Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.531
Filter
1.
Transl Vis Sci Technol ; 13(8): 4, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39093295

ABSTRACT

Purpose: This study aims to investigate the impact of axial elongation on ganglion cell complex thickness (GCCT) and retinal capillary density (CD) using wide-field swept-source optical coherence tomography angiography. Methods: A retrospective cross-sectional analysis was conducted involving 506 eyes. Fovea-centered scans were obtained to assess the subregional GCCT and capillary density across the whole retina, the superficial capillary plexus (SCP), and deep capillary plexus (DCP) among three groups: normal control, high myopia (HM) eyes with axial length < 28 mm, and HM eyes with axial length > 28 mm. Regional variations (central vs. peripheral, quadrants difference [superior, inferior, nasal, and temporal]) were analyzed. Results: In HM eyes with axial length > 28 mm, GCCT and retinal CD exhibit a general decline in most regions (P < 0.05). In HM eyes with axial length < 28 mm, significant reductions were observed specifically in peripheral regions, as in the GCCT beyond the 3 × 3 mm2 area and CD in the 9-12 mm whole retina, 9-12 mm superior SCP, and 6-12 mm DCP (P < 0.05). Maximum GCCT and retinal CD reduction with axial elongation was observed in subregions beyond 6 × 6  mm2. Conclusions: GCCT beyond the 3 × 3 mm2 area and peripheral retinal CD beyond the 6 × 6  mm2 area were more susceptible to axial elongation and are thereby deserving of particular attention. Translational Relevance: It is necessary to evaluate different regions during the clinical assessment of the effect of myopia on the fundus and pay close attention to the peripheral retina.


Subject(s)
Retinal Ganglion Cells , Retinal Vessels , Tomography, Optical Coherence , Humans , Tomography, Optical Coherence/methods , Cross-Sectional Studies , Retrospective Studies , Male , Retinal Ganglion Cells/pathology , Female , Retinal Vessels/diagnostic imaging , Retinal Vessels/pathology , Middle Aged , Adult , Myopia/pathology , Myopia/diagnostic imaging , Myopia/physiopathology , Microvessels/pathology , Microvessels/diagnostic imaging , Axial Length, Eye/pathology , Axial Length, Eye/diagnostic imaging , Nerve Fibers/pathology , Fluorescein Angiography/methods , Young Adult , Aged , Capillaries/pathology , Capillaries/diagnostic imaging
2.
Poult Sci ; 103(9): 104043, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39043031

ABSTRACT

Salmonellosis in poultry is detrimental to the advancement of the breeding industry and poses hazards to human health. Approximately 2,600 Salmonella varieties exist, among which S. Enteritidis, S. Pullorum, S. Typhimurium, and S. Infantis are prevalent serotypes in the poultry industry in recent years. They can also infect humans by contaminating poultry eggs and meat. Therefore, identifying these serotypes is crucial for successful preventive and control interventions. The White-Kauffmann-Le Minor scheme is time-consuming and requires expensive reagents. Whole-genome sequencing (WGS) and other molecular biology techniques require skilled technical staff. In comparison, the polymerase chain reaction (PCR) is more accurate, rapid, and inexpensive, thus proving suitable for widespread application in the poultry industry. Here, we selected 4 specific primers: lygD, mdh, ipaJ, and SIN_02055, which correspond to detecting S. Enteritidis, S. Typhimurium, S. Pullorum, and S. Infantis, respectively. They were integrated into a 1-step multiplex PCR method. We optimized the PCR method by utilizing specificity test results to determine the optimal annealing temperature (57°C). The PCR method exhibited excellent sensitivity for genomic DNA and bacterial cultures. We used the developed method to determine 157 clinical Salmonella isolates from various stages of the poultry production chain. The results aligned with serotype data generated via WGS analysis, demonstrating the method's excellent accuracy. In conclusion, this study developed a 1-step multiplex PCR method that simultaneously identifies S. Enteritidis, S. Typhimurium, S. Pullorum, and S. Infantis, allowing routine mass detection in the grass-root poultry industry.

