to their size adaptability and functional stability. However, it is hard to simultaneously achieve satisfactory energy density and mechanical stability for electrodes. Here an open-porous dual network sponge (DNS) with two networks of highly conductive carbon nanotubes and Li+ -intercalating TiO2 -B nanowires is synthesized and employed as compressible lithium ion battery electrodes. All 1D components inside the DNS mutually penetrate with each other to form two physically distinct but functionally coupling networks, endowing DNS excellent compressibility and stability. A prototype compressible lithium-ion battery (C-LIB) is also demonstrated, in which the DNS exhibits a specific capacity of >238 mAh g-1 under static 50% strain, and further in situ measurements show that under 1000 times of cyclic strains, DNS can charge and discharge normally maintaining a high capacity of 240 mAh g-1 and exhibits robustness to fast strain rates up to 500% min-1 . The dual network structure can be extended to design high-performance compliant electrodes that are promising to serve in future compressible and deformable electronics and energy systems.


Subject(s)
Lithium , Nanotubes, Carbon , Electric Power Supplies , Electrodes , Ions
9.
Front Endocrinol (Lausanne) ; 12: 619586, 2021.
Article in English | MEDLINE | ID: mdl-33815278

ABSTRACT

Background: Hyperglycemia is associated with an increased risk of developing atrial fibrillation (AF) and atrial flutter (AFL). Sodium-glucose transporter 2 inhibitors (SGLT2i) have been reported to prevent AF/AFL in some studies, but not others. Therefore, a meta-analysis was performed to investigate whether SGLT2i use is associated with lower risks of AF/AFL. Methods: PubMed, Scopus, Web of Science, Cochrane library databases were searched for randomized placebo-controlled trials comparing SGLT2i and placebo. Results: A total of 33 trials involving 66,685 patients were included. The serious adverse events (SAEs) of AF/AFL occurrence were significantly lower in the SGLT2i group than the placebo group (0.96% vs. 1.19%; RR 0.83; 95% CI 0.71-0.96; P = 0.01; I2 25.5%). Similarly, the SAEs of AF occurrence was significantly lower in the SGLT2i group (0.82% vs. 1.06%; RR 0.81; 95% CI 0.69-0.95; P = 0.01; I2 10.2%). The subgroup analysis showed that the reduction in AF/AFL was significant only for dapagliflozin (1.02% vs. 1.49%; RR 0.73; 95% CI 0.59-0.89; P = 0.002; I2 0%), but not for canagliflozin (1.00% vs 1.08%; RR 0.83; 95% CI 0.62-1.12; P = 0.23; I2 0%), empagliflozin (0.88% vs 0.70%; RR 1.20; 95% CI 0.76-1.90; P = 0.43; I2 0%), ertugliflozin (1.01% vs 0.96%; RR 1.08; 95% CI 0.66-1.75; P = 0.76; I2 0%), and sotagliflozin (0.16% vs 0.10%; RR 1.09; 95% CI 0.13-8.86; P = 0.93; I2 0%). Conclusions: SGLT2i use is associated with a 19.33% lower SAEs of AF/AFL compared with the placebo. Dapagliflozin users had the lowest SAEs of AF/AFL incidence. Further studies are needed to determine whether canagliflozin, empagliflozin, ertugliflozin, and sotagliflozin similarly exert protective effects against AF/AFL development.


Subject(s)
Atrial Fibrillation/prevention & control , Atrial Flutter/prevention & control , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Humans , Randomized Controlled Trials as Topic , Treatment Outcome
10.
Heart Rhythm ; 18(3): 426-433, 2021 03.
Article in English | MEDLINE | ID: mdl-33127541

