Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 12(1): 10798, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35750897

ABSTRACT

Bacterial colonization in the rumen of pre-weaned ruminants is important for their growth and post-weaning productivity. This study evaluated the effects of oral fiber administration during the pre-weaning period on the development of rumen microbiota from pre-weaning to the first lactation period. Twenty female calves were assigned to control and treatment groups (n = 10 each). Animals in both groups were reared using a standard feeding program throughout the experiment, except for oral fiber administration (50-100 g/day/animal) from 3 days of age until weaning for the treatment group. Rumen content was collected during the pre-weaning period, growing period, and after parturition. Amplicon sequencing of the 16S rRNA gene revealed that oral fiber administration facilitated the early establishment of mature rumen microbiota, including a relatively higher abundance of Prevotella, Shuttleworthia, Mitsuokella, and Selenomonas. The difference in the rumen microbial composition between the dietary groups was observed even 21 days after parturition, with a significantly higher average milk yield in the first 30 days of lactation. Therefore, oral fiber administration to calves during the pre-weaning period altered rumen microbiota, and its effect might be long-lasting until the first parturition.


Subject(s)
Microbiota , Rumen , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Dietary Fiber , Female , Lactation , Milk , RNA, Ribosomal, 16S/genetics , Rumen/microbiology , Weaning
2.
J Sci Food Agric ; 101(7): 2950-2960, 2021 May.
Article in English | MEDLINE | ID: mdl-33159326

ABSTRACT

BACKGROUND: Water-soluble cellulose acetate (WSCA), a synthetic fiber source, was applied to human stool cultures and to pure cultures of representative Bacteroides species to characterize the fermentation properties of WSCA in the human gut, and to assess the potential availability of WSCA as a food or additive candidate. RESULTS: All nine of the different types of WSCA tested here provided increased acetate levels in human stool cultures. Greater levels of deacetylation were observed as the degree of substitution of hydroxyl groups by acetyl groups decreased. Among the nine tested types of WSCA, CA-0.78-128 caused the largest shifts of the microbial community, including an increased abundance of members of the genus Bacteroides, especially Bacteroides uniformis. Of four representative human gut Bacteroides species, only B. uniformis grew in pure culture on WSCA to produce acetate actively. CONCLUSION: Water-soluble cellulose acetate has the potential for dietary application in human and other monogastric animals, based on the enhanced production of short-chain fatty acids (SCFAs), in particular acetate, in the hindgut. Short-chain fatty acid production is caused by selective proliferation of specific gut bacteria belonging to the genus Bacteroides. © 2020 Society of Chemical Industry.


Subject(s)
Bacteria/metabolism , Cellulose/analogs & derivatives , Feces/microbiology , Gastrointestinal Microbiome , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Cellulose/metabolism , Dietary Fiber/metabolism , Fatty Acids, Volatile/metabolism , Fermentation , Humans , Prebiotics/analysis
SELECTION OF CITATIONS
SEARCH DETAIL