Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
BMC Cancer ; 24(1): 700, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849749

ABSTRACT

BACKGROUND: Although radical surgical resection is the most effective treatment for hepatocellular carcinoma (HCC), the high rate of postoperative recurrence remains a major challenge, especially in patients with alpha-fetoprotein (AFP)-negative HCC who lack effective biomarkers for postoperative recurrence surveillance. Emerging radiomics can reveal subtle structural changes in tumors by analyzing preoperative contrast-enhanced computer tomography (CECT) imaging data and may provide new ways to predict early recurrence (recurrence within 2 years) in AFP-negative HCC. In this study, we propose to develop a radiomics model based on preoperative CECT to predict the risk of early recurrence after surgery in AFP-negative HCC. PATIENTS AND METHODS: Patients with AFP-negative HCC who underwent radical resection were included in this study. A computerized tool was used to extract radiomic features from the tumor region of interest (ROI), select the best radiographic features associated with patient's postoperative recurrence, and use them to construct the radiomics score (RadScore), which was then combined with clinical and follow-up information to comprehensively evaluate the reliability of the model. RESULTS: A total of 148 patients with AFP-negative HCC were enrolled in this study, and 1,977 radiographic features were extracted from CECT, 2 of which were the features most associated with recurrence in AFP-negative HCC. They had good predictive ability in both the training and validation cohorts, with an area under the ROC curve (AUC) of 0.709 and 0.764, respectively. Tumor number, microvascular invasion (MVI), AGPR and radiomic features were independent risk factors for early postoperative recurrence in patients with AFP-negative HCC. The AUCs of the integrated model in the training and validation cohorts were 0.793 and 0.791, respectively. The integrated model possessed the clinical value of predicting early postoperative recurrence in patients with AFP-negative HCC according to decision curve analysis, which allowed the classification of patients into subgroups of high-risk and low-risk for early recurrence. CONCLUSION: The nomogram constructed by combining clinical and imaging features has favorable performance in predicting the probability of early postoperative recurrence in AFP-negative HCC patients, which can help optimize the therapeutic decision-making and prognostic assessment of AFP-negative HCC patients.


Subject(s)
Carcinoma, Hepatocellular , Contrast Media , Liver Neoplasms , Neoplasm Recurrence, Local , Tomography, X-Ray Computed , alpha-Fetoproteins , Humans , Carcinoma, Hepatocellular/surgery , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/surgery , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/pathology , Male , Female , alpha-Fetoproteins/metabolism , alpha-Fetoproteins/analysis , Neoplasm Recurrence, Local/diagnostic imaging , Middle Aged , Tomography, X-Ray Computed/methods , Aged , Retrospective Studies , Adult , Hepatectomy , Prognosis , Radiomics
2.
J Colloid Interface Sci ; 673: 411-425, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38878375

ABSTRACT

Multifunctional bioactive biomaterials with integrated bone and soft tissue regenerability hold great promise for the regeneration of trauma-affected skin and bone defects. The aim of this research was to fabricate aerogel scaffolds (GD-BF) by blending the appropriate proportions of short bioactive glass fiber (BGF), gelatin (Gel), and dopamine (DA). Electrospun polyvinyl pyrrolidone (PVP)-BGF fibers were converted into short BGF through calcination and homogenization. Microporous GD-BF scaffolds displayed good elastic deformation recovery and promoted neo-tissue formation. The DA could enable thermal crosslinking and enhance the mechanical properties and structural stability of the GD-BF scaffolds. The BGF-mediated release of therapeutic ions shorten hemostatic time (<30 s) in a rat tail amputation model and a rabbit artery injury model alongside inducing the regeneration of skin appendages (e.g., blood vessels, glands, etc.) in a full-thickness excisional defect model in rats (percentage wound closure: GD-BF2, 98 % vs. control group, 83 %) at day 14 in vitro. Taken together, these aerogel scaffolds may have significant promise for soft and hard tissue repair, which may also be worthy for the other related disciplines.

