Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Small ; : e2311587, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38385836

ABSTRACT

Magnesium ion batteries (MIBs) are expected to be the promising candidates in the post-lithium-ion era with high safety, low cost and almost dendrite-free nature. However, the sluggish diffusion kinetics and strong solvation capability of the strongly polarized Mg2+ are seriously limiting the specific capacity and lifespan of MIBs. In this work, catalytic desolvation is introduced into MIBs for the first time by modifying vanadium pentoxide (V2 O5 ) with molybdenum disulfide quantum dots (MQDs), and it is demonstrated via density function theory (DFT) calculations that MQDs can effectively lower the desolvation energy barrier of Mg2+ , and therefore catalyze the dissociation of Mg2+ -1,2-Dimethoxyethane (Mg2+ -DME) bonds and release free electrolyte cations, finally contributing to a fast diffusion kinetics within the cathode. Meanwhile, the local interlayer expansion can also increase the layer spacing of V2 O5 and speed up the magnesiation/demagnesiation kinetics. Benefiting from the structural configuration, MIBs exhibit superb reversible capacity (≈300 mAh g-1 at 50 mA g-1 ) and unparalleled cycling stability (15 000 cycles at 2 A g-1 with a capacity of ≈70 mAh g-1 ). This approach based on catalytic reactions to regulate the desolvation behavior of the whole interface provides a new idea and reference for the development of high-performance MIBs.

2.
Small ; 20(12): e2308329, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37949813

ABSTRACT

Rechargeable magnesium-ion batteries possess desirable characteristics in large-scale energy storage applications. However, severe polarization, sluggish kinetics and structural instability caused by high charge density Mg2+ hinder the development of high-performance cathode materials. Herein, the anionic redox chemistry in VS4 is successfully activated by inducing cations reduction and introducing anionic vacancies via polyacrylonitrile (PAN) intercalation. Increased interlayer spacing and structural vacancies can promote the electrolyte ions migration and accelerate the reaction kinetics. Thanks to this "three birds with one stone" strategy, PAN intercalated VS4 exhibits an outstanding electrochemical performance: high discharge specific capacity of 187.2 mAh g-1 at 200 mA g-1 after stabilization and a long lifespan of 5000 cycles at 2 A g-1 are achieved, outperforming other reported VS4-based materials to date for magnesium storage under the APC electrolyte. Theoretical calculations confirm that the intercalated PAN can indeed induce cations reduction and generate anionic vacancies by promoting electron transfer, which can accelerate the electrochemical reaction kinetics and activate the anionic redox chemistry, thus improving the magnesium storage performance. This approach of organic molecular intercalation represents a promising guideline for electrode material design on the development of advanced multivalent-ion batteries.

3.
ChemSusChem ; 17(4): e202301589, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38143242

ABSTRACT

Rechargeable magnesium batteries (RMBs) become a highly promising candidate for the large-scale energy storage system by right of the high volumetric capacity, intrinsic safety and abundant resources of Mg anode. However, the uneven Mg stripping and large overpotential will cause a severe pitting perforation and the followed failure of Mg anode. Herein, we proposed a high-performance binary Mg-1 at% Gd alloy anode prepared by the melting and hot extrusion. The introduction of 1 at% Gd element can effectively reduce the Mg2+ diffusion energy barrier (0.34 eV) on alloy surface and induces the formation of a robust and low-resistance electrolyte/anode interphase, thus enabling a uniform and fast Mg plating/stripping. As a result, the Mg-1 at.% Gd anode displays a largely enhanced life of 220 h and a low overpotential of 213 mV at a high current density of 5.0 mA cm-2 with 2.5 mAh cm-2 . Moreover, the assembled Mg-1 at.% Gd//Mo6 S8 full cell delivers a high rate performance (73.5 mAh g-1 at 5 C) and ultralong cycling stability of 8000 cycles at 5 C. This work brings new insights to design the new-type and practical Mg alloy anodes for commercial RMBs.

