Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 506
Filter
1.
Spinal Cord ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39237712

ABSTRACT

STUDY DESIGN: Retrospective multicenter study. OBJECTIVES: To evaluate how preoperative neck pain influences clinical outcomes following posterior decompression for cervical ossification of the posterior longitudinal ligament (OPLL). SETTING: Fourteen medical institutions in Japan. METHODS: We enrolled 90 patients with cervical OPLL who underwent posterior decompression and were followed for a minimum of two years. We collected demographic data, medical history, and imaging findings. Patients were divided into two groups based on preoperative neck pain presence (Pre-op. neck pain (-) and (+) groups), and their outcomes were compared. RESULTS: There were no significant differences in patient demographics between the Pre-op. neck pain (-) and (+) groups. Both groups showed similar distributions of ossification types and K-line positivity. Perioperative complications were comparable between the two groups. Radiographic analysis revealed no significant differences in C2-7 angles or cervical range of motion, pre- and postoperatively. Both groups demonstrated significant improvement in postoperative Japanese orthopedic association (JOA) scores, but there were no significant differences in scores or recovery rates. In the Pre-op. neck pain (-) group, factors associated with appearance of postoperative neck pain included pre- and postoperative lower JOA scores and larger C2-7 angles in neutral and extension positions. CONCLUSIONS: It emerges that lower pre- and postoperative JOA scores or larger C2-7 angles in neutral and extension positions predispose to postoperative neck pain even in those patients without preoperative neck pain. Therefore, this is worth discussing at the time of consenting patients for surgical decompression and fixation.

2.
Asian Spine J ; 18(4): 550-559, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39113483

ABSTRACT

STUDY DESIGN: Retrospective cohort study. PURPOSE: This study aimed to compare data from patients who received intradiscal condoliase (chondroitin sulfate ABC endolyase) injection for primary lumbar disc herniation (LDH) and recurrent LDH. OVERVIEW OF LITERATURE: Chemonucleolysis with condoliase for LDH is a treatment with relatively good results and a high safety profile; however, few studies have reported recurrence after LDH surgery. METHODS: The study participants were 249 patients who underwent intradiscal condoliase injection for LDH at nine participating institutions, including 241 patients with initial LDH (group C) and eight with recurrent LDH (group R). Patient characteristics including age, sex, body mass index, disease duration, intervertebral LDH level, smoking history, and diabetes history were evaluated. Low back pain/leg pain Numerical Rating Scale (NRS) scores and the Oswestry Disability Index (ODI) were used to evaluate clinical symptoms before treatment and at 6 months and 1 year after treatment. RESULTS: Low back pain NRS scores (before treatment and at 6 months and 1 year after treatment, respectively) in group C (4.9 → 2.6 → 1.8) showed significant improvement until 1 year after treatment. Although a tendency for improvement was observed in group R (3.5 → 2.8 → 2.2), no significant difference was noted. Groups C (6.6 → 2.4 → 1.4) and R (7.0 → 3.1 → 3.2) showed significant improvement in the leg pain NRS scores after treatment. Group C (41.4 → 19.5 → 13.7) demonstrated significant improvement in the ODI up to 1 year after treatment; however, no significant difference was found in group R (35.7 → 31.7 → 26.4). CONCLUSIONS: Although intradiscal condoliase injection is less effective for LDH recurrence than for initial cases, it is useful for improving leg pain and can be considered a minimally invasive and safe treatment method.

3.
Sci Rep ; 14(1): 17989, 2024 08 03.
Article in English | MEDLINE | ID: mdl-39097613

ABSTRACT

Spinal deformities, including adolescent idiopathic scoliosis (AIS) and adult spinal deformity (ASD), affect many patients. The measurement of the Cobb angle on coronal radiographs is essential for their diagnosis and treatment planning. To enhance the precision of Cobb angle measurements for both AIS and ASD, we developed three distinct artificial intelligence (AI) algorithms: AIS/ASD-trained AI (trained with both AIS and ASD cases); AIS-trained AI (trained solely on AIS cases); ASD-trained AI (trained solely on ASD cases). We used 1612 whole-spine radiographs, including 1029 AIS and 583 ASD cases with variable postures, as teaching data. We measured the major and two minor curves. To assess the accuracy, we used 285 radiographs (159 AIS and 126 ASD) as a test set and calculated the mean absolute error (MAE) and intraclass correlation coefficient (ICC) between each AI algorithm and the average of manual measurements by four spine experts. The AIS/ASD-trained AI showed the highest accuracy among the three AI algorithms. This result suggested that learning across multiple diseases rather than disease-specific training may be an efficient AI learning method. The presented AI algorithm has the potential to reduce errors in Cobb angle measurements and improve the quality of clinical practice.