3.
Plant Commun ; : 101000, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38859586

ABSTRACT

Hybrid crops often exhibit increased yield and greater resilience, yet the genomic mechanism(s) underlying hybrid vigor or heterosis remain unclear, hindering our ability to predict the expression of phenotypic traits in hybrid breeding. Here, we generated haplotype-resolved T2T genome assemblies of two pear hybrid varieties 'Yuluxiangli' (YLX) and 'Hongxiangsu' (HXS) that share the same maternal parent, but differ in their paternal parents. We then used these assemblies to explore genome-scale landscape of allele-specific expression and create a pangenome graph for pear. Allele specific expression (ASE) was observed for close to 6000 genes in both hybrid cultivars. A subset of ASEGs related to fruit quality including sugar, organic acid and cuticular wax were identified, suggesting their important contributions to heterosis. Specifically, Ma1, a gene regulating fruit acidity, was absent in the paternal haplotypes of HXS and YLX. Further, a pangenome graph was built based on our assemblies and eight published pear genomes. Resequencing data for 139 cultivated pear genotypes (including 97 genotypes sequenced here) were subsequently aligned to the pangenome graph, revealing numerous SV hotspots and selective sweeps during pear diversification. As predicted, the Ma1 allele was found to be absent in varieties with low organic acid content, an association that was functionally validated by Ma1 over-expression in pear fruit and calli. Overall, the results unraveled contributions of allele-specific expression to heterosis involving fruit quality and provided a robust pangenome reference for high resolution allele discovery and association mapping.

4.
ACS Nano ; 18(23): 15303-15311, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38803281

ABSTRACT

Electroreduction of CO2 in highly acidic environments holds promise for enhancing CO2 utilization efficiency. Due to the HER interference and structural instability, however, challenges in improving the selectivity and stability toward multicarbon (C2+) products remain. In this study, we proposed an "armor protection" strategy involving the deposition of ultrathin, hydrophobic SiO2 onto the Cu surface (Cu/SiO2) through a simple one-step hydrolysis. Our results confirmed the effective inhibition of HER by a hydrophobic SiO2 layer, leading to a high Faradaic efficiency (FE) of up to 76.9% for C2+ products at a current density of 900 mA cm-2 under a strongly acidic condition with a pH of 1. The observed high performance surpassed the reported performance for most previously studied Cu-based catalysts in acidic CO2RR systems. Furthermore, the ultrathin hydrophobic SiO2 shell was demonstrated to effectively prevent the structural reconstruction of Cu and preserve the oxidation state of Cuδ+ active sites during CO2RR. Additionally, it hindered the accumulation of K+ ions on the catalyst surface and diffusion of in situ generated OH- ions away from the electrode, thereby favoring C2+ product generation. In situ Raman analyses coupled with DFT simulations further elucidated that the SiO2 shell proficiently modulated *CO adsorption behavior on the Cu/SiO2 catalyst by reducing *CO adsorption energy, facilitating the C-C coupling. This work offers a compelling strategy for rationally designing and exploiting highly stable and active Cu-based catalysts for CO2RR in highly acidic environments.

5.
J Thorac Imaging ; 39(4): 232-240, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38800956

ABSTRACT

OBJECTIVES: To investigate the predictive value of coronary computed tomography angiography-derived fractional flow reserve (CT-FFR) before percutaneous coronary intervention (PCI) to predict target vessel failure (TVF) after stent implantation. METHODS: This retrospective study included 429 patients (429 vessels) who underwent PCI and stent implantation after CCTA within 3 months. All patients underwent coronary stent implantation between January 2012 and December 2019. A dedicated workstation (Syngo Via, Siemens) was used to analyze and measure the CT-FFR value. The cut-off values of pre-PCI CT-FFR for predicting TVF were defined as 0.80 and the value using the log-rank maximization method, respectively. The primary outcome was TVF, defined as a composite of cardiac death, target vessel myocardial infarction, and clinically driven target vessel revascularization (TVR), which was a secondary outcome. RESULTS: During a median 64.0 months follow-up, the cumulative incidence of TVF was 7.9% (34/429). The cutoff value of pre-PCI CT-FFR based on the log-rank maximization method was 0.74, which was the independent predictor for TVF [hazard ratio (HR): 2.61 (95% CI: 1.13, 6.02); P =0.024] and TVR [HR: 3.63 (95%CI: 1.25, 10.51); P =0.018]. Compared with the clinical risk factor model, pre-PCI CT-FFR significantly improved the reclassification ability for TVF [net reclassification improvement (NRI), 0.424, P <0.001; integrative discrimination index (IDI), 0.011, P =0.022]. Adding stent information to the prediction model resulted in an improvement in reclassification for the TVF (C statistics: 0.711, P =0.001; NRI: 0.494, P <0.001; IDI: 0.020, P =0.028). CONCLUSIONS: Pre-PCI CT-FFR ≤0.74 was an independent predictor for TVF or TVR, and integration of clinical, pre-PCI CT-FFR, and stent information models can provide a better risk stratification model in patients with stent implantation.