4.
ACS Appl Mater Interfaces ; 15(23): 27984-27994, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37259531

ABSTRACT

Magnesium-ion batteries (MIBs) have great potential in large-scale energy storage field with high capacity, excellent safety, and low cost. However, the strong solvation effect of Mg2+ will lead to the formation of solvated ions in electrolytes with larger size and sluggish diffusion/reaction kinetics. Here, the concept of interfacial catalytic bond breaking is first introduced into the cathode design of MIBs by hybriding MoS2 quantum dots with VS4 (VS4@MQDs) as the cathode. The "in situ dynamic catalysis and re-equilibration" effects can catalyze the Cl-Mg bond breaking and trigger single Mg2+ insertion/extraction chemistries, which can significantly accelerate the diffusion and reaction kinetics, as verified by the decreased diffusion energy barriers (0.26 eV for Mg2+ vs 2.47 eV for MgCl+) and fast diffusion coefficient. Benefitting from these dynamic catalysis effects, the constructed VS4@MQD-based MIBs deliver a high discharge capacity of ∼120 mA h g-1 at 200 mA g-1 and a long-term cyclic stability of 1000 cycles at 1 A g-1. The improved performance and detailed characterizations well prove that the active ions in MIBs change from MgCl+/Mg2Cl3+ to Mg2+ with fast kinetics.

5.
Nutr Metab Cardiovasc Dis ; 32(12): 2705-2713, 2022 12.
Article in English | MEDLINE | ID: mdl-36333200

ABSTRACT

BACKGROUND AND AIMS: The sedentary behavior in people's daily life has continued to increase in recent years, causing many studies to focus on its relationship with diseases. Several studies have shown that sedentary behavior is an independent risk factor for cardiovascular disease and metabolic disease. Therefore, we performed a meta-analysis to assess the association between sedentary behavior and the risk of stroke. METHODS AND RESULTS: Two independent investigators searched for prospective cohort studies on the association between sedentary behavior and stroke risk, published before February 2022. We pooled adjusted effect size and performed the dose-response analysis by random-effect model. Seven studies with 677,614 participants and 15,135 stroke events during a median follow-up of 12.2 years were included. The pooled hazard ratio (HR) of stroke was 1.16 (95% confidence interval [CI]: 1.09-1.24) with no significant heterogeneity (I2 = 0.0%, p for heterogeneity = 0.983). In dose-response analysis, a nonlinear association between sedentary behavior and stroke risk was discovered. Stroke risk began to increase when sedentary time exceeded 3.7 h/d (HR, 1.01; 95% CI, 0.97-1.05). And when reached 11 h/d, a significantly increased risk of stroke was observed (HR, 1.21; 95% CI 1.12-1.31). CONCLUSION: A nonlinear association was found in the dose-response analysis, with increased risk only when sedentary time exceeded a certain level. Further research is needed to explain the biological mechanisms by which sedentary time above a certain threshold significantly increases stroke risk. (PROSPERO registration number: CRD42022311544).


Subject(s)
Cardiovascular Diseases , Stroke , Humans , Sedentary Behavior , Prospective Studies , Stroke/diagnosis , Stroke/epidemiology , Risk Factors
6.
Front Chem ; 10: 998812, 2022.
Article in English | MEDLINE | ID: mdl-36118309

ABSTRACT

Electrocatalytic glucose oxidation reaction (GOR) is the key to construct sophisticated devices for fast and accurately detecting trace glucose in blood and food. Herein, a noble-metal-free Cu/C-60 catalyst is fabricated by supporting Cu2O-CuO nanoparticles on carbon nanotubes through a novel discharge process. For GOR, Cu/C-60 shows a sensitivity as high as 532 µA mM-1 cm-2, a detection limit as low as 1 µM and a steady-state response time of only 5.5 s. Moreover, Cu/C-60 has outstanding stability and anti-interference ability to impurities. The synergistic effect of Cu2O-CuO could improve the adsorption and conversion of glucose, thus enhancing GOR performance. By using Cu/C-60, we fabricate a three-electrode chip. A portable and compact electrochemical system is constructed by connecting the three-electrode chip with Cu/C-60 to an integrated circuit board and a mobile phone for recording and displaying data. The portable and compact electrochemical system results in a GOR sensitivity of 501 µA mM-1 cm-2, which is close to the data measured on the bloated electrochemical workstation. The detection limit of the portable and compact electrochemical system in GOR is 50 µM. This is higher than those obtained on the bloated electrochemical workstation, but is much lower than the common blood glucose concentration of human body (>3 mM). This demonstrates the accuracy, reasonability and applicability of the portable and compact electrochemical system. The results of the present work are helpful for fabricating fast, efficient and portable devices for detecting trace amount of glucose in blood and food.