3.
Sci Rep ; 14(1): 16969, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39043839

ABSTRACT

Fractional flow reserve (FFR) has become the gold standard for evaluating coronary lesion-specific ischemia. However, FFR is an invasive method that may cause possible complications in the coronary artery and requires expensive equipment, which limits its use. Promising noninvasive diagnostic methods, such as computed tomography angiography-derived FFR (CT-FFR) and the quantitative flow ratio (QFR), have been proposed. In this study, we evaluated the diagnostic performance of the QFR and CT-FFR in predicting coronary lesion-specific ischemia, with the FFR serving as the reference standard. Patients with suspected or known coronary artery disease who underwent coronary CT angiography revealing 30-90% diameter stenosis in the main coronary artery (≥ 2.0 mm reference diameter) were enrolled. The FFR was measured during invasive coronary angiography (within 15 days after coronary CT angiography). An FFR ≤ 0.8 was the reference standard for coronary lesion-specific ischemia. A total of 103 vessels from 92 consecutive patients (aged 59.8 ± 9.2 years; 60.9% were men) were evaluated. The diagnostic performance of a QFR ≤ 0.80 for predicting coronary lesion-specific ischemia demonstrated good diagnostic accuracy, sensitivity, and specificity (92.2%, 87.2%, and 96.4%, respectively), with an area under the receiver operating characteristic curve (AUC) of 0.987 (P < 0.0001). The diagnostic performance of a CT-FFR ≤ 0.80 for predicting coronary lesion-specific ischemia also demonstrated good diagnostic accuracy, sensitivity, and specificity (96.1%, 95.7%, and 96.4%, respectively), with an AUC of 0.967 (P < 0.0001). However, there was no significant difference in the AUC between a QFR ≤ 0.80 and a CT-FFR ≤ 0.80 for predicting coronary lesion-specific ischemia (P = 0.319). There was an excellent correlation between the QFR and FFR (r = 0.856, P < 0.0001). The CT-FFR and FFR also showed a good direct correlation (r = 0.816, P < 0.0001). The QFR and CT-FFR are strongly correlated with the FFR and can provide excellent clinical diagnostic performance for coronary lesion-specific ischemia detection.


Subject(s)
Computed Tomography Angiography , Coronary Angiography , Fractional Flow Reserve, Myocardial , Humans , Male , Female , Middle Aged , Computed Tomography Angiography/methods , Aged , Coronary Angiography/methods , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/physiopathology , Coronary Artery Disease/diagnosis , ROC Curve , Myocardial Ischemia/diagnostic imaging , Myocardial Ischemia/physiopathology , Coronary Stenosis/diagnostic imaging , Coronary Stenosis/physiopathology , Coronary Vessels/diagnostic imaging , Coronary Vessels/physiopathology , Sensitivity and Specificity
4.
Sensors (Basel) ; 24(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-39000811

ABSTRACT

3D digital-image correlation (3D-DIC) is a non-contact optical technique for full-field shape, displacement, and deformation measurement. Given the high experimental hardware costs associated with 3D-DIC, the development of high-fidelity 3D-DIC simulations holds significant value. However, existing research on 3D-DIC simulation was mainly carried out through the generation of random speckle images. This study innovatively proposes a complete 3D-DIC simulation method involving optical simulation and mechanical simulation and integrating 3D-DIC, virtual stereo vision, and image super-resolution reconstruction technology. Virtual stereo vision can reduce hardware costs and eliminate camera-synchronization errors. Image super-resolution reconstruction can compensate for the decrease in precision caused by image-resolution loss. An array of software tools such as ANSYS SPEOS 2024R1, ZEMAX 2024R1, MECHANICAL 2024R1, and MULTIDIC v1.1.0 are used to implement this simulation. Measurement systems based on stereo vision and virtual stereo vision were built and tested for use in 3D-DIC. The results of the simulation experiment show that when the synchronization error of the basic stereo-vision system (BSS) is within 10-3 time steps, the reconstruction error is within 0.005 mm and the accuracy of the virtual stereo-vision system is between the BSS's synchronization error of 10-7 and 10-6 time steps. In addition, after image super-resolution reconstruction technology is applied, the reconstruction error will be reduced to within 0.002 mm. The simulation method proposed in this study can provide a novel research path for existing researchers in the field while also offering the opportunity for researchers without access to costly hardware to participate in related research.