Subject(s)
Computed Tomography Angiography , Fractional Flow Reserve, Myocardial , Percutaneous Coronary Intervention , Predictive Value of Tests , Stents , Humans , Male , Female , Retrospective Studies , Middle Aged , Percutaneous Coronary Intervention/methods , Aged , Computed Tomography Angiography/methods , Fractional Flow Reserve, Myocardial/physiology , Coronary Angiography/methods , Coronary Vessels/diagnostic imaging , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/surgery
6.
BMC Plant Biol ; 24(1): 481, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38816698

ABSTRACT

BACKGROUND: LACS (long-chain acyl-CoA synthetase) genes are widespread in organisms and have multiple functions in plants, especially in lipid metabolism. However, the origin and evolutionary dynamics of the LACS gene family remain largely unknown. RESULTS: Here, we identified 1785 LACS genes in the genomes of 166 diverse plant species and identified the clades (I, II, III, IV, V, VI) of six clades for the LACS gene family of green plants through phylogenetic analysis. Based on the evolutionary history of plant lineages, we found differences in the origins of different clades, with Clade IV originating from chlorophytes and representing the origin of LACS genes in green plants. The structural characteristics of different clades indicate that clade IV is relatively independent, while the relationships between clades (I, II, III) and clades (V, VI) are closer. Dispersed duplication (DSD) and transposed duplication (TRD) are the main forces driving the evolution of plant LACS genes. Network clustering analysis further grouped all LACS genes into six main clusters, with genes within each cluster showing significant co-linearity. Ka/Ks results suggest that LACS family genes underwent purifying selection during evolution. We analyzed the phylogenetic relationships and characteristics of six clades of the LACS gene family to explain the origin, evolutionary history, and phylogenetic relationships of different clades and proposed a hypothetical evolutionary model for the LACS family of genes in plants. CONCLUSIONS: Our research provides genome-wide insights into the evolutionary history of the LACS gene family in green plants. These insights lay an important foundation for comprehensive functional characterization in future research.


Subject(s)
Coenzyme A Ligases , Evolution, Molecular , Multigene Family , Phylogeny , Plants , Coenzyme A Ligases/genetics , Plants/genetics , Plants/classification , Plant Proteins/genetics , Genes, Plant , Genome, Plant , Gene Duplication
7.
BMC Cancer ; 24(1): 665, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822321

ABSTRACT

PURPOSE: To explore the clinical value of tumor abnormal protein (TAP) in the diagnosis and prognosis evaluation of prostate cancer. METHODS: This study enrolled a total of 265 patients who underwent prostate biopsy procedures from December 2017. TAP levels were assayed in their blood samples using a validated TAP testing kit. Comprehensive pathological assessments, including Gleason scores, TNM staging, and AJCC prognosis stages, were conducted on prostate cancer patients. Further analysis was carried out to examine the correlation between TAP expression levels and various clinical characteristics. RESULTS: A significantly elevated TAP concentration was discerned in prostate cancer patients relative to those with benign prostate hyperplasia. Moreover, a significantly elevated TAP expression was detected in prostate cancer patients with high Gleason score (≥ 8) and advanced stages (III and IV), as compared to those with Gleason scores of 6 and 7 and lower stages (I and II). When diagnosing prostate cancer in gray area of PSA, TAP demonstrated superior diagnostic capabilities over PSA alone, with higher diagnostic sensitivity, specificity and accuracy than fPSA/tPSA ratio. Additionally, post-surgical or hormonal treatment, there was a marked reduction in TAP expression level among prostate cancer patients. CONCLUSION: The assessment of TAP presents itself as a promising tool for early diagnosis and holds potential for sensitivity in monitoring treatment reponse in prostate cancer patients.