7.
Adv Mater ; 34(39): e2205560, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35962756

ABSTRACT

High room-temperature ionic conductivities, large Li+ -ion transference numbers, and good compatibility with both Li-metal anodes and high-voltage cathodes of the solid electrolytes are the essential requirements for practical solid-state lithium-metal batteries. Herein, a unique "superconcentrated ionogel-in-ceramic" (SIC) electrolyte prepared by an in situ thermally initiated radical polymerization is reported. Solid-state static 7 Li NMR and molecular dynamics simulation reveal the roles of ceramic in Li+ local environments and transport in the SIC electrolyte. The SIC electrolyte not only exhibits an ultrahigh ionic conductivity of 1.33 × 10-3 S cm-1 at 25 °C, but also a Li+ -ion transference number as high as 0.89, together with a low electronic conductivity of 3.14 × 10-10 S cm-1 and a wide electrochemical stability window of 5.5 V versus Li/Li+ . Applications of the SIC electrolyte in Li||LiNi0.5 Co0.2 Mn0.3 O2 and Li||LiFePO4 batteries further demonstrate the high rate and long cycle life. This study, therefore, provides a promising hybrid electrolyte for safe and high-energy lithium-metal batteries.

8.
Adv Sci (Weinh) ; 9(13): e2105849, 2022 May.
Article in English | MEDLINE | ID: mdl-35253384

ABSTRACT

To enhance the compatibility between the polymer-based electrolytes and electrodes, and promote the interfacial ion conduction, a novel approach to engineer the interfaces between all-solid-state composite polymer electrolyte and electrodes using thin layers of ferroelectrics is introduced. The well-designed and ferroelectric-engineered composite polymer electrolyte demonstrates an attractive ionic conductivity of 7.9 × 10-5 S cm-1 at room temperature. Furthermore, the ferroelectric engineering is able to effectively suppress the growth of solid electrolyte interphase (SEI) at the interface between polymer electrolytes and Na metal electrodes, and it can also enhance the ion diffusion across the electrolyte-ferroelectric-cathode/anode interfaces. Notably, an extraordinarily high discharge capacity of 160.3 mAh g-1 , with 97.4% in retention, is achieved in the ferroelectric-engineered all-solid-state Na metal cell after 165 cycles at room temperature. Moreover, outstanding stability is demonstrated that a high discharge capacity retention of 86.0% is achieved over 180 full charge/discharge cycles, even though the cell has been aged for 2 months. This work provides new insights in enhancing the long-cyclability and stability of solid-state rechargeable batteries.

9.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(3): 729-34, 2014 Mar.
Article in Chinese | MEDLINE | ID: mdl-25208402

ABSTRACT

In the present, for the characteristic of HJ-1 CCD camera, after receiving aerosol optical depth (AOD) from deep blue algorithm which was developed by Hsu et al. assisted by MODerate-resolution imaging spectroradiometer (MODIS) surface reflectance database, bidirectional reflectance distribution function (BRDF) correction with Kernel-Driven Model, and the calculation of viewing geometry with auxiliary data, a new atmospheric correction method of HJ-1 CCD was developed which can be used over vegetation, soil and so on. And, when the CCD data is processed to correct atmospheric influence, with look up table (LUT) and bilinear interpolation, atmospheric correction of HJ-1 CCD is completed quickly by grid calculation of atmospheric parameters and matrix operations of interface define language (IDL). The experiment over China North Plain on July 3rd, 2012 shows that by our method, the atmospheric influence was corrected well and quickly (one CCD image of 1 GB can be corrected in eight minutes), and the reflectance after correction over vegetation and soil was close to the spectrum of vegetation and soil. The comparison with MODIS reflectance product shows that for the advantage of high resolution, the corrected reflectance image of HJ-1 is finer than that of MODIS, and the correlation coefficient of the reflectance over typical surface is greater than 0.9. Error analysis shows that the recognition error of aerosol type leads to 0. 05 absolute error of surface reflectance in near infrared band, which is larger than that in visual bands, and the 0. 02 error of reflectance database leads to 0.01 absolute error of surface reflectance of atmospheric correction in green and red bands.