5.
Nano Lett ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39041646

ABSTRACT

Chiral nanostructures allow engineering of chiroptical responses; however, their design usually relies on empirical approaches and extensive numerical simulations. It remains unclear if a general strategy exists to enhance and maximize the intrinsic chirality of subwavelength photonic structures. Here, we suggest a microscopic theory and uncover the origin of strong chiral responses of resonant nanostructures. We reveal that the reactive helicity density is critically important for achieving maximum chirality at resonances. We demonstrate our general concept on the examples of planar photonic crystal slabs and metasurfaces, where out-of-plane mirror symmetry is broken by a bilayer design. Our findings provide a general recipe for designing photonic structures with maximum chirality, paving the way toward many applications, including chiral sensing, chiral emitters and detectors, and chiral quantum optics.

6.
Langmuir ; 40(28): 14413-14425, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38946296

ABSTRACT

Atmospheric water harvesting (AWH) technology is a new strategy for alleviating freshwater scarcity. Adsorbent materials with high hygroscopicity and high photothermal conversion efficiency are the key to AWH technology. Hence, in this study, a simple and large-scale preparation for a hygroscopic compound of polyurethane (PU) sponge-grafted calcium alginate (CA) with carbon ink (SCAC) was developed. The PU sponge in the SCAC aerogel acts as a substrate, CA as a moisture adsorber, and carbon ink as a light adsorber. The SCAC aerogel exhibits excellent water absorption of 0.555-1.40 g·g-1 within a wide range of relative humidity (40-80%) at 25 °C. The SCAC aerogel could release adsorbed water driven by solar energy, and more than 92.17% of the adsorbed water could be rapidly released over a wide solar intensity range of 1.0-2.0 sun. In an outdoor experiment, 57.517 g of SCAC was able to collect 32.8 g of clean water in 6 h, and the water quality meets the drinking water standards set by the World Health Organization. This study suggests a new approach to design promising AWH materials and infers the potential practical application of SCAC aerogel-based adsorbents.

7.
Rep Prog Phys ; 87(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38957891

ABSTRACT

Electron-phonon (e-p) coupling plays a crucial role in various physical phenomena, and regulation of e-p coupling is vital for the exploration and design of high-performance materials. However, the current research on this topic lacks accurate quantification, hindering further understanding of the underlying physical processes and its applications. In this work, we demonstrate quantitative regulation of e-p coupling, by pressure engineering andin-situspectroscopy. We successfully observe both a distinct vibrational mode and a strong Stokes shift in layered CrBr3, which are clear signatures of e-p coupling. This allows us to achieve precise quantification of the Huang-Rhys factorSat the actual sample temperature, thus accurately determining the e-p coupling strength. We further reveal that pressure efficiently regulates the e-p coupling in CrBr3, evidenced by a remarkable 40% increase inSvalue. Our results offer an approach for quantifying and modulating e-p coupling, which can be leveraged for exploring and designing functional materials with targeted e-p coupling strengths.