Subject(s)
Biomarkers, Tumor , Neoplasm Grading , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/blood , Prostatic Neoplasms/pathology , Prostatic Neoplasms/diagnosis , Aged , Middle Aged , Biomarkers, Tumor/blood , Prognosis , Neoplasm Staging , Prostate-Specific Antigen/blood , Neoplasm Proteins/blood , Sensitivity and Specificity
8.
Hortic Res ; 11(5): uhae086, 2024 May.
Article in English | MEDLINE | ID: mdl-38799127

ABSTRACT

Fruit ripening is manipulated by the plant phytohormone ethylene in climacteric fruits. While the transcription factors (TFs) involved in ethylene biosynthesis and fruit ripening have been extensively studied in tomato, their identification in pear remains limited. In this study, we identified and characterized a HOMEODOMAIN TF, PbHB.G7.2, through transcriptome analysis. PbHB.G7.2 could directly bind to the promoter of the ethylene biosynthetic gene, 1-aminocyclopropane-1-carboxylic acid synthase (PbACS1b), thereby enhancing its activity and resulting in increased ethylene production during pear fruit ripening. Yeast-two-hybrid screening revealed that PbHB.G7.2 interacted with PbHB.G1 and PbHB.G2.1. Notably, these interactions disrupted the transcriptional activation of PbHB.G7.2. Interestingly, PbHB.G1 and PbHB.G2.1 also bind to the PbACS1b promoter, albeit different regions from those bound by PbHB.G7.2. Moreover, the regions of PbHB.G1 and PbHB.G2.1 involved in their interaction with PbHB.G7.2 differ from the regions responsible for binding to the PbACS1b promoter. Nonetheless, these interactions also disrupt the transcriptional activation of PbHB.G1 and PbHB.G2.1. These findings offer a new mechanism of ethylene biosynthesis during climacteric fruit ripening.

9.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(4): 493-497, 2024 Apr 15.
Article in Chinese | MEDLINE | ID: mdl-38632072

ABSTRACT

Objective: To summarize the surgical treatment methods for avascular necrosis of the talus. Methods: The recent domestic and international literature related to avascular necrosis of the talus was extensively conducted. The pathogenesis, surgical treatment methods, and prognosis were summarized. Results: The clinical symptoms of avascular necrosis of the talus at early stage are not obvious, and most patients have progressed to Ficat-Arlet stages Ⅲ-Ⅳ and require surgical treatment. Currently, surgical treatments for this disease include core decompression, vascularized bone flap transplantation, arthroplasty, and arthrodesis, etc. Early avascular necrosis of the talus can be treated conservatively, and if treatment fails, core decompression can be considered. Arthrodesis is a remedial surgery for patients with end-stage arthritis and collapse, and in cases of severe bone loss, tibiotalocalcaneal arthrodesis and bone grafting are required. Vascularized bone flap transplantation is effective and plays a role in all stages of avascular necrosis of the talus, but the appropriate donor area for the flap still needs further to be studied. Conclusion: The surgical treatment and the system of treatment for different stages of avascular necrosis of the talus still need to be refined.


Subject(s)
Osteonecrosis , Talus , Humans , Talus/surgery , Surgical Flaps/blood supply , Bone Transplantation/methods , Arthrodesis/methods , Osteonecrosis/therapy
10.
BMC Plant Biol ; 24(1): 285, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627617