10.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(12): 3343-8, 2013 Dec.
Article in Chinese | MEDLINE | ID: mdl-24611400

ABSTRACT

Hyper-spectral remote sensing (RS) technology has been widely used in environmental protection. The present work introduces its recent application in the RS monitoring of pollution gas, green-house gas, algal bloom, water quality of catch water environment, safety of drinking water sources, biodiversity, vegetation classification, soil pollution, and so on. Finally, issues such as scarce hyper-spectral satellites, the limits of data processing and information extract are related. Some proposals are also presented, including developing subsequent satellites of HJ-1 satellite with differential optical absorption spectroscopy, greenhouse gas spectroscopy and hyper-spectral imager, strengthening the study of hyper-spectral data processing and information extraction, and promoting the construction of environmental application system.

11.
Guang Pu Xue Yu Guang Pu Fen Xi ; 32(3): 775-80, 2012 Mar.
Article in Chinese | MEDLINE | ID: mdl-22582651

ABSTRACT

With the urbanizing in China, haze days occur frequently, which have largely impacted air quality. In the present paper, based on haze physical properties, haze optical properties were calculated by Mie theory and apparent reflectance of haze in Environment Satellite 1 (HJ-1) channels was simulated by Radiative Transfer (RT) 3. Simulated results show that it is reasonable to extract the haze from apparent reflectance in the first and second channels. By Deep Blue algorithm, Haze Optical Depth (HOD) was retrieved from HJ-1 data supported by reflectance database from MODIS product. From HJ-1 data in 2009 over Beijing area, the haze days were monitored and validated by AERONET/PHOTONS Beijing site. The validation shows that the correlation coefficient of HOD is greater than 0.9, but HOD from HJ-1 is greater than that from ground-based measurements. The discussions show that the error from reflectance database is less than 0.1 and radiance resolution of HJ-1 needs to advance for haze monitoring.

12.
Guang Pu Xue Yu Guang Pu Fen Xi ; 31(2): 516-20, 2011 Feb.
Article in Chinese | MEDLINE | ID: mdl-21510417

ABSTRACT

The potentiality of the retrieval of surface reflectance using CCD camera aboard HJ-1A/B satellite was studied. It is very difficult to use dark targets in atmospheric correction due to the lack of near infrared band. The alternative normalized difference vegetation index (NDVI) and the red/blue reflectance ratio are detected from the spectral experiment in Beijing and the Pearl River Delta. Ground-based spectral data including grass, dense vegetation, water body, soil, residential roof and bright building etc. were used to validate the surface reflectance in Beijing, and the relative error in red, blue band is under 38.7% and 37.2% respectively. Uncertainties of the surface reflectance retrievals were analyzed. The comparison of MODIS surface reflectance product showed that there is a good agreement in the dense targets, and the correlation coefficient (R2) in red, blue band is as high as 0.809 4 and 0.723 9 respectively. HJ-1-CCD data can effectively reduce pixel-mixed impact on the cement roof and bright buildings, and the inversion accuracy is higher than MODIS products.

13.
Guang Pu Xue Yu Guang Pu Fen Xi ; 31(10): 2809-13, 2011 Oct.
Article in Chinese | MEDLINE | ID: mdl-22250561

ABSTRACT

Generally, aerosols over land are composed of fine and coarse aerosols, which have different optical properties. How to derive the fine mode and coarse mode aerosols from satellite observations is an important issue in the aerosol retrieving. In the present paper, information of aerosol models (including refractive index and size distribution function) was retrieved from the ground-based measurement of the AERONET/PHOTONS site in Beijing. The retrievals indicate that, aerosols over Beijing have a bi-model distribution, and the optical properties of fine and coarse aerosols are distinct. Based on the dark dense vegetation (DDV) method, optical depth of the fine, coarse and total aerosols were derived from MODIS data over Beijing area in 2007. The validation of these satellite retrievals shows that from MODIS data, the optical depth of fine and total aerosols can be retrieved well (with correlation coefficients greater than 0.8), and so can the Angstrom exponent (having a correlation coefficient of 0.517). However, relatively poor results were obtained when retrieving the optical depth of coarse aerosols.

SELECTION OF CITATIONS
SEARCH DETAIL
...