Subject(s)
Algorithms , Artificial Intelligence , Scoliosis , Humans , Scoliosis/diagnostic imaging , Adolescent , Female , Male , Adult , Spine/diagnostic imaging , Child , Radiography/methods , Young Adult
4.
J Biosci Bioeng ; 138(4): 290-300, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39033053

ABSTRACT

Microorganisms are assumed to inhabit various environments and organisms, including the human body. The presence of more than 700 bacterial species on scalp hair has been reported through rRNA gene amplicon analysis. However, the biological properties of bacteria on the scalp hair (hair bacteria) and their functions are poorly understood as few hair bacteria have been isolated from hair in previous studies. This study aimed to isolate hair bacteria using standard media under 24 different conditions (including medium components, component concentrations, gelling agents, and atmospheric environments). Furthermore, we evaluated the possibility of isolating strains under these isolation conditions and examined the carbon metabolic ability of several predominantly isolated strains. A total of 63 bacterial species belonging to 27 genera were isolated from hair under 24 isolation conditions. The predominant bacterial species isolated from human hair in this study showed different carbon metabolic capabilities than those of the reference strains. In addition, isolation possibility was newly proposed to systematically evaluate the number of isolation conditions that could cultivate a bacterial species. Based on isolation possibility, the isolates were categorized into groups with a high number of isolation conditions (e.g., ≥25%; such as Staphylococcus) and those with a low number (e.g., ≤25%; such as Brachybacterium). These findings indicate the existence of easily isolated microorganisms and difficultly isolated microorganism from human hair.


Subject(s)
Bacteria , Hair , Humans , Hair/microbiology , Bacteria/classification , Bacteria/isolation & purification , Bacteria/metabolism , Bacteria/genetics , RNA, Ribosomal, 16S/genetics , Carbon/metabolism , Culture Media/chemistry
5.
Arthroscopy ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986854

ABSTRACT

PURPOSE: To investigate whether inducing valgus alignment and shifting the load laterally through high tibial osteotomy (HTO) alone decreases the extent of medial meniscus extrusion (MME) in the setting of medial meniscus posterior root tear (MMPRT) using ultrasound evaluation. METHODS: Eight fresh-frozen human cadaveric knee specimens were tested using a 6-degree-of-freedom robotic testing system and ultrasound. Each specimen was tested in 5 conditions: (1) intact, (2) MMPRT, (3) medial meniscus repair (MMR), (4) combined medial open-wedge HTO + MMR, and (5) HTO + MMPRT. Measurements were obtained over the medial collateral ligament (central image) and posterior to the medial collateral ligament (posterior image) with a 250-N axial load at 0°, 30°, and 90° of knee flexion. Statistical analysis was performed using a 2-factor repeated-measures analysis of variance. RESULTS: MME was significantly greater in HTO + MMPRT (0°: 2.44 ± 0.41 mm, 30°: 2.47 ± 0.37 mm, 90°: 2.41 ± 0.28 mm) than HTO + MMR in central images (mean difference +0.83 mm, P < .001). No significant difference was found between HTO + MMPRT and MMPRT in MME. MMR had significantly less MME than MMPRT (mean difference -0.58 mm, P < .001, posterior image at 0° and central image at 90°, P = .002). HTO + MMR showed significantly less MME than MMR alone at 30° and 90° of knee flexion in the central image (30°: -0.38 ± 0.05 mm, 90°: -0.45 ± 0.06 mm, P < .001) and 90° of knee flexion in the posterior image (-0.38 ± 0.08 mm, P = .004). CONCLUSIONS: HTO alone did not decrease MME in the setting of MMPRT, while MMR alone decreased MME after MMPRT. Additionally, HTO + MMR decreased MME after MMPRT compared to MMR alone, although the clinical significance was uncertain. CLINICAL RELEVANCE: The findings of this study provide clinicians with valuable insights for improving MME. HTO alone does not decrease MME in cases of MMPRT.