ABSTRACT

Crop roots are colonized by large numbers of microorganisms, collectively known as the root-microbiome, which modulate plant growth, development and contribute to elemental nutrient uptake. In conditions of nitrogen limitation, the over-expressed Calcineurin B-like interacting protein kinase 2 (OsCIPK2) gene with root-specific promoter (RC) has been shown to enhance growth and nitrogen uptake in rice. Analysis of root-associated bacteria through high-throughput sequencing revealed that OsCIPK2 has a significant impact on the diversity of the root microbial community under low nitrogen stress. The quantification of nifH gene expression demonstrated a significant enhancement in nitrogen-fixing capabilities in the roots of RC transgenetic rice. Synthetic microbial communities (SynCom) consisting of six nitrogen-fixing bacterial strains were observed to be enriched in the roots of RC, leading to a substantial improvement in rice growth and nitrogen uptake in nitrogen-deficient soils. Forty and twenty-three metabolites exhibiting differential abundance were identified in the roots and rhizosphere soils of RC transgenic rice compared to wild-type (WT) rice. These findings suggest that OSCIPK2 plays a role in restructuring the microbial community in the roots through the regulation of metabolite synthesis and secretion. Further experiments involving the exogenous addition of citric acid revealed that an optimal concentration of this compound facilitated the growth of nitrogen-fixing bacteria and substantially augmented their population in the soil, highlighting the importance of citric acid in promoting nitrogen fixation under conditions of low nitrogen availability. These findings suggest that OsCIPK2 plays a role in enhancing nitrogen uptake by rice plants from the soil by influencing the assembly of root microbial communities, thereby offering valuable insights for enhancing nitrogen utilization in rice cultivation.


Subject(s)
Nitrogen-Fixing Bacteria , Oryza , Plant Roots/metabolism , Nitrogen/metabolism , Nitrogen-Fixing Bacteria/metabolism , Soil , Rhizosphere , Citric Acid , Soil Microbiology
11.
Mol Clin Oncol ; 20(3): 20, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38332990

ABSTRACT

The combination of thoracic radiotherapy and immune checkpoint inhibitors (ICIs) has emerged as a novel treatment approach for malignant tumors. However, it is important to consider the potential exacerbation of lung injury associated with this treatment modality. The neutrophil-to-lymphocyte ratio (NLR), an inflammatory marker, holds promise as a non-invasive indicator for assessing the toxicity of this combination therapy. To investigate this further, a study involving 80 patients who underwent thoracic radiotherapy in conjunction with ICIs was conducted. These patients were divided into two groups: The concurrent therapy group and the sequential therapy group. A logistic regression analysis was conducted to ascertain risk factors for grade ≥2 pneumonitis. Following propensity score matching, the NLR values were examined between the concurrent group and the sequential group to evaluate any disparity. A mouse model of radiation pneumonitis was established, and ICIs were administered at varying time points. The morphological evaluation of lung injury was conducted using H&E staining, while the NLR values of peripheral blood were detected through flow cytometry. Logistic regression analysis revealed that radiation dosimetric parameters (mean lung dose, total dose and V20), the inflammatory index NLR at the onset of pneumonitis, and treatment sequences (concurrent or sequential) were identified as independent predictors of grade ≥2 treatment-related pneumonitis. The results of the morphological evaluation indicated that the severity of lung tissue injury was greater in cases where programmed cell death protein 1 (PD-1) blockade was administered during thoracic radiotherapy, compared with cases where PD-1 blockade was administered 14 days after radiotherapy. Moreover, the present study demonstrated that the non-invasive indicator known as the NLR has the potential to accurately reflect the aforementioned injury.

12.
ACS Appl Mater Interfaces ; 16(9): 11749-11757, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38381996

ABSTRACT

Wearable and implantable devices have gained significant popularity, playing a crucial role in smart healthcare and human-machine interfaces, which necessitates the development of more complex electronic devices and circuits on biocompatible flexible materials. Polylactic acid (PLA) stands out due to its biodegradability, cost-effectiveness, and low immunogenicity. In this study, we utilize a solution-based spin-coating method to produce high-quality PLA thin films, serving as substrates for the fabrication of thin-film transistors (TFTs) in which the dielectric layer material is silicon dioxide, the channel layer material is IGZO, and the gate, drain, and source material is ITO at low temperatures (<40 °C) through a shadow masking technique. The resulting PLA-TFT devices exhibited remarkable flexibility, biocompatibility, and impressive electrical characteristics, including a charge carrier mobility of 27.81 cm2/(V s), a subthreshold swing of 162.8 mV/decade, and an ON/OFF current ratio of up to 1 × 106, and maintained performance under various deformations. We successfully constructed fundamental logic gate circuits using PLA-TFTs, including AND, OR, and NOT gates, which effectively performed logical functions and demonstrated stability under diverse bending conditions. These research findings provide valuable support for future endeavors in fabricating intricate logic circuits and realizing advanced functionalities on biocompatible flexible materials.

