Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 605
Filter
1.
Phys Rev E ; 109(6-1): 064414, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39021038

ABSTRACT

Phenotypic switching plays a crucial role in cell fate determination across various organisms. Recent experimental findings highlight the significance of protein compartmentalization via liquid-liquid phase separation in influencing such decisions. However, the precise mechanism through which phase separation regulates phenotypic switching remains elusive. To investigate this, we established a mathematical model that couples a phase separation process and a gene expression process with feedback. We used the chemical master equation theory and mean-field approximation to study the effects of phase separation on the gene expression products. We found that phase separation can cause bistability and bimodality. Furthermore, phase separation can control the bistable properties of the system, such as bifurcation points and bistable ranges. On the other hand, in stochastic dynamics, the droplet phase exhibits double peaks within a more extensive phase separation threshold range than the dilute phase, indicating the pivotal role of the droplet phase in cell fate decisions. These findings propose an alternative mechanism that influences cell fate decisions through the phase separation process. As phase separation is increasingly discovered in gene regulatory networks, related modeling research can help build biomolecular systems with desired properties and offer insights into explaining cell fate decisions.


Subject(s)
Models, Biological , Phenotype , Stochastic Processes , Gene Regulatory Networks , Phase Transition , Phase Separation
2.
Int J Surg ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954672

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) is a common and serious complication after cardiac surgery that significantly affects patient outcomes. Given the limited treatment options available, identifying modifiable risk factors is critical. Frailty and obesity, two heterogeneous physiological states, have significant implications for identifying and preventing AKI. Our study investigated the interplay among frailty, body composition, and AKI risk after cardiac surgery to inform patient management strategies. MATERIAL AND METHODS: This retrospective cohort study included three international cohorts. Primary analysis was conducted in adult patients who underwent cardiac surgery between 2014 and 2019 at Wuhan XX Hospital, China. We tested the generalizability of our findings with data from two independent international cohorts, the Medical Information Mart for Intensive Care IV (MIMIC-IV) and the eICU Collaborative Research Database. Frailty was assessed using a clinical lab-based frailty index (FI-LAB), while total body fat percentage (BF%) was calculated based on a formula accounting for BMI, sex, and age. Logistic regression models were used to analyze the associations between frailty, body fat, and AKI, adjusting for pertinent covariates. RESULTS: A total of 8785 patients across three international cohorts were included in the study. In the primary analysis of 3,569 patients from Wuhan XX Hospital, moderate and severe frailty were associated with an increased AKI risk after cardiac surgery. Moreover, a nonlinear relationship was observed between body fat percentage and AKI risk. When stratified by the degree of frailty, lower body fat correlated with a decreased incidence of AKI. Extended analyses using the MIMIC-IV and eICU cohorts (n=3,951 and n=1,265, respectively) validated these findings and demonstrated that a lower total BF% was associated with decreased AKI incidence. Moderation analysis revealed that the effect of frailty on AKI risk was moderated by the body fat percentage. Sensitivity analyses demonstrated results consistent with the main analyses. CONCLUSION: Higher degrees of frailty were associated with an elevated risk of AKI following cardiac surgery, and total BF% moderated this relationship. This research underscores the significance of integrating frailty and body fat assessments into routine cardiovascular care to identify high-risk patients for AKI and implement personalized interventions to improve patient outcomes.

3.
Nanoscale ; 16(29): 14089-14095, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39005077

ABSTRACT

The interlayer twist angle has a direct effect on exciton lifetimes in van der Waals heterostructures. At small angles, the interlayer and intralayer excitons in MoSe2/WS2 heterostructures are hybridized, resulting in hybridized excitons with long lifetimes and strong resonance. However, the study of twist-angle modulation of hybridized exciton lifetimes is still insufficient, leading to an unclear understanding of the mechanism through which the twist angle between layers influences the lifetime of hybridized excitons. Here, we observed the formation of hybridized excitons by constructing MoSe2/WS2 heterostructures with different twist angles. The exciton lifetime is found to increase from 0.5 ns to 3.3 ns when the twist angle is reduced from 12° to 1°. This work provides a new perspective on the modulation of the exciton lifetime, enabling further exploration in improving the efficiency of optoelectronic devices.