6.
Article in English | MEDLINE | ID: mdl-39023200

ABSTRACT

BACKGROUND: Foot and toe function is important for not only sports performance but also preventing and treating musculoskeletal disorders. Although strengthening training specific to intrinsic and extrinsic muscles has been recommended, insufficient information is available in toe exercises in their variation and evidences compared to shoulder or lumbopelvic training strategies. The aim was to examine the effects of a newly developed foot muscle exercise program on toe function in individuals during the growth period. This is a single-group, pretest-posttest case series. METHODS: Both feet of seven male patients in their growth period with sports-related overuse injuries of the lower extremities (mean age, 11 years) underwent a four-week strength exercise of the toes, consisting of intrinsic and extrinsic muscle-targeted exercises. Main outcome measures were as follows: 1) flexion force of each toe; 2) compression force of each toe; 3) dexterity of the toes evaluated using the "rock-paper-scissors test"; 4) toe loading during single-leg squat exercise. An F-scan system was used to measure 2 and 4. RESULTS: All patients performed the program appropriately and completed the program for four weeks. Significant improvements were observed in the outcome measures of 1 to 4. CONCLUSIONS: The combined exercise program for the intrinsic and extrinsic muscles of the foot effectively improved toe strength, dexterity, and loading during dynamic motion and could be easily performed in individuals during the growth period.

7.
Article in English | MEDLINE | ID: mdl-39075794

ABSTRACT

STUDY DESIGN: Retrospective comparative study. OBJECTIVE: To evaluate the relationship between pelvic incidence (PI) and proximal junctional kyphosis (PJK) in patients with Lenke type 5 adolescent idiopathic scoliosis (AIS). SUMMARY OF BACKGROUND DATA: Although PJK is a common complication of sagittal malalignment after posterior correction and fusion surgery (PSF), few studies have assessed its risk factors. The significance of pelvic morphology in relation to PJK has been suggested but remains unclear in Lenke type 5 AIS patients. METHODS: A total of 92 patients with Lenke type 5 AIS who underwent selective thoracolumbar PSF with a minimum follow-up of two years were included. Patients were divided into PJK and non-PJK groups based on postoperative radiographs. The influence of PI on PJK occurrence was evaluated through binary logistic analysis. Subgroup analysis was performed based on the PI value (low PI,<45°; high PI, ≥ 45°) to identify factors affecting PJK occurrence. RESULTS: PJK was observed in 17.4% of the whole cohort. Binary logistic regression analysis identified low PI and large TL/L curve as a risk factor for PJK (PI, odds ratio, 0.933; TL/L curve, odds ratio, 1.080). Subgroup analysis showed that the postoperative increase in the upper instrumented vertebra slope in PJK cases was comparable in both the low and high PI groups. Meanwhile, lordotic changes in the fused area in the PJK cases were observed only in the low PI group. No difference in the Scoliosis Research Society 22 scores were observed between the two groups. CONCLUSION: From this study a low PI was identified as a risk factor for the occurrence of PJK in Lenke type 5 AIS patients. The occurrence of PJK is influenced by lordotic changes in the fused area and the limited compensatory capacity of the pelvis in patients with a low PI.

9.
Spine Deform ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38926256

ABSTRACT

PURPOSE: To investigate the influence of slippage reduction and correction of lumbosacral kyphosis by L5-S1 single-level posterior lumbar interbody fusion (PLIF) on spinal alignment and clinical outcomes including postoperative complications in patients with dysplastic spondylolisthesis (DS). METHODS: Twenty consecutive patients with symptomatic and severe DS who underwent L5-S1 single-level PLIF with a minimum of 2 years of follow-up after surgery were included. Clinical outcomes were evaluated using the Japanese Orthopaedic Association (JOA) and visual analog scale (VAS) scores for low back and leg pain obtained on preoperative and postoperative examinations. Postoperative instrumentation failure and L5 radiculopathy were also evaluated. The preoperative and postoperative spinopelvic parameters were measured. RESULTS: The JOA score significantly improved from 21.5 ± 4.8 (preoperative) to 27.0 ± 2.5 (postoperative), with a mean recovery rate of 75.0% ± 30.4%. The VAS score for low back pain significantly improved from 44.5 ± 30.1 (preoperative) to 11.5 ± 15.9 (postoperative), and that for leg pain significantly improved from 31.0 ± 33.2 (preoperative) to 5.0 ± 10.2 (postoperative). The slip percentage (% slip) significantly improved from 59.6% ± 13.5% (preoperative) to 25.2% ± 15.0% (postoperative). The lumbosacral angle (LSA) significantly improved from 12.3° ± 9.5° (preoperative) to 1.0° ± 4.9° (postoperative). L5-S1 PLIF led to significant improvement of lumbar lordosis (from 52.0° ± 15.9° to 59.7° ± 8.0°) and pelvic incidence - lumbar lordosis mismatch (from 23.9° ± 20.6° to 13.3° ± 10.0°). Correction of lumbosacral kyphosis had a significant positive correlation with postoperative pelvic tilt (PT) (r = 0.50, P = 0.02), while postoperative % slip did not have a significant correlation with postoperative PT. CONCLUSIONS: L5-S1 PLIF for DS provided good clinical outcomes. Correction of lumbosacral kyphosis had a positive impact on regaining ideal spinopelvic balance and may be beneficial in the setting of treating DS.