14.
Orthop Surg ; 16(2): 391-400, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38151885

ABSTRACT

OBJECTIVE: Artificial hip arthroplasty (AHA) is widely accepted in elderly patients with femoral neck fractures, but it is associated with high risk of death and various postoperative complications due to old age and accompanying chronic diseases. Therefore, this study aimed to explore the risk factors for death in elderly patients with femoral neck fractures after AHA and to establish a nomogram risk prediction model, which is expected to reveal high-risk patients and improve the postoperative quality of life and survival rate of patients. METHODS: Elderly patients who underwent AHA for femoral neck fractures in our hospital from September 2014 to May 2021were retrospectively analyzed. These patients were divided into a survival group and a death group according to their clinical outcomes. The following clinical data were recorded for the patients in the two groups: sex, age, underlying diseases, smoking and drinking history, preoperative nutritional risk score (NRS) and American Society of Anesthesiologists (ASA) score, as well as relevant indicators about the operation. These data were subject to univariate analysis and then logistic analysis to determine the risk factors of death. Subsequently, a nomogram risk prediction model was established and further validated with the receiver operating characteristic curve (ROC) and the Hosmer-Lemeshow test. Finally, the effects of predictive risk factors were analyzed using the Kaplan-Meier survival curve. RESULTS: Follow-up was completed by 260 patients, including 206 patients in the survival group and 54 patients in the death group; the overall death rate was 20.77%, and the follow-up time, age, postoperative 1, 3 and 5-year death rates were 3.47 ± 1.93 years, 75.32 ± 9.12 years, 5.77%, 12.51%, and 25.61%, respectively. The top three causes of death in 54 patients were respiratory disease, cerebrocardiovascular disease, and digestive disease, respectively. The logistic analysis indicated that elderly patients with femoral neck fractures, the risk factors for death after AHA were age ≥ 80 years, preoperative NRS ≥ 4, HB ≤ 90 g/L, CR ≥ 110 umol/L, and ASA score ≥ 3, as well as postoperative albumin ≤ 35 g/L, the nomogram was established, and then its predictive performance was successfully validated using the ROC curve (AUC = 0.814, 95% confidence interval = 0.749-0.879) and the Hosmer-Lemeshow test (p = 0.840). Furthermore, Kaplan-Meier survival curve analysis revealed that the abovementioned six indicators were correlated with the post-AHA survival time of elderly patients with femoral neck fractures (pLog Rank < 0.05). CONCLUSION: Old age, preoperatively high NRS and ASA score, anemia, poor renal function, and postoperative hypoproteinemia are the major risk factors for death in elderly patients with femoral neck fractures after AHA; they are also associated with postoperative survival. Early identification and effective interventions for optimization of modifiable risk factors are recommended to improve the postoperative quality of life and survival rates.


Subject(s)
Arthroplasty, Replacement, Hip , Femoral Neck Fractures , Humans , Aged , Aged, 80 and over , Arthroplasty, Replacement, Hip/adverse effects , Nomograms , Retrospective Studies , Quality of Life , Femoral Neck Fractures/surgery , Femoral Neck Fractures/etiology , Risk Factors
15.
J Environ Sci (China) ; 137: 237-244, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37980011

ABSTRACT

Arsenic is a ubiquitous environmental pollutant. Microbe-mediated arsenic bio-transformations significantly influence arsenic mobility and toxicity. Arsenic transformations by soil and aquatic organisms have been well documented, while little is known regarding effects due to endophytic bacteria. An endophyte Pseudomonas putida ARS1 was isolated from rice grown in arsenic contaminated soil. P. putida ARS1 shows high tolerance to arsenite (As(III)) and arsenate (As(V)), and exhibits efficient As(V) reduction and As(III) efflux activities. When exposed to 0.6 mg/L As(V), As(V) in the medium was completely converted to As(III) by P. putida ARS1 within 4 hr. Genome sequencing showed that P. putida ARS1 has two chromosomal arsenic resistance gene clusters (arsRCBH) that contribute to efficient As(V) reduction and As(III) efflux, and result in high resistance to arsenicals. Wolffia globosa is a strong arsenic accumulator with high potential for arsenic phytoremediation, which takes up As(III) more efficiently than As(V). Co-culture of P. putida ARS1 and W. globosa enhanced arsenic accumulation in W. globosa by 69%, and resulted in 91% removal of arsenic (at initial concentration of 0.6 mg/L As(V)) from water within 3 days. This study provides a promising strategy for in situ arsenic phytoremediation through the cooperation of plant and endophytic bacterium.