4.
BMC Public Health ; 24(1): 1931, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026191

ABSTRACT

BACKGROUND: Nasopharyngeal carcinoma (NPC) is 22nd most common cancer that occurs all over the world, but the prevalence rate can exhibit significant geographical differences. The Global Burden of Disease (GBD) database provides data related to the incidence, mortality, and disease burden of NPC worldwide from 1990 to 2019. We have designed this study in order to evaluate the potential effectiveness of health care policies and strategies for NPC prevention, diagnosis and treatment in different countries or regions around the world. METHODS: We used for the first time two distinct indicators, EAPC-ASIR and EACP-ASDR, to perform cluster analysis on 200 countries or regions around the world. RESULTS: 200 countries or regions could be divided into five diverse groups. Group 1: The incidence rate showed an increasing trend whereas the mortality rate depicted a decreasing trend. Group 2: Morbidity as well as mortality showed a slight increase; Group 3: Morbidity as well as mortality increased significantly; Group 4: Morbidity and mortality decreased significantly; Group 5: Both morbidity as well as mortality decreased slightly. Moreover, in the context of a global decline in NPC incidence, mortality and disease burden, Group 3 countries, including: "Turkmenistan", "Bosnia and Herzegovina", "Dominican Republic", "Bulgaria", "Lesotho", "Cabo Verde", "Romania", "Cuba", "Jamaica", "Azerbaijan", "Uzbekistan", "Chad", "Belize" and "Ukraine" displayed a significant increase in morbidity, mortality, and disease burden, thus indicating a dangerous trend. CONCLUSION: It is suggested that the medical and health policies formulated by the countries in Group 3 for NPC, as well as their capacity for conducting censuses, preventing, diagnosing, and treating diseases, need to be substantially strengthened.


Subject(s)
Global Health , Nasopharyngeal Neoplasms , Humans , Nasopharyngeal Neoplasms/epidemiology , Nasopharyngeal Neoplasms/mortality , Global Health/statistics & numerical data , Risk Assessment , Incidence , Global Burden of Disease , Cluster Analysis , Nasopharyngeal Carcinoma/epidemiology , Nasopharyngeal Carcinoma/diagnosis , Nasopharyngeal Carcinoma/mortality
5.
J Control Release ; 373: 319-335, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38986911

ABSTRACT

Diabetic foot ulcer (DFU), which is characterised by damage to minute blood vessels or capillaries around wounds, is one of the most serious and dreaded complications of diabetes. It is challenging to repair chronic non-healing DFU wounds. Vascular endothelial growth factor (VEGF) plays an important role in angiogenesis and promotes wound healing in DFU. However, it is difficult to sustainably deliver VEGF to the wound site owing to its poor stability and easy degradation. To overcome this challenge, lipid nanoparticles (LNP) encapsulating circular RNA (circRNA) encoding VEGF-A have been developed to continuously generate and release VEGF-A and accelerate diabetic wound healing. First, VEGF-A circRNA was synthesized using group I intron autocatalysis strategy and confirmed by enzyme digestion, polymerase chain reaction, and sequencing assay. VEGF-A circRNA was encapsulated in ionizable lipid U-105-derived LNP (U-LNP) using microfluidic technology to fabricate U-LNP/VEGF-A circRNA. For comparison, a commercially ionizable lipid ALC-0315-derived LNP (A-LNP) encapsulating circRNA (A-LNP/circRNA) was used. Dynamic light scattering and transmission electron microscopy characterization indicated that U-LNP/circRNA had spherical structure with an average diameter of 108.5 nm, a polydispersity index of 0.22, and a zeta potential of -3.31 mV. The messenger RNA (mRNA) encapsulation efficiency (EE%) of U-LNP was 87.12%. In vitro transfection data confirmed better stability and long-term VEGF-A expression of circRNA compared with linear mRNA. Assessment of cytotoxicity and innate immunity further revealed that U-LNP/circRNA was biocompatible and induced a weak congenital immune response. Cell scratch and angiogenesis tests demonstrated the bioactivity of U-LNP/VEGF-A circRNA owing to its VEGF-A expression. In situ bioluminescence imaging of firefly luciferase (F-Luc) probe and ELISA demonstrated that circRNA had long-term and strong expression of VEGF-A in the first week, and a gradual decrease in the next week at the wound site and surrounding areas. Finally, a diabetic mouse model was used to validate the healing effect of U-LNP/VEGF-A circRNA formulation. The results showed that a single dose of U-LNP/VEGF-A circRNA administered by dripping resulted in almost complete wound recovery on day 12, which was significantly superior to that of U-LNP/VEGF-A linear mRNA, and it also outperformed recombinant human vascular endothelial growth factor (rhVEGF) injection and A-LNP/circRNA dripping. Histological analysis confirmed the healing efficiency and low toxicity of U-LNP/VEGF-A circRNA formulation. Together, VEGF-A circRNA delivered by U-105-derived LNP showed good performance in wound healing, which was ascribed to the long-term expression and continuous release of VEGF-A, and has potential applications for the treatment of diabetic foot ulcer wounds.