8.
Int J Biol Macromol ; 275(Pt 1): 133484, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960224

ABSTRACT

Spinal cord injury (SCI) represents a catastrophic neurological condition resulting in long-term loss of motor, autonomic, and sensory functions. Recently, ferroptosis, an iron-regulated form of cell death distinct from apoptosis, has emerged as a potential therapeutic target for SCI. In this study, we developed an injectable hydrogel composed of carboxymethyl cellulose (CMC), and quaternized chitosan (QCS), loaded with modified polydopamine nanoparticles (PDA NPs), referred to as CQP hydrogel. This hydrogel effectively scavenged reactive oxygen species (ROS), prevented the accumulation of Fe2+ and lipid peroxidation associated with ferroptosis, and restored mitochondrial functions in primary neuronal cells. When administered to animal models (rats) with SCI, the CQP hydrogels improved motor function by regulating iron homeostasis, inhibiting ferroptosis, and mitigating oxidative stress injury. Both in vitro and in vivo studies corroborated the capacity of CQP hydrogels to promote the shift from M1 to M2 polarization of microglia/macrophages. These findings suggest that CQP hydrogels, functioning as a localized iron-chelating system, have potential as biomaterials to enhance recovery from SCI by targeting ferroptosis and modulating anti-inflammatory macrophages activity.

9.
Cell Death Dis ; 15(7): 482, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38965225

ABSTRACT

Leukemia stem cells (LSCs) are recognized as the root cause of leukemia initiation, relapse, and drug resistance. Lipid species are highly abundant and essential component of human cells, which often changed in tumor microenvironment. LSCs remodel lipid metabolism to sustain the stemness. However, there is no useful lipid related biomarker has been approved for clinical practice in AML prediction and treatment. Here, we constructed and verified fatty acid metabolism-related risk score (LFMRS) model based on TCGA database via a series of bioinformatics analysis, univariate COX regression analysis, and multivariate COX regression analysis, and found that the LFMRS model could be an independent risk factor and predict the survival time of AML patients combined with age. Moreover, we revealed that Galectin-1 (LGALS1, the key gene of LFMRS) was highly expressed in LSCs and associated with poor prognosis of AML patients, and LGALS1 repression inhibited AML cell and LSC proliferation, enhanced cell apoptosis, and decreased lipid accumulation in vitro. LGALS1 repression curbed AML progression, lipid accumulation, and CD8+ T and NK cell counts in vivo. Our study sheds light on the roles of LFMRS (especially LGALS1) model in AML, and provides information that may help clinicians improve patient prognosis and develop personalized treatment regimens for AML.


Subject(s)
Fatty Acids , Galectin 1 , Leukemia, Myeloid, Acute , Neoplastic Stem Cells , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/genetics , Galectin 1/metabolism , Galectin 1/genetics , Fatty Acids/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Male , Animals , Female , Mice , Risk Factors , Tumor Microenvironment , Cell Line, Tumor , Apoptosis , Cell Proliferation , Prognosis , Middle Aged
10.
Poult Sci ; 103(9): 104048, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39029255

ABSTRACT

Fowl adenovirus serotype 4 (FAdV-4) is the causative agent of hydropericardium hepatitis syndrome in chickens, which causes severe economic impact to the poultry industry. A simple, swift and reliable detection is crucial for timely identification of FAdV-4 infection, promoting effective viral prevention and control measures. Herein, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 12a (Cas12a) system detection platform based on loop-mediated isothermal amplification (LAMP) was studied. The CRISPR RNA (crRNA) and LAMP primers were designed and screened based on the highly conserved region of the FAdV-4 hexon gene. The parameters were then optimized individually to achieve the ideal reaction performance. The platform could lead visual detection of FAdV-4 to achieve as low as 1 copy in less than 40 min without the need for specialized instrumentation or complex equipment. Moreover, it was greatly specific, and did not cross-react with other common avian viruses. Following the validation of 30 clinical samples of suspected FAdV-4 infection, the results LAMP-CRISPR/Cas12a method generated showed fully concordance with which of the gold standard quantitative real-time PCR. To summarize, this study presented a novel, swift, expedient and inexpensive detection platform for FAdV-4, which is beneficial to viral inchoate diagnosis and point-of-care testing.