ABSTRACT

BACKGROUND: Acquired long QT syndrome (aLQTS) is often associated with poor clinical outcomes. OBJECTIVE: The purpose of this study was to examine the important predictors of all-cause mortality of aLQTS patients by applying both random survival forest (RSF) and non-negative matrix factorization (NMF) analyses. METHODS: Clinical characteristics and manually measured electrocardiographic (ECG) parameters were initially entered into the RSF model. Subsequently, latent variables identified using NMF were entered into the RSF as additional variables. The primary outcome was all-cause mortality. RESULTS: A total of 327 aLQTS patients were included. The RSF model identified 16 predictive factors with positive variable importance values: cancer, potassium, RR interval, calcium, age, JT interval, diabetes mellitus, QRS duration, QTp interval, chronic kidney disease, QTc interval, hypertension, QT interval, female, JTc interval, and cerebral hemorrhage. Increasing the number of latent features between ECG indices, which incorporated from n = 0 to n = 4 by NMF, maximally improved the prediction ability of the RSF-NMF model (C-statistic 0.77 vs 0.89). CONCLUSION: Cancer and serum potassium and calcium levels can predict all-cause mortality of aLQTS patients, as can ECG indicators including JTc and QRS. The present RSF-NMF model significantly improved mortality prediction.


Subject(s)
Algorithms , Electrocardiography , Heart Rate/physiology , Long QT Syndrome/mortality , Cause of Death/trends , China/epidemiology , Female , Follow-Up Studies , Humans , Long QT Syndrome/physiopathology , Male , Middle Aged , Retrospective Studies , Risk Factors , Survival Rate/trends
11.
Phytochemistry ; 181: 112554, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33152579

ABSTRACT

Six undescribed compounds, including three sesquiterpenoids [(4S,5S,7S,8S,11R)-7-hydroxyguai-1(10)-en-8,12-olide, aquilarisinone, and 2Z,7(13),9E-humulatrien-12-ol-5-one], one diphenylpentanone [1-(2-hydroxyphenyl)-5-phenylpentan-3-one], and two 2-(2-phenylethyl)chromones (6-epiagarotetrol and triepoxyhexahydrochromone A), along with 15 known compounds, were isolated from the resinous heartwood of Aquilaria sinensis (Thymelaeaceae). Their structures were determined by mass (MS) and nuclear magnetic resonance (NMR) spectroscopic data. The absolute configuration of (4S,5S,7S,8S,11R)-7-hydroxyguai-1(10)-en-8,12-olide was confirmed by X-ray diffraction analysis, and the configurations of (4S,7S,8S,10R,11R)-7,10-epoxyguai-1(5)-en-8,12-olide, aquilarisinone, 6-epiagarotetrol, and triepoxyhexahydrochromone A were confirmed by electronic circular dichroism (ECD) calculations. The neuroprotective activities of the compounds were evaluated using models of BACE1 inhibition and PC12 cells with corticosterone- and 1-methyl-4-phenylpyridine ion (MPP+)-induced damage. At concentrations of 1, 2, and 5 µM, triepoxyhexahydrochromone A, (+)-(7R,10R)-selina-4,11(13)-diene-12,15-dial, (-)-(5R,7R,10R)-12,15-dioxo-α-selinene, and (+)-(1R,4S,5R)-1ß-hydroxyeremophila-7(11),9-dien-8-one exerted significant protective effects (p < 0.01) on PC12 cell injury induced by corticosterone, while triepoxyhexahydrochromone A and (-)-(5R,7R,10R)-12,15-dioxo-α-selinene exerted significant protective effects (p < 0.01) on MPP+-induced PC12 cell injury at concentrations of 1, 2, and 5 µM. No compounds produced significant inhibitory effects on BACE1, with inhibition rates of less than 20% observed at a concentration of 20 µM.