6.
Langmuir ; 40(29): 15140-15149, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38978384

ABSTRACT

The metal-support interaction is crucial for the performance of Cu-based catalysts. However, the distinctive properties of the support metal element itself are often overlooked in catalyst design. In this paper, a sheet Cu-Zn-Ce with [Ce3+-OV-Ce4+] located on the surface was designed by the sol-gel method. Through EPR and X-ray photoelectron spectroscopy (XPS), the relationship between the content of oxygen vacancies and Ce was revealed. Ce itself induces the generation of [Ce3+-OV-Ce4+]. Through ICP-MS, XPS, and SEM-mapping, the Ce-induced formation of [Ce3+-OV-Ce4+] located on the catalyst surface was demonstrated. CO2-TPD and DFT calculations further revealed that [Ce3+-OV-Ce4+] enhanced CO2 adsorption, leading to a 10% increase in methanol selectivity compared to Cu-Zn-Ce synthesized via the coprecipitation method.

7.
Toxics ; 12(7)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39058171

ABSTRACT

A few studies have explored the relationship between air pollution exposure and the risk of birth defects; however, the ozone-related (O3) effects on preconception and first-trimester exposures are still unknown. In this time-stratified case-crossover study, conditional logistic regressions were applied to explore the associations between O3 exposure and the risk of birth defects in Chongqing, China, and stratified analyses were constructed to evaluate the modifiable factors. A total of 6601 cases of birth defects were diagnosed, of which 56.16% were male. O3 exposure was associated with an increased risk of birth defects, and the most significant estimates were observed in the first month before pregnancy: a 10 ug/m3 increase of O3 was related to an elevation of 4.2% [95% confidence interval (CI), 3.4-5.1%]. The associations between O3 exposure and congenital malformations and deformations of the musculoskeletal system were statistically significant during almost all exposure periods. Pregnant women with lower education and income, and from rural areas, were more susceptible to O3 exposure, with the strongest odds ratios (ORs) of 1.066 (95%CI, 1.046-1.087), 1.086 (95%CI, 1.034-1.140), and 1.053 (95%CI, 1.034-1.072), respectively. Our findings highlight the health risks of air pollution exposure and raise awareness of pregnant women's vulnerability and the susceptibility window period.

8.
Adv Sci (Weinh) ; : e2403127, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970212

ABSTRACT

Hybrid excitons, characterized by their strong oscillation strength and long lifetimes, hold great potential as information carriers in semiconductors. They offer promising applications in exciton-based devices and circuits. MoSe2/WS2 heterostructures represent an ideal platform for studying hybrid excitons, but how to regulate the exciton lifetime has not yet been explored. In this study, layer hybridization is modulated by applying electric fields parallel or antiparallel to the dipole moment, enabling us to regulate the exciton lifetime from 1.36 to 4.60 ns. Furthermore, the time-resolved photoluminescence decay traces are measured at different excitation power. A hybrid exciton annihilation rate of 8.9 × 10-4 cm2 s-1 is obtained by fitting. This work reveals the effects of electric fields and excitation power on the lifetime of hybrid excitons in MoSe2/WS2 1.5° moiré heterostructures, which play important roles in high photoluminescence quantum yield optoelectronic devices based on transition-metal dichalcogenides heterostructures.