Subject(s)
Arsenic , Pseudomonas putida , Arsenates , Arsenic/analysis , Pseudomonas putida/genetics , Biodegradation, Environmental , Soil
16.
Front Med (Lausanne) ; 10: 1255786, 2023.
Article in English | MEDLINE | ID: mdl-37901395

ABSTRACT

Background: Radiation pneumonitis (RP) is the primary dose-limiting toxicity associated with radiotherapy. This study aimed to observe the effects of renin-angiotensin system inhibitors in Chinese patients with lung cancer who received thoracic radiation. Methods: Patients with lung cancer who received thoracic radiation at a total dose of ≥45 Gray between October 2017 and December 2022 were enrolled in this study. We retrospectively evaluated the factors influencing grade 2 or higher RP. Results: A total of 320 patients were enrolled in this study; 62 patients were identified as angiotensin receptor blockers or angiotensin-converting enzyme inhibitor users. Additionally, 99 patients (30.9%) had grade 2 or higher RP, and the incidence in the renin-angiotensin system inhibitor group was 17.7% (11 out of 62 patients). Patients in the renin-angiotensin system inhibitors (RASi) group were older and had a higher percentage of males, lower percentage of ECOG score 0, higher percentage of hypertension, and higher percentage of adenocarcinoma than those in the non-RASi group. ECOG score [hazard ratio (HR) = 1.69, p = 0.009], history of smoking (HR = 1.76, p = 0.049), mean dose (HR = 3.63, p = 0.01), and RASi (HR = 0.3, p = 0.003) were independent predictive factors for RP. All subgroups benefited from RASi. Conclusion: This study showed that oral RASi administration has the potential to mitigate the incidence of grade 2 or higher RP in patients with lung cancer undergoing thoracic radiotherapy. To validate and further substantiate these findings, additional prospective research is warranted.

17.
BMC Genom Data ; 24(1): 58, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37789271

ABSTRACT

BACKGROUND: The cytochrome P450 (CYP) superfamily is the largest enzyme metabolism family in plants identified to date, and it is involved in many biological processes, including secondary metabolite biosynthesis, hormone metabolism and stress resistance. However, the P450 gene superfamily has not been well studied in pear (Pyrus spp.). RESULTS: Here, the comprehensive identification and a comparative analysis of P450 superfamily members were conducted in cultivated and wild pear genomes. In total, 338, 299 and 419 P450 genes were identified in Chinese white pear, European pear and the wild pear, respectively. Based on the phylogenetic analyses, pear P450 genes were divided into ten clans, comprising 48 families. The motif and gene structure analyses further supported this classification. The expansion of the pear P450 gene family was attributed to whole-genome and single-gene duplication events. Several P450 gene clusters were detected, which have resulted from tandem and proximal duplications. Purifying selection was the major force imposed on the long-term evolution of P450 genes. Gene dosage balance, subfunctionalization and neofunctionalization jointly drove the retention and functional diversification of P450 gene pairs. Based on the association analysis between transcriptome expression profiles and flavonoid content during fruit development, three candidate genes were identified as being closely associated with the flavonoid biosynthesis, and the expression of one gene was further verified using qRT-PCR and its function was validated through transient transformation in pear fruit. CONCLUSIONS: The study results provide insights into the evolution and biological functions of P450 genes in pear.