Subject(s)
Amyloid Precursor Protein Secretases , Thymelaeaceae , Animals , Aspartic Acid Endopeptidases , Chromones , Molecular Structure , Rats
12.
Small ; 16(47): e2002200, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33140911

ABSTRACT

Embedding the functional nanostructures into a lightweight nanocarbon framework is very promising for developing high performance advanced electrodes for rechargeable batteries. Here, to realize workable capacity, core-shell (FeSe2 /C) nanostructures are embedded into carbon nanotube (CNT) framework via a facile wet-chemistry approach accompanied by thermally induced selenization. The CNT framework offers 3D continuous routes for electronic/ionic transfer, while macropores provide adequate space for high mass loading of FeSe2 /C. However, the carbon shell not only creates a solid electronic link among CNTs and FeSe2 but also improves the diffusivity of sodium ions into FeSe2 , as well as acts as a buffer cushion to accommodate the volume variations. These unique structural features of CNT/FeSe2 /C make it an excellent host for sodium storage with a capacity retention of 546 mAh g-1 even after 100 cycles at 100 mA g-1 . Moreover, areal and volumetric capacities of 5.06 mAh cm-2 and 158 mAh cm-3 are also achieved at high mass loading 16.9 mg cm-2 , respectively. The high performance of multi-benefited engineered structure makes it a potential candidate for secondary ion batteries, while its easy synthesis makes it extendable to further complex structures with other morphologies (such as nanorods, nanowires, etc.) to meet the high energy demands.

13.
J Colloid Interface Sci ; 579: 177-185, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32590158

ABSTRACT

A direct Z scheme g-C3Nx/Bi2WO6 heterojunctions with enhanced photocatalytic performances were successfully prepared through nitrogen defect mediated method. HRTEM analyses illustrate Bi2WO6 nanoparticles are closely bonded with the g-C3Nx-0.05 nanosheets to form the g-C3Nx-0.05/Bi2WO6 heterogeneous structures. An outstanding visible light absorption ability is shown in the g-C3Nx-0.05/Bi2WO6 hybrid, which combines both the light absorption advantages of g-C3Nx-0.05 and Bi2WO6 together. In comparison with other photocatalysts the nitrogen defect mediated g-C3Nx-0.05/Bi2WO6 hybrid shows the best photocatalytic properties, whose degradation efficiency can reach 83%. PL results indicate that an obvious larger amount of ·OH radical is produced on the g-C3Nx-0.05/Bi2WO6 surface in the photocatalytic process. In the nitrogen defect mediated g-C3Nx-0.05/Bi2WO6 the binding energies of C and N shift positively to the larger binding energy and the Bi, W and O elements shift negatively compared with that of the pristine g-C3Nx-0.05 and Bi2WO6. The MS results show the g-C3Nx-0.05 has a more negative Ef than that of Bi2WO6. All the experimental results support the direct Z scheme charge transfer mechanism proposed in the g-C3Nx-0.05/Bi2WO6 photocatalyst. The developing of direct Z scheme g-C3Nx-0.05/Bi2WO6 hybrid with excellent photocatalytic performance through defect mediated method shows great potential for more photocatalytic fields.

14.
ACS Appl Mater Interfaces ; 12(24): 27045-27054, 2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32432450

ABSTRACT

Developing advanced electrode materials for potassium-ion batteries (PIBs) is an emerging research area in recent years; so far, several strategies such as heteroatom doping into carbon, increasing interlayer spacing, or creating amorphous region in graphite have been investigated. Here, we studied the effect of sub-nanopores in a porous-carbon aerogel with a pore size distribution centered at around 0.8 nm and achieved outstanding PIB performance including long cycling stability (particularly at small current densities for prolonged charge/discharge period) and high rate capability with enhanced retentions. Mechanism studies reveal very high contribution from surface capacitive potassium (K)-ion storage (more than 90%) to the total capacity, and theoretical calculations show that 0.8 nm sub-nanopores lead to substantially low barrier for K-ion transport and storage, with ultrasmall diffusion energy and negligible lattice change. Sub-nanopore engineering, as demonstrated here, may be adopted to develop highly efficient and stable porous-carbon-based structures for applications in advanced energy storage systems and electrochemical catalysis.