11.
Food Chem ; 459: 140455, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39029422

ABSTRACT

The real-time, precise qualitative and quantitative sensing of food flavor compounds is crucial for ensuring food safety, quality, and consumer acceptance. As indicators for food flavor labeling, it is vital to delve deep into the specific ingredient and content of food flavor compounds to assess the food flavor quality, but still facing huge challenges. Photoluminescent fluorescent probe technology, with fast detection and high sensitivity, has shown immense potentials in detecting food flavor compounds. In this review, the classification and optical sensing mechanism of photoluminescent fluorescent probe technology are described in detail. Besides, challenges in applying photoluminescent fluorescent probe technology to analyze food flavor compounds are outlined to indicate future research directions. We hope this review can provide an insight for the applications of photoluminescent fluorescent probe technology in the evaluation of food flavor quality in future.

12.
J Cancer ; 15(13): 4345-4359, 2024.
Article in English | MEDLINE | ID: mdl-38947402

ABSTRACT

Background: Tumor hypoxia has been frequently detected in nasopharyngeal carcinoma (NPC) and is intently associated with therapeutic resistance. The aim of the study is to establish a clonogenically stable hypoxia-inducible dual reporter model and apply it to investigate the effect of tumor hypoxia on DNA double strand break (DSB) and synergistic effect of irradiation in combination with chemotherapy or targeted therapy. Methods: The plasmid vector consisting of hypoxia response elements to regulate HSV1-TK and GFP genes, was constructed and stably transfected into human NPC cells. The expected clone was identified and validated by in vivo and in vitro assay. DSB repair was measured by γH2AX foci formation. Tumor growth delay assay and spatial biodistribution of various biomarkers was designed to investigate the anti-tumor effect. Results: The system has the propensity of high expression of reporter genes under hypoxia and low to no expression under normoxia. Intratumoral biodistributions of GFP and classic hypoxic biomarkers were identical in poor-perfused region. Upon equilibration with 10% O2, the xenografts showed higher expression of hypoxic biomarkers. Cisplatin radiosensitized SUNE-1/HRE cells under hypoxia by suppressing DSB repair while the addition of PI3K/mTOR inhibitor further enhanced the anti-tumoral therapeutic efficacy. Combination of IR, DDP and NVP-BEZ235 exhibited most effective anti-tumor response in vivo. These observations underline the importance of dual reporter model for imaging tumor hypoxia in therapeutic study. Conclusions: Our preclinical model enables the investigation of heterogeneous tumor hypoxic regions in xenograft tissues and explores the treatment efficacy of combinations of various therapeutic approaches to overcome hypoxia.

13.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 630-634, 2024 May 20.
Article in Chinese | MEDLINE | ID: mdl-38948270

ABSTRACT

Objective: To investigate the effect of Sanshentongmai (SSTM) mixture on the regulation of oxidative damage to rat cardiomyocytes (H9C2) through microRNA-146a and its mechanism. Methods: H9C2 were cultured in vitro, H2O2 was used as an oxidant to create an oxidative damage model in H9C2 cells. SSTM intervention was administered to the H9C2 cells. Then, the changes in H2O2-induced oxidative damage in H9C2 cells and the expression of microRNA-146a were observed to explore the protective effect of SSTM on H9C2 and its mechanism. H9C2 cells cultured i n vitro were divided into 3 groups, including a control group, a model group of H2O2-induced oxidative damage (referred to hereafter as the model group), and a group given H2O2 modeling plus SSTM intervention at 500 µg/L for 72 h (referred to hereafter as the treatment group). The cell viability was measured by CCK8 assay. In addition, the levels of N-terminal pro-brain natriuretic peptide (Nt-proBNP), nitric oxide (NO), high-sensitivity C-reactive protein (Hs-CRP), and angiotensin were determined by enzyme-linked immunosorbent assay (ELISA). The expression level of microRNA-146a was determined by real-time PCR (RT-PCR). Result: H9C2 cells were pretreated with SSTM at mass concentrations ranging from 200 to 1500 µg/L. Then, CCK8 assay was performed to measure cell viability and the findings showed that the improvement in cell proliferation reached its peak when the mass concentration of SSTM was 500 µg/L, which was subsequently used as the intervention concentration. ELISA was performed to measure the indicators related to heart failure, including Nt-proBNP, NO, Hs-CRP, and angiotensin Ⅱ. Compared with those of the control group, the expressions of Nt-proBNP and angiotensin Ⅱ in the treatment group were up-regulated (P<0.05), while the expression of NO was down-regulated (P<0.05). There was no significant difference in the expression of Hs-CRP between the treatment group and the control group. These findings indicate that SSTM could effectively ameliorate oxidative damage in H9C2 rat cardiomyocytes. Finally, according to the RT-PCR findings for the expression of microRNA-146a in each group, H2O2 treatment at 15 µmol/L could significantly reduce the expression of microRNA-146a, and the expression of microRNA-146a in the treatment group was nearly doubled compared with that in the model group. There was no significant difference between the treatment group and the control group. Conclusion: SSTM can significantly resist the H2O2-induced oxidative damage of H9C2 cells and may play a myocardial protective role by upregulating microRNA-146a.