9.
Article in English | MEDLINE | ID: mdl-39012756

ABSTRACT

Reconstruction of a continuous surface of two-dimensional manifold from its raw, discrete point cloud observation is a long-standing problem in computer vision and graphics research. The problem is technically ill-posed, and becomes more difficult considering that various sensing imperfections would appear in the point clouds obtained by practical depth scanning. In literature, a rich set of methods has been proposed, and reviews of existing methods are also provided. However, existing reviews are short of thorough investigations on a common benchmark. The present paper aims to review and benchmark existing methods in the new era of deep learning surface reconstruction. To this end, we contribute a large-scale benchmarking dataset consisting of both synthetic and real-scanned data; the benchmark includes object- and scene-level surfaces and takes into account various sensing imperfections that are commonly encountered in practical depth scanning. We conduct thorough empirical studies by comparing existing methods on the constructed benchmark, and pay special attention on robustness of existing methods against various scanning imperfections; we also study how different methods generalize in terms of reconstructing complex surface shapes. Our studies help identity the best conditions under which different methods work, and suggest some empirical findings. For example, while deep learning methods are increasingly popular in the research community, our systematic studies suggest that, surprisingly, a few classical methods perform even better in terms of both robustness and generalization; our studies also suggest that the practical challenges of misalignment of point sets from multi-view scanning, missing of surface points, and point outliers remain unsolved by all the existing surface reconstruction methods. We expect that the benchmark and our studies would be valuable both for practitioners and as a guidance for new innovations in future research. We make the benchmark publicly accessible at https://Gorilla-Lab-SCUT.github.io/SurfaceReconstructionBenchmark.

10.
BMC Public Health ; 24(1): 1865, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997689

ABSTRACT

BACKGROUND: The link between nonalcoholic fatty liver disease and type 2 diabetes has not been fully established. We investigated the temporal relationship between nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes (T2D), quantitatively assessed the impact, and evaluated the related mediation effect. METHODS: This study involved participants from the China Multi-Ethnic Cohort Study and the UK Biobank. We performed cross-lagged path analysis to compare the relative magnitude of the effects between NAFLD and T2D using two-period biochemical data. Hepatic steatosis and fasting blood glucose elevation (FBG) represented NAFLD and T2D respectively. We fitted two separate Cox proportional-hazards models to evaluate the influence of hepatic steatosis on T2D. Furthermore, we applied the difference method to assess mediation effects. RESULTS: In cross-lagged path analyses, the path coefficients from baseline hepatic steatosis to first repeat FBG (ßCMEC = 0.068, ßUK-Biobank = 0.033) were significantly greater than the path coefficients from baseline FBG to first repeat hepatic steatosis (ßCMEC = 0.027, ßUK-Biobank = -0.01). Individuals with hepatic steatosis have a risk of T2D that is roughly three times higher than those without the condition (HR = 3.478 [3.314, 3.650]). Hepatic steatosis mediated approximately 69.514% of the total effect between obesity and follow-up T2D. CONCLUSIONS: Our findings contribute to determining the sequential relationship between NAFLD and T2D in the causal pathway, highlighting that the dominant pathway in the relationship between these two early stages of diseases was the one from hepatic steatosis to fasting blood glucose elevation. Individuals having NAFLD face a significantly increased risk of T2D and require long-term monitoring of their glucose status as well.


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 2 , Fasting , Non-alcoholic Fatty Liver Disease , Humans , China/epidemiology , Diabetes Mellitus, Type 2/epidemiology , United Kingdom/epidemiology , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/blood , Female , Male , Middle Aged , Blood Glucose/analysis , Longitudinal Studies , Fasting/blood , Adult , Aged , Time Factors , Risk Factors , Proportional Hazards Models
11.
Genome Biol ; 25(1): 171, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38951917