15.
Adv Sci (Weinh) ; 7(5): 1902907, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32154078

ABSTRACT

3D electrode design is normally opted for multiple advantages, however, instability/detachment of active material causes the pulverization and degradation of the structure, and ultimately poor cyclic stability. Here, a dually protected, highly compressible, and freestanding anode is presented for sodium-ion batteries, where 3D carbon nanotube (CNT) sponge is decorated with homogeneously dispersed CoSe2 nanoparticles (NPs) which are protected under carbon overcoat (CNT/CoSe2/C). The 3D CNT sponge delivers enough space for high mass loading while providing high mechanical strength and faster conduction pathway among the NPs. The outer amorphous carbon overcoat controls the formation of solid electrolyte interphase film by avoiding direct contact of CoSe2 with electrolyte, accommodates large volume changes, and ultimately enhances the overall conductivity of cell and assists in transmitting electron to an external circuit. Moreover, the hybrid can be densified up to 11-fold without affecting its microstructure that results in ultrahigh areal mass loading of 17.4 mg cm-2 and an areal capacity of 7.03 mAh cm-2 along with a high gravimetric capacity of 531 mAh g-1 at 100 mA g-1. Thus, compact and smart devices can be realized by this new electrode design for heavy-duty commercial applications.

16.
Environ Sci Technol ; 54(4): 2530-2538, 2020 02 18.
Article in English | MEDLINE | ID: mdl-31990529

ABSTRACT

A novel Ti-doped Sm-Mn mixed oxide (TiSmMnOx) was first designed for the selective catalytic reduction (SCR) of NOx with NH3 at a low temperature. The TiSmMnOx catalyst exhibited a superior catalytic performance, in which NOx conversion higher than 80% and N2 selectivity above 90% could be achieved in a wide-operating temperature window (60-225 °C). Specially, the catalyst also showed high durability against the large space velocity and excellent SO2/H2O resistance. Ti incorporation can efficiently inhibit MnOx crystallization and tune the MnOx phase during calcination at a high temperature. Subsequently, a high specific surface area as well as an increased amount of acid sites on the TiSmMnOx catalysts were produced. Further, the reducibility of the Sm-doped MnOx catalyst was modulated, facilitating NO oxidation and inhibiting NH3 nonselective oxidation. Consequently, a superior SCR activity was achieved at a low temperature and the operating temperature window of the TiSmMnOx catalyst was significantly widened. These findings may provide new insights into the reasonable design and development of the new non-vanadium catalysts with a high NH3-SCR activity for industrial application.


Subject(s)
Manganese , Samarium , Ammonia , Catalysis , Nitric Oxide , Oxidation-Reduction , Oxides , Temperature , Titanium
17.
Front Pharmacol ; 10: 773, 2019.
Article in English | MEDLINE | ID: mdl-31354488

ABSTRACT

Background: Venous thromboembolism (VTE) is a common complication in patients with cancer. Direct oral anticoagulants (DOACs) have been proved to be effective on anticoagulation therapy in many diseases. However, the efficacy and the safety of DOACs in the secondary prevention of cancer-associated thrombosis (CAT) remain unclear. To assess the value of DOACs in patients with CAT, we performed a systematic review and meta-analysis of randomized controlled trials and prospective cohort studies. Methods: Medline, Embase, and the Cochrane Library were searched from their earliest date through to June 2018. Two investigators independently assessed eligibility. Data were extracted by one investigator and verified by the second investigator. The efficacy outcome of this study was recurrent VTE, whereas the safety outcome was major and clinically relevant nonmajor bleeding. Relative risks (RRs) and their corresponding 95% confidence interval (CI) were determined. To pool the results, the Mantel-Haenszel fixed-effects or random-effects models were used. Results: A total of nine articles (six randomized controlled trials and three prospective studies) involving 2,697 patients with CAT who were prescribed DOACs (apixaban, edoxaban, rivaroxaban, or dabigatran) and 2,852 patients who were prescribed traditional anticoagulants [vitamin K antagonists (VKAs), low molecular weight heparin (LMWH), dalteparin, or enoxaparin] were compared. VTE recurrence in the DOAC group was significantly lower than that observed in the traditional anticoagulant group (RR: 0.60; 95%CI: 0.49-0.75; I 2: 0%; p < 0.00001). No significant difference in bleeding risk between both groups was found (RR: 0.95; 95%CI: 0.67-1.36; I 2: 75%; p = 0.79). Conclusions: Our findings showed that anticoagulant therapy with DOACs may be more effective than traditional anticoagulants to prevent recurrent VTE in patients with CAT, while the safety of DOACs may be equal to that of traditional anticoagulants. These findings support the use of DOACs as the first-line therapy for secondary prevention of CAT in most cancer patients.