Subject(s)
Drugs, Chinese Herbal , Hydrogen Peroxide , MicroRNAs , Myocytes, Cardiac , Oxidative Stress , Up-Regulation , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/cytology , Animals , MicroRNAs/metabolism , MicroRNAs/genetics , Rats , Oxidative Stress/drug effects , Hydrogen Peroxide/toxicity , Drugs, Chinese Herbal/pharmacology , Up-Regulation/drug effects , Cell Survival/drug effects , Cell Line , Drug Combinations
14.
Eur Spine J ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967801

ABSTRACT

PURPOSE: To assess whether preoperative facet joint parameters in patients with degenerative lumbar spondylolisthesis (DS) are risk factors for cage subsidence (CS) following transforaminal lumbar interbody fusion (TLIF). METHODS: We enrolled 112 patients with L4-5 DS who underwent TLIF and were followed up for > 1 year. Preoperative demographic characteristics, functional areas of paraspinal muscles and psoas major muscles (PS), total functional area relative to vertebral body area, functional cross-sectional area (FCSA) of PS and lumbar spine extensor muscles, normalized FCSA of PS to the vertebral body area (FCSA/VBA), lumbar indentation value, facet joint orientation, facet joint tropism (FT), cross-sectional area of the superior articular process (SAPA), intervertebral height index, vertebral Hounsfield unit (HU) value, lordosis distribution index, t-scores, sagittal plane parameters, visual analog scale (VAS) for low back pain, VAS for leg pain, Oswestry disability index, global alignment and proportion score and European quality of life-5 dimensions (EQ-5D) were assessed. RESULTS: Postoperative CS showed significant correlations with preoperative FO(L3-4), FT (L3 and L5), SAPA(L3-5), L5-HU, FCSA/VBA(L3-4), Pre- T-score, post-6-month VAS for back pain and EQ-5D scores among other factors. According to ROC curve analysis, the optimal decision points for FO(L3-4), L3-SAPA, FCSA/VBA(L3-4), L5-HU, and Pre- T-score were 35.88°, 43.76°,114.93, 1.73, 1.55, 136, and - 2.49. CONCLUSIONS: This study identified preoperative FO, SAPA, preoperative CT, Pre- T-score and the FCSA/VBA as independent risk factors for CS after TLIF for DS. These risk factors should enable spinal surgeons to closely monitor and prevent the occurrence of CS.