ABSTRACT

BACKGROUND: The massive structural variations and frequent introgression highly contribute to the genetic diversity of wheat, while the huge and complex genome of polyploid wheat hinders efficient genotyping of abundant varieties towards accurate identification, management, and exploitation of germplasm resources. RESULTS: We develop a novel workflow that identifies 1240 high-quality large copy number variation blocks (CNVb) in wheat at the pan-genome level, demonstrating that CNVb can serve as an ideal DNA fingerprinting marker for discriminating massive varieties, with the accuracy validated by PCR assay. We then construct a digitalized genotyping CNVb map across 1599 global wheat accessions. Key CNVb markers are linked with trait-associated introgressions, such as the 1RS·1BL translocation and 2NvS translocation, and the beneficial alleles, such as the end-use quality allele Glu-D1d (Dx5 + Dy10) and the semi-dwarf r-e-z allele. Furthermore, we demonstrate that these tagged CNVb markers promote a stable and cost-effective strategy for evaluating wheat germplasm resources with ultra-low-coverage sequencing data, competing with SNP array for applications such as evaluating new varieties, efficient management of collections in gene banks, and describing wheat germplasm resources in a digitalized manner. We also develop a user-friendly interactive platform, WheatCNVb ( http://wheat.cau.edu.cn/WheatCNVb/ ), for exploring the CNVb profiles over ever-increasing wheat accessions, and also propose a QR-code-like representation of individual digital CNVb fingerprint. This platform also allows uploading new CNVb profiles for comparison with stored varieties. CONCLUSIONS: The CNVb-based approach provides a low-cost and high-throughput genotyping strategy for enabling digitalized wheat germplasm management and modern breeding with precise and practical decision-making.


Subject(s)
DNA Copy Number Variations , Triticum , Triticum/genetics , Genome, Plant , High-Throughput Nucleotide Sequencing , Genetic Markers , Alleles
12.
Front Immunol ; 15: 1402669, 2024.
Article in English | MEDLINE | ID: mdl-39026664

ABSTRACT

Background: The relationship between ferroptosis and the progression and treatment of hematological tumors has been extensively studied, although its precise association with chronic myeloid leukemia (CML) remains uncertain. Methods: Multi-transcriptome sequencing data were utilized to analyze the ferroptosis level of CML samples and its correlation with the tumor microenvironment, disease progression, and treatment response. Machine learning algorithms were employed to identify diagnostic ferroptosis-related genes (FRGs). The consensus clustering algorithm was applied to identify ferroptosis-related molecular subtypes. Clinical samples were collected for sequencing to validate the results obtained from bioinformatics analysis. Cell experiments were conducted to investigate the therapeutic efficacy of induced ferroptosis in drug-resistant CML. Results: Ferroptosis scores were significantly lower in samples from patients with CML compared to normal samples, and these scores further decreased with disease progression and non-response to treatment. Most FRGs were downregulated in CML samples. A high ferroptosis score was also associated with greater immunosuppression and increased activity of metabolic pathways. Through support vector machine recursive feature elimination (SVM-RFE), least absolute shrinkage selection operator (LASSO), and random forest (RF) algorithms, we identified five FRGs (ACSL6, SLC11A2, HMOX1, SLC38A1, AKR1C3) that have high diagnostic value. The clinical diagnostic value of these five FRGs and their effectiveness in differentiating CML from other hematological malignancies were validated using additional validation cohorts and our real-world cohort. There are significant differences in immune landscape, chemosensitivity, and immunotherapy responsiveness between the two ferroptosis-related molecular subtypes. By conducting cellular experiments, we confirmed that CML-resistant cells are more sensitive to induction of ferroptosis and can enhance the sensitivity of imatinib treatment. Conclusion: Our study unveils the molecular signature of ferroptosis in samples from patients with CML. FRG identified by a variety of machine learning algorithms has reliable clinical diagnostic value. Furthermore, the characterization of different ferroptosis-related molecular subtypes provides valuable insights into individual patient characteristics and can guide clinical treatment strategies. Targeting and inducing ferroptosis holds great promise as a therapeutic approach for drug-resistant CML.