10.
J Med Internet Res ; 26: e52001, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38924787

ABSTRACT

BACKGROUND: Due to recent advances in artificial intelligence (AI), language model applications can generate logical text output that is difficult to distinguish from human writing. ChatGPT (OpenAI) and Bard (subsequently rebranded as "Gemini"; Google AI) were developed using distinct approaches, but little has been studied about the difference in their capability to generate the abstract. The use of AI to write scientific abstracts in the field of spine surgery is the center of much debate and controversy. OBJECTIVE: The objective of this study is to assess the reproducibility of the structured abstracts generated by ChatGPT and Bard compared to human-written abstracts in the field of spine surgery. METHODS: In total, 60 abstracts dealing with spine sections were randomly selected from 7 reputable journals and used as ChatGPT and Bard input statements to generate abstracts based on supplied paper titles. A total of 174 abstracts, divided into human-written abstracts, ChatGPT-generated abstracts, and Bard-generated abstracts, were evaluated for compliance with the structured format of journal guidelines and consistency of content. The likelihood of plagiarism and AI output was assessed using the iThenticate and ZeroGPT programs, respectively. A total of 8 reviewers in the spinal field evaluated 30 randomly extracted abstracts to determine whether they were produced by AI or human authors. RESULTS: The proportion of abstracts that met journal formatting guidelines was greater among ChatGPT abstracts (34/60, 56.6%) compared with those generated by Bard (6/54, 11.1%; P<.001). However, a higher proportion of Bard abstracts (49/54, 90.7%) had word counts that met journal guidelines compared with ChatGPT abstracts (30/60, 50%; P<.001). The similarity index was significantly lower among ChatGPT-generated abstracts (20.7%) compared with Bard-generated abstracts (32.1%; P<.001). The AI-detection program predicted that 21.7% (13/60) of the human group, 63.3% (38/60) of the ChatGPT group, and 87% (47/54) of the Bard group were possibly generated by AI, with an area under the curve value of 0.863 (P<.001). The mean detection rate by human reviewers was 53.8% (SD 11.2%), achieving a sensitivity of 56.3% and a specificity of 48.4%. A total of 56.3% (63/112) of the actual human-written abstracts and 55.9% (62/128) of AI-generated abstracts were recognized as human-written and AI-generated by human reviewers, respectively. CONCLUSIONS: Both ChatGPT and Bard can be used to help write abstracts, but most AI-generated abstracts are currently considered unethical due to high plagiarism and AI-detection rates. ChatGPT-generated abstracts appear to be superior to Bard-generated abstracts in meeting journal formatting guidelines. Because humans are unable to accurately distinguish abstracts written by humans from those produced by AI programs, it is crucial to exercise special caution and examine the ethical boundaries of using AI programs, including ChatGPT and Bard.


Subject(s)
Abstracting and Indexing , Spine , Humans , Spine/surgery , Abstracting and Indexing/standards , Abstracting and Indexing/methods , Reproducibility of Results , Artificial Intelligence , Writing/standards
11.
Global Spine J ; : 21925682241260725, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831702

ABSTRACT

STUDY DESIGN: Retrospective multicenter study. OBJECTIVES: To investigate surgical outcomes following posterior decompression for cervical ossification of the posterior longitudinal ligament (OPLL) when performed by board-certified spine (BCS) or non-BCS (NBCS) surgeons. METHODS: We included 203 patients with cervical OPLL who were followed for a minimum of 1 year after surgery. Demographic information, medical history, and imaging findings were collected. Clinical outcomes were assessed preoperatively and at the final follow-up using the Japanese Orthopedic Association (JOA) score and the visual analog scale (VAS) for the neck. We compared outcomes between BCS surgeons, who must meet several requirements, including experience in more than 300 spinal surgeries, and NBCS surgeons. RESULTS: BCS surgeons performed 124 out of 203 cases, while NBCS surgeons were primary in 79 cases, with 73.4% were directly supervised by a BCS surgeon. There was no statistically significant difference in surgical duration, estimated blood loss, and perioperative complication rates between the BCS and NBCS groups. Moreover, no statistically significant group differences were observed in each position of the C2-7 angle and cervical range of motion at preoperation and the final follow-up. Preoperative and final follow-up JOA scores, VAS for the neck, and JOA score recovery rate were comparable between the two groups. CONCLUSIONS: Surgical outcomes, including functional recovery, complication rates, and cervical dynamics, were comparable between the BCS and NBCS groups. Consequently, posterior decompression for cervical OPLL is considered safe and effective when conducted by junior surgeons who have undergone training and supervision by experienced spine surgeons.