18.
Environ Sci Technol ; 53(9): 5349-5358, 2019 05 07.
Article in English | MEDLINE | ID: mdl-30990306

ABSTRACT

Tailoring the interfaces between active metal centers and supporting materials is an efficient strategy to obtain a superior catalyst for a certain reaction. Herein, an active interface between Ru and CeO2 was identified and constructed by adjusting the morphology of CeO2 support, such as rods (R), cubes (C), and octahedra (O), to optimize both the activity and the stability of Ru/CeO2 catalyst for propane combustion. We found that the morphology of CeO2 support does not significantly affect the chemical states of Ru species but controls the interaction between the Ru and CeO2, leading to the tuning of oxygen vacancy in the CeO2 surface around the Ru-CeO2 interface. The Ru/CeO2 catalyst possesses more oxygen vacancy when CeO2-R with predominantly exposed CeO2{110} surface facets is used, providing a higher ability to adsorb and activate oxygen and propane. As a result, the Ru/CeO2-R catalyst exhibits higher catalytic activity and stability for propane combustion compared with the Ru/CeO2-C and Ru/CeO2-O catalysts. This work highlights a new strategy for the design of efficient metal/CeO2 catalysts by engineering morphology and associated surface facet of CeO2 support for the elimination of light alkane pollutants and other volatile organic compounds.


Subject(s)
Oxygen , Propane , Catalysis
19.
ACS Nano ; 13(4): 3982-3991, 2019 Apr 23.
Article in English | MEDLINE | ID: mdl-30892017

ABSTRACT

Lithium-sulfur (Li-S) batteries are next-generation energy storage systems with high energy density, and the rate performance is a very important consideration for practical applications. Recent approaches such as introducing catalytic materials to facilitate polysulfide conversion have been explored, yet the results remain unsatisfactory. Here, we present an optimized Li-S electrode featured by a large amount of highly dispersed Co3S4 nanoparticles (∼10 nm in size) throughout a hierarchical carbon nanostructure hybridized from ZIF-67 and carbon nanotube (CNT) sponge. This enables homogeneous distribution and close contact between infiltrated sulfur and Co3S4 nanoparticles within the ZIF-67-derived N-doped carbon nanocubes, leading to effective chemical interaction with polysulfides, maximum catalytic effect and enhanced lithium ion diffusion, while the built-in three-dimensional CNT network ensures high electrical conductivity of the electrode. As a consequence, the Li-S battery exhibits both extraordinary rate performance by maintaining a capacity of ∼850 mAh g-1 at very high charge/discharge rate (5 C) and long-term cycling stability with 85% retention after 1000 cycles at 5 C (an average capacity fading rate of only 0.0137% per cycle).

20.
Molecules ; 25(1)2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31888067

ABSTRACT

Two new carbazole alkaloids (1,2) and six known carbazole alkaloids (3-8) were isolated from Clausena anisum-olens. Their structures were elucidated based on extensive spectroscopic analysis. All isolated compounds (1-8) were evaluated for their anti-HIV effects on virus replication in MT-4 lymphocytes infected by HIV-1NL4-3 Nanoluc-sec virus, and new carbazole alkaloid 1 exhibited anti-HIV activity with an EC50 value of 2.4 µg/mL and SI of 7.1.


Subject(s)
Alkaloids/pharmacology , Carbazoles/pharmacology , Clausena/chemistry , HIV-1/physiology , Alkaloids/chemistry , Alkaloids/isolation & purification , Carbazoles/chemistry , Carbazoles/isolation & purification , Cell Line , HIV-1/drug effects , Humans , Magnetic Resonance Spectroscopy , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...