Subject(s)
Biomarkers, Tumor , Ferroptosis , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Ferroptosis/genetics , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis , Tumor Microenvironment , Drug Resistance, Neoplasm/genetics , Computational Biology/methods , Machine Learning
13.
Ecol Evol ; 14(7): e11621, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39026961

ABSTRACT

Pulex simulans and Polygenis gwyni are vectors of many flea-borne diseases. They were widely recorded in the United States and Mexico between 1970 and 2000. Maximum entropy models were used to explore the habitats of both fleas under different climate scenarios to provide the scientific basis for the surveillance and control of flea-borne diseases. We screened climate variables by principal component analysis and Pearson's correlation test and evaluated model performance by ROC curve. ArcMap was used to visualize expressions. Under current climatic conditions, the medium and highly suitable areas for P. simulans are estimated to be 9.16 × 106 km2 and 4.97 × 106 km2, respectively. These regions are predominantly located in South America, along the Mediterranean coast of Europe, the southern part of the African continent, the Middle East, North China, and Australia. For P. gwyni, the medium and highly suitable areas under current climatic conditions are approximately 4.01 × 106 and 2.04 × 106 km2, respectively, with the primary distribution in North China extending to the Himalayas, near the Equator in Africa, and in a few areas of Europe. Under future climate scenarios, in the SSP3-7.0 scenario for the years 2081-2100, the area of high suitability for P. simulans is projected to reach its maximum. Similarly, in the SSP2-4.5 scenario for 2061-2080, the area of high suitability for P. gwyni is expected to reach its maximum. Under global climate change, there is a large range in the potential distribution for both fleas, with an overall upward trend in the area of habitat under future climate scenarios. Governments should develop scientific prevention and control measures to prevent the invasive alien species flea.

14.
Chem Sci ; 15(28): 10830-10837, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39027276

ABSTRACT

Carbon-carbon coupling is a basic design principle for the synthesis of porous organic polymers, which are widely used in gas adsorption/separation, photocatalysis, energy storage, etc. However, the C(sp3)-C(sp3) coupling reaction to construct porous organic polymers remains an important yet elusive objective due to its low reactivity and unknown side reactions. Herein, we report that nickel bis(1,5-cyclooctadiene) (Ni(COD)2), which was a famous catalyst for C(sp2)-C(sp2) coupling reactions, enables highly efficient C(sp3)-C(sp3) homo-coupling reactions to construct porous linear crystalline polymers and flexible three-dimensional porous aromatic frameworks (PAFs) under mild reaction conditions. The resulting linear polymers generated with dibromomethyl arenes have good crystallinity and high melting points (T m = 286 °C) due to controllability of reaction sites. Furthermore, the PAFs (PAF-64, PAF-65 and PAF-66) stemmed from tri-/tetra-bromomethyl arenes show high surface area (S BET = 390 m2 g-1) and high methane-storage capacity (up to 313 cm3 cm-3) because of their flexible frameworks. This work sheds new light on the construction of novel porous polymers through C(sp3)-C(sp3) coupling reactions and the development of methane-storage materials.

15.
J Exp Clin Cancer Res ; 43(1): 204, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39044249

ABSTRACT

Endometrial cancer (EC) stem cells (ECSCs) are pivotal in the oncogenesis, metastasis, immune escape, chemoresistance, and recurrence of EC. However, the specific mechanism of stem cell maintenance in EC cells (ECCs) has not been clarified. We found that WTAP and m6A levels decreased in both EC and ECSCs, and that knocking down WTAP promoted ECCs and ECSCs properties, including proliferation, invasion, migration, cisplatin resistance, and self-renewal. The downregulation of WTAP leads to a decrease in the m6A modification of EGR1 mRNA, and it is difficult for IGF2BP3, as an m6A reader, to recognize and bind to EGR1 mRNA that has lost m6A modification, resulting in a decrease in the stability of EGR1 mRNA. A decrease in the EGR1 level led to a decrease of in the expression tumor suppressor gene PTEN, resulting in deregulation and loss of cellular homeostasis and thereby fostering EC stem cell traits. Notably, the enforced overexpression of WTAP, EGR1, and PTEN inhibited the oncogenic effects of ECCs and ECSCs in vivo, and the combined overexpression of WTAP + EGR1 and EGR1 + PTEN further diminished the tumorigenic potential of these cells. Our findings revealed that the WTAP/EGR1/PTEN pathway is important regulator of EC stem cell maintenance, chemotherapeutic resistance, and tumorigenesis, suggesting a novel and promising therapeutic avenue for treating EC.