12.
Spine Surg Relat Res ; 8(3): 315-321, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38868786

ABSTRACT

Introduction: Precise prediction of hospital stay duration is essential for maximizing resource utilization during surgery. Existing lumbar spinal stenosis (LSS) surgery prediction models lack accuracy and generalizability. Machine learning can improve accuracy by considering preoperative factors. This study aimed to develop and validate a machine learning-based model for estimating hospital stay duration following decompression surgery for LSS. Methods: Data from 848 patients who underwent decompression surgery for LSS at three hospitals were examined. Twelve prediction models, using 79 preoperative variables, were developed for postoperative hospital stay estimation. The top five models were chosen. Fourteen models predicted prolonged hospital stay (≥14 days), and the most accurate model was chosen. Models were validated using a randomly divided training sample (70%) and testing cohort (30%). Results: The top five models showed moderate linear correlations (0.576-0.624) between predicted and measured values in the testing sample. The ensemble of these models had moderate prediction accuracy for final length of stay (linear correlation 0.626, absolute mean error 2.26 days, standard deviation 3.45 days). The c5.0 decision tree model was the top predictor for prolonged hospital stay, with accuracies of 89.63% (training) and 87.2% (testing). Key predictors for longer stay included JOABPEQ social life domain, facility, history of vertebral fracture, diagnosis, and Visual Analogue Scale (VAS) of low back pain. Conclusions: A machine learning-based model was developed to predict postoperative hospital stay after LSS decompression surgery, using data from multiple hospital settings. Numerical prediction of length of stay was not very accurate, although favorable prediction of prolonged stay was accomplished using preoperative factors. The JOABPEQ social life domain score was the most important predictor.

13.
Sci Rep ; 14(1): 12214, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806612

ABSTRACT

Adolescent idiopathic scoliosis (AIS) affects approximately 3% of the global population. Recent studies have drawn attention to abnormalities in the dynamics of the CSF as potential contributors. This research aims to employ the Time-Spatial Labeling Inversion Pulse (Time-SLIP) MRI to assess and analyze cerebrospinal fluid (CSF) dynamics in AIS patients. 101 AIS patients underwent Time-SLIP MRI. Images were taken at the mid-cervical and craniocervical junction regions. The sum of the maximum movement distances of CSF on the ventral and dorsal sides of the spinal canal within a single timeframe was defined and measured as Travel Distance (TD). Correlations between TD, age, Cobb angle, and Risser grade were analyzed. TD comparisons were made across Lenke classifications. TD for all patients was a weak correlation with the Cobb angle (r = - 0.16). Comparing TD between Lenke type 1 and 5, type 5 patients display significantly shorter TD (p < 0.05). In Risser5 patients with Lenke type 5 showed a significant negative correlation between Cobb angle and TD (r = - 0.44). Lenke type 5 patients had significantly shorter CSF TD compared to type1, correlating with worsening Cobb angles. Further analysis and exploration are required to understand the mechanism of onset and progression.


Subject(s)
Cerebrospinal Fluid , Magnetic Resonance Imaging , Scoliosis , Humans , Scoliosis/diagnostic imaging , Adolescent , Magnetic Resonance Imaging/methods , Female , Male , Child
14.
J Clin Med ; 13(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38673567