Subject(s)
Pyrus , Pyrus/genetics , Pyrus/metabolism , Phylogeny , Gene Duplication , Multigene Family/genetics , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism
18.
ACS Appl Mater Interfaces ; 15(34): 40753-40761, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37585625

ABSTRACT

A great gap still exists between artificial synapses and their biological counterparts in operation voltage or stimulation duration. Here, an artificial synaptic device based on a thin-film transistor with an operating voltage (-50-50 mV) analogous to biological action potential is developed by targeted chemical processing with the help of supercritical fluids. Chemical molecules [hexamethyldisilazane (HMDS)] are elaborately chosen and brought into the target interface to form charge receptors through supercritical processing. These charge receptors with the ability of capturing electrons mimic neurotransmitter receptors in terms of mechanism and constitute key players accounting for the synaptic behaviors. The relatively lower electrical barrier height contributes to an action-potential-matched operating voltage and considerably low power consumption (∼1 pJ/synaptic event), minimizing the divide with biological synapse for a seamless linkage to the biosystem or brain-machine interface. The stable synaptic behaviors also lead to near-ideal accuracy in pattern recognition. Moreover, this methodology that introduces chemical groups into a target interface can be viewed as a platform technology that could be adapted to other conventional devices with suitable chemical molecules to reach designed synaptic behaviors. This environmentally friendly and low-temperature processing method, which can be performed even after device fabrication, has the potential to play an important role in the future development of bionic devices.


Subject(s)
Brain-Computer Interfaces , Synapses/chemistry , Action Potentials , Cold Temperature
19.
IEEE Trans Image Process ; 32: 4010-4023, 2023.
Article in English | MEDLINE | ID: mdl-37440399

ABSTRACT

The openness of application scenarios and the difficulties of data collection make it impossible to prepare all kinds of expressions for training. Hence, detecting expression absent during the training (called alien expression) is important to enhance the robustness of the recognition system. So in this paper, we propose a facial expression recognition (FER) model, named OneExpressNet, to quantify the probability that a test expression sample belongs to the distribution of training data. The proposed model is based on variational auto-encoder and enjoys several merits. First, different from conventional one class classification protocol, OneExpressNet transfers the useful knowledge from the related domain as a constraint condition of the target distribution. By doing so, OneExpressNet will pay more attention to the descriptive region for FER. Second, features from both source and target tasks will aggregate after constructing a skip connection between the encoder and decoder. Finally, to further separate alien expression from training expression, empirical compact variation loss is jointly optimized, so that training expression will concentrate on the compact manifold of feature space. The experimental results show that our method can achieve state-of-the-art results in one class facial expression recognition on small-scale lab-controlled datasets including CFEE and KDEF, and large-scale in-the-wild datasets including RAF-DB and ExpW.


Subject(s)
Facial Recognition , Learning , Data Collection , Facial Expression
20.
Database (Oxford) ; 20232023 07 06.
Article in English | MEDLINE | ID: mdl-37410918

ABSTRACT

Pear (Pyrus ssp.) belongs to Rosaceae and is an important fruit tree widely cultivated around the world. Currently, challenges to cope with the burgeoning sets of multiomics data are rapidly increasing. Here, we constructed the Pear Multiomics Database (PearMODB) by integrating genome, transcriptome, epigenome and population variation data, and aimed to provide a portal for accessing and analyzing pear multiomics data. A variety of online tools were built including gene search, BLAST, JBrowse, expression heatmap, synteny analysis and primer design. The information of DNA methylation sites and single-nucleotide polymorphisms can be retrieved through the custom JBrowse, providing an opportunity to explore the genetic polymorphisms linked to phenotype variation. Moreover, different gene families involving transcription factors, transcription regulators and disease resistance (nucleotide-binding site leucine-rich repeat) were identified and compiled for quick search. In particular, biosynthetic gene clusters (BGCs) were identified in pear genomes, and specialized webpages were set up to show detailed information of BGCs, laying a foundation for studying metabolic diversity among different pear varieties. Overall, PearMODB provides an important platform for pear genomics, genetics and breeding studies. Database URL http://pearomics.njau.edu.cn.


Subject(s)
Pyrus , Rosaceae , Pyrus/genetics , Pyrus/metabolism , Multiomics , Plant Breeding , Rosaceae/genetics , Fruit , Genomics
SELECTION OF CITATIONS
SEARCH DETAIL
...