Subject(s)
Early Growth Response Protein 1 , Endometrial Neoplasms , Neoplastic Stem Cells , PTEN Phosphohydrolase , RNA-Binding Proteins , Humans , Female , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Endometrial Neoplasms/metabolism , Endometrial Neoplasms/pathology , Endometrial Neoplasms/genetics , Early Growth Response Protein 1/metabolism , Early Growth Response Protein 1/genetics , Mice , Animals , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Cell Line, Tumor , Phenotype , Cell Proliferation , Gene Expression Regulation, Neoplastic , Adenosine/analogs & derivatives , Adenosine/metabolism
16.
Anal Bioanal Chem ; 416(17): 3945-3962, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38886239

ABSTRACT

Carbon dots (CDs) are quasi-spherical carbon nanoparticles with excellent photoluminescence, good biocompatibility, favorable photostability, and easily modifiable surfaces. CDs, serving as fluorescent probes, have emerged as an ideal tool for cellular differentiation owing to their outstanding luminescence performance and tunable surface properties. In this review, we summarize the recent research progress with CDs in the differentiation of cancer/normal cells, Gram-positive/Gram-negative bacteria, and live/dead cells, as well as the cellular differences used for differentiation. Additionally, we summarize the preparation methods, raw materials, and properties of the CDs used for cell discrimination. The differentiation mechanisms and the advantages or limitations of the differentiation methods are also introduced. Finally, we propose several research challenges in this field and future research directions that require extensive investigation. It is hoped that this review will help researchers in the design of new CDs as ideal fluorescent probes for realizing diverse cell differentiation applications.


Subject(s)
Carbon , Fluorescent Dyes , Quantum Dots , Carbon/chemistry , Humans , Fluorescent Dyes/chemistry , Quantum Dots/chemistry , Cell Differentiation , Animals
17.
J Colloid Interface Sci ; 673: 638-646, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38897065

ABSTRACT

Lithium (Li) metal anode (LMA) is one of the most promising anodes for high energy density batteries. However, its practical application is impeded by notorious dendrite growth and huge volume expansion. Although the three-dimensional (3D) host can enhance the cycling stability of LMA, further improvements are still necessary to address the key factors limiting Li plating/stripping behavior. Herein, porous copper (Cu) foam (CF) is thermally infiltrated with molten Li-rich Li-zinc (Li-Zn) binary alloy (CFLZ) with variable Li/Zn atomic ratio. In this process, the LiZn intermetallic compound phase self-assembles into a network of mixed electron/ion conductors that are distributed within the metallic Li phase matrix and this network acts as a sublevel skeleton architecture in the pores of CF, providing a more efficient and structured framework for the material. The as-prepared CFLZ composite anodes are systematically investigated to emphasize the roles of the tunable lithiophilicity and hierarchical structure of the frameworks. Meanwhile, a thin layer of Cu-Zn alloy with strong lithiophilicity covers the CF scaffold itself. The CFLZ with high Zn content facilitates uniform Li nucleation and deposition, thereby effectively suppressing Li dendrite growth and volume fluctuation. Consequently, the hierarchical and lithiophilic framework shows low Li nucleation overpotential and highly stable Coulombic efficiency (CE) for 200 cycles in conventional carbonate based electrolyte. The full cell coupled with LiFePO4 (LFP) cathode demonstrates high cycle stability and rate performance. This work provides valuable insights into the design of advanced dendrite-free 3D LMA toward practical application.