ABSTRACT

Background/Objectives: An important aspect of the pathophysiology of frailty seems to be the dysregulation of inflammatory pathways and the coagulation system. However, an objective assessment of the impact of frailty on the recovery from surgery is not fully studied. This study sought to assess how frailty affects the recovery of adult spinal deformity (ASD) surgery using blood biomarkers. Methods: 153 consecutive ASD patients (age 64 ± 10 yr, 93% female) who had corrective spine surgery in a single institution and reached 2y f/u were included. The subjects were stratified by frailty using the modified frailty index-11 (robust [R] group or prefrail and frail [F] group). Results of commonly employed laboratory tests at baseline, 1, 3, 7, and 14 post-operative days (POD) were compared. Further comparison was performed in propensity-score matched-39 paired patients between the groups by age, curve type, and baseline alignment. A correlation between HRQOLs, major complications, and biomarkers was performed. Results: Among the propensity-score matched groups, CRP was significantly elevated in the F group at POD1,3(POD1; 5.3 ± 3.1 vs. 7.9 ± 4.7 p = 0.02, POD3; 6.6 ± 4.6 vs. 8.9 ± 5.2 p = 0.02). Transaminase was also elevated in the F group at POD3(ASD: 36 ± 15 vs. 51 ± 58 U/L, p = 0.03, ALT: 32 ± 16 vs. 47 ± 55 U/L, p = 0.04). Interestingly, moderate correlation was observed between transaminase at POD1 and 2 y SRS22 (AST; function r = -0.37, mental health r = -0.39, satisfaction -0.28, total r = -0.40, ALT; function r = -0.37, satisfaction -0.34, total r = -0.39). Conclusions: Frailty affected the serum CRP and transaminase differently following ASD surgery. Transaminase at early POD was correlated with 2 y HRQOLs. These findings support the hypothesis that there is a specific physiological basis to the frailty that is characterized in part by increased inflammation and that these physiological differences persist.

15.
Skelet Muscle ; 14(1): 6, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561845

ABSTRACT

BACKGROUND: The regenerative and adaptive capacity of skeletal muscles reduces with age, leading to severe disability and frailty in the elderly. Therefore, development of effective therapeutic interventions for muscle wasting is important both medically and socioeconomically. In the present study, we aimed to elucidate the potential contribution of fibro-adipogenic progenitors (FAPs), which are mesenchymal stem cells in skeletal muscles, to immobilization-induced muscle atrophy. METHODS: Young (2-3 months), adult (12-14 months), and aged (20-22 months) mice were used for analysis. Muscle atrophy was induced by immobilizing the hind limbs with a steel wire. FAPs were isolated from the hind limbs on days 0, 3, and 14 after immobilization for transcriptome analysis. The expression of ST2 and IL-33 in FAPs was evaluated by flow cytometry and immunostaining, respectively. To examine the role of IL-33-ST2 signaling in vivo, we intraperitoneally administered recombinant IL-33 or soluble ST2 (sST2) twice a week throughout the 2-week immobilization period. After 2-week immobilization, the tibialis anterior muscles were harvested and the cross-sectional area of muscle fibers was evaluated. RESULTS: The number of FAPs increased with the progression of muscle atrophy after immobilization in all age-groups. Transcriptome analysis of FAPs collected before and after immobilization revealed that Il33 and Il1rl1 transcripts, which encode the IL-33 receptor ST2, were transiently induced in young mice and, to a lesser extent, in aged mice. The number of FAPs positive for ST2 increased after immobilization in young mice. The number of ST2-positive FAPs also increased after immobilization in aged mice, but the difference from the baseline was not statistically significant. Immunostaining for IL-33 in the muscle sections revealed a significant increase in the number of FAPs expressing IL-33 after immobilization. Administration of recombinant IL-33 suppressed immobilization-induced muscle atrophy in aged mice but not in young mice. CONCLUSIONS: Our data reveal a previously unknown protective role of IL-33-ST2 signaling against immobilization-induced muscle atrophy in FAPs and suggest that IL-33-ST2 signaling is a potential new therapeutic target for alleviating disuse muscle atrophy, particularly in older adults.


Subject(s)
Interleukin-1 Receptor-Like 1 Protein , Interleukin-33 , Humans , Aged , Mice , Animals , Interleukin-33/metabolism , Interleukin-1 Receptor-Like 1 Protein/genetics , Interleukin-1 Receptor-Like 1 Protein/metabolism , Adipogenesis , Muscle, Skeletal/metabolism , Muscular Atrophy/etiology , Muscular Atrophy/prevention & control , Muscular Atrophy/metabolism , Cell Differentiation/physiology
16.
Proc Natl Acad Sci U S A ; 121(18): e2310283121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38669183

ABSTRACT

Congenital scoliosis (CS), affecting approximately 0.5 to 1 in 1,000 live births, is commonly caused by congenital vertebral malformations (CVMs) arising from aberrant somitogenesis or somite differentiation. While Wnt/ß-catenin signaling has been implicated in somite development, the function of Wnt/planar cell polarity (Wnt/PCP) signaling in this process remains unclear. Here, we investigated the role of Vangl1 and Vangl2 in vertebral development and found that