15.
ACS Appl Mater Interfaces ; 16(30): 39215-39224, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39038493

ABSTRACT

Li dendrite and the shuttle effect are the two primary hindrances to the commercial application of lithium-sulfur batteries (LSBs). Here, a multifunctional separator has been fabricated via successively coating carbon nanotubes (CNTs) and lithium phytate (LP) onto a commercial polypropylene (PP) separator to improve the performance of LSBs. The LP coating layer with abundant electronegative phosphate group as permselective ion sieve not only reduces the polysulfide shuttle but also facilitates uniform Li+ flux through the PP separator. And the highly conductive CNTs on the second layer act as a second collector to accelerate the reversible conversion of sulfide species. The synergistic effect of LP and CNTs further increases the electrolyte wettability and reaction kinetics of cells with a modified separator and suppresses the shuttle effect and growth of Li dendrite. Consequently, the LSBs present much enhanced rate performance and cyclic performance. It is expected that this study may generate an executable tactic for interface engineering of separator to accelerate the industrial application process of LSBs.

16.
Int J Ophthalmol ; 17(7): 1313-1321, 2024.
Article in English | MEDLINE | ID: mdl-39026912

ABSTRACT

AIM: To investigate the clinical features of the ocular surface in patients with different degrees of myopia. METHODS: A cross-sectional study was conducted involving 122 participants with myopia in Beijing Tongren Hospital from February to June, 2023. After completing the Ocular Surface Disease Index (OSDI) score scale, measurements were taken for refraction, biometric parameters and ocular surface parameters. The prevalence, severity and related parameters of the dry eye among different groups based on axial length (AL) were compared. Correlation analysis was performed between ocular surface parameters and refraction/biometric measurement parameters. RESULTS: Statistically significant differences were observed in refractive error, corneal thickness, anterior chamber depth, and subfoveal choroidal thickness among the groups (all P<0.05). With the increase in AL, the incidence and severity of dry eye increased significantly (P<0.05). Moreover, the tear film break-up time (BUT) shortened (P<0.05), and the corneal fluorescein staining (CFS) points increased significantly (P<0.05). OSDI scores were positively correlated with AL and spherical equivalent (SE; both P<0.05); BUT was negatively correlated with AL, SE, and corneal astigmatism (AST; all P<0.05); Schirmer I test (SIT) results were negatively correlated with AL and SE (both P<0.05). CONCLUSION: AL elongation is a risk factor for dry eye onset in myopic participants. The longer the AL, the more severe the dry eye is, with the increased CFS spots and tear film instability. Additionally, SE and AST exhibit negative correlations with dry eye symptom scores and ocular surface parameters.

17.
Ecol Evol ; 14(7): e11500, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39026954

ABSTRACT

Many tree species adopt fast seed germination to escape the predation risk by rodents. Physical seed damage and the saliva of rodents on partially consumed seeds may act as cues for seeds to accelerate germination process. However, the impacts of these factors on seed germination rate and speed remain unclear. In this study, we investigated such impacts on the germination rate and speed (reversal of germination time) of four tree species (Quercus variabilis, Q. serrata, Q. acutissima, Q. glauca) after partial consumption by four rodent species (Leopoldamys edwards, Niviventer fulvescens, N. confucianus, Apodemus draco), through a series of experiments. We also examined how seed traits may affect the seed damage degree by rodents by analyzing the relationship between the germination rate and time of rodent-damaged seed and the traits. We found that, artificially- and rodent-damaged seeds exhibited a significantly higher seed germination rate and speed, compared to intact seeds. Also, the rodent saliva on seeds showed no significant effect on seed germination rate and speed. Furthermore, we observed significant positive correlations between several seed traits (including the seed mass, coat thickness, and protein content) and the seed germination rate and speed. These correlations are likely due to their beneficial traits countering seed damage by rodents. Overall, our results highlight the significant role of physical seed damage by rodents (rather than their saliva) in facilitating seed germination of tree species, and potential mutualism between rodents and trees. Additionally, our results may have some implications in forest restoration, such that intentionally sowing or dispersing slightly damaged seeds by humans or drones may increase the likelihood of successful seed regeneration.

18.
J Exerc Sci Fit ; 22(4): 350-358, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39027081

ABSTRACT

Objective: The aims of this study were to examine the effect of SARS-CoV-2 infection on cardiorespiratory fitness (CRF) and time-trial performance in vaccinated well-trained young kayak athletes. Methods: This is a longitudinal observational study. Sixteen (7 male, 9 female) vaccinated kayakers underwent body composition assessment, maximal graded exercise test, and 1000-m time-trial tests 21.9 ± 1.7 days before and 66.0 ± 2.2 days after the SARS-CoV-2 infection. The perception of training load was quantified with Borg's CR-10 scale before and after the infection return to sport period. Results: There were significant decreases in peak oxygen uptake (-9.7 %; effect size [ES] = 1.38), peak oxygen pulse (-5.7 %; ES = 0.96), and peak heart rate (-1.9 %; ES = 0.61). Peak minute ventilation, and minute ventilation/carbon dioxide production slope were unchanged after infection compared to the pre-infection values. In the entire 1000-m, the impaired tendencies were found in completion time, mean power, and mean speed (-2.4 to 1.2 %; small ESs = -0.40 to 0.47) as well as significant changes in stroke rate and stroke length (-4.5 to 3.7 %; ESs = -0.60 to 0.73). Conclusion: SARS-CoV-2 infection decreased CRF and time-trial performance even two months after return to regular training in vaccinated athletes.

19.
Phys Rev Lett ; 132(25): 250801, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38996246

ABSTRACT

We present a quantum sensing technique that utilizes a sequence of π pulses to cyclically drive the qubit dynamics along a geodesic path of adiabatic evolution. This approach effectively suppresses the effects of both decoherence noise and control errors while simultaneously removing unwanted resonance terms, such as higher harmonics and spurious responses commonly encountered in dynamical decoupling control. As a result, our technique offers robust, wide-band, unambiguous, and high-resolution quantum sensing capabilities for signal detection and individual addressing of quantum systems, including spins. To demonstrate its versatility, we showcase successful applications of our method in both low-frequency and high-frequency sensing scenarios. The significance of this quantum sensing technique extends to the detection of complex signals and the control of intricate quantum environments. By enhancing detection accuracy and enabling precise manipulation of quantum systems, our method holds considerable promise for a variety of practical applications.

20.
Plant Physiol ; 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39067058

ABSTRACT

Alternative splicing (AS) is an important post-transcriptional regulatory mechanism that improves plant tolerance to drought stress by modulating gene expression and generating proteome diversity. The interaction between the 5' end of U1 small nuclear RNA (U1 snRNA) and the conserved 5' splice site of precursor messenger RNA (pre-mRNA) is pivotal for U1 snRNP involvement in AS. However, the roles of U1 snRNA in drought stress responses remain unclear. This study provides a comprehensive analysis of AtU1 snRNA in Arabidopsis (Arabidopsis thaliana), revealing its high conservation at the 5' end and a distinctive four-leaf clover structure. AtU1 snRNA is localized in the nucleus and expressed in various tissues, with prominent expression in young floral buds, flowers, and siliques. Overexpression of AtU1 snRNA confers enhanced abiotic stress tolerance, as evidenced in seedlings by longer seedling primary root length, increased fresh weight, and a higher greening rate compared to the wild type. Mature AtU1 snRNA overexpressor plants exhibit higher survival rates and lower water loss rates under drought stress, accompanied by a significant decrease in H2O2 and increase in proline. This study also provides evidence of altered expression levels of drought-related genes in AtU1 snRNA overexpressor or genome-edited lines, reinforcing the crucial role of AtU1 snRNA in drought stress responses. Furthermore, the overexpression of AtU1 snRNA influences the splicing of downstream target genes, with a notable impact on SPEECHLESS (SPCH), a gene associated with stomatal development, potentially explaining the observed decrease in stomatal aperture and density. These findings elucidate the critical role of U1 snRNA as an AS regulator in enhancing drought stress tolerance in plants, contributing to a deeper understanding of the AS pathway in drought tolerance and increasing awareness of the molecular network governing drought tolerance in plants.

SELECTION OF CITATIONS
SEARCH DETAIL