18.
China CDC Wkly ; 6(23): 547-552, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38933660

ABSTRACT

Introduction: Plague is a significant global infectious disease, its spread is linked to host and flea populations. Meteorological conditions can impact flea populations and host densities, hence influencing plague outbreaks. Investigating the connection between meteorological factors, flea populations, and rodent densities in Inner Mongolia's natural plague foci can aid in predicting and managing plague outbreaks. Methods: Monthly data on flea index, rodent density, meteorological factors, and normalized difference vegetation index (NDVI) were collected for the study area. Generalized additive modeling (GAM) was used to analyze the non-linear and lag effects of meteorological factors on flea index and rodent density. Structural equation modeling (SEM) was employed to investigate the relationships among meteorological factors, NDVI, flea index, and rodent density. Results: GAM analysis revealed that temperature, precipitation, relative humidity, and NDVI had significant linear, non-linear, and time-lagged impacts on the density of Mongolian gerbils and the flea index. SEM analysis indicated that meteorological factors could directly influence the density and flea index of Mongolian gerbils, or indirectly impact NDVI, subsequently influencing gerbil density and the flea index. Conclusions: Meteorological factors primarily influence gerbil density and flea index indirectly by affecting NDVI and the relationship between flea index and gerbil density. This study offers additional support for the significance of meteorological factors and NDVI in influencing the vector-rodent system, offering valuable insights for predicting and managing plague outbreaks.

19.
Heliyon ; 10(11): e31549, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38828349

ABSTRACT

Background: There is no standard consensus on the optimal number of cycles of neoadjuvant immunotherapy prior to surgery for patients with locoregionally advanced non-small cell lung cancer (NSCLC). We carried out a systematic review to evaluate the efficacy and safety of neoadjuvant immunotherapy with different treatment cycles in order to provide valuable information for clinical decision-making. Methods: PubMed, Embase, the Cochrane Library and ClinicalTrials.gov were systematically searched before May 2023. The included studies were categorized based on different treatment cycles of neoadjuvant immunotherapy to assess their respective efficacy and safety in patients with resectable NSCLC. Results: Incorporating data from 29 studies with 1331 patients, we found major pathological response rates of 43 % (95%CI, 34-52 %) with two cycles and 33 % (95%CI, 22-45 %) with three cycles of neoadjuvant immunotherapy. Radiological response rates were 39 % (95%CI, 28-50 %) and 56 % (95%CI, 44-68 %) for two and three cycles, respectively, with higher incidence rates of severe adverse events (SAEs) in the three-cycle group (32 %; 95%CI, 21-50 %). Despite similar rates of R0 resection between two and three cycles, the latter showed a slightly higher surgical delay rate (1 % vs. 7 %). Neoadjuvant treatment modes significantly affected outcomes, with the combination of immunotherapy and chemotherapy demonstrating superiority in improving pathological and radiological response rates, while the incidence of SAEs in patients receiving combination therapy remained within an acceptable range (23 %; 95%CI, 15-35 %). However, regardless of the treatment mode administered, an increase in the number of treatment cycles did not result in substantial improvement in pathological response rates. Conclusion: There are clear advantages of combining immunotherapy and chemotherapy in neoadjuvant settings. Increasing the number of cycles of neoadjuvant immunotherapy from two to three primarily may not substantially improve the overall efficacy, while increasing the risk of adverse events. Further analysis of the outcomes of four cycles of neoadjuvant immunotherapy is necessary.

20.
Plant Commun ; : 100943, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38897199

ABSTRACT

Rice tiller angle is a key agronomic trait that has significant effects on the establishment of a high-yield rice population. However, the molecular mechanism underlying the control of rice tiller angle remains to be clarified. Here, we characterized the novel tiller-angle gene LAZY4 (LA4) in rice through map-based cloning. LA4 encodes a C3H2C3-type RING zinc-finger E3 ligase localized in the nucleus, and an in vitro ubiquitination assay revealed that the conserved RING finger domain is essential for its E3 ligase activity. We found that expression of LA4 can be induced by gravistimulation and that loss of LA4 function leads to defective shoot gravitropism caused by impaired asymmetric auxin redistribution upon gravistimulation. Genetic analysis demonstrated that LA4 acts in a distinct pathway from the starch biosynthesis regulators LA2 and LA3, which function in the starch-statolith-dependent pathway. Further genetic analysis showed that LA4 regulates shoot gravitropism and tiller angle by acting upstream of LA1 to mediate lateral auxin transport upon gravistimulation. Our studies reveal that LA4 regulates shoot gravitropism and tiller angle upstream of LA1 through a novel pathway independent of the LA2-LA3-mediated gravity-sensing mechanism, providing new insights into the rice tiller-angle regulatory network.

SELECTION OF CITATIONS
SEARCH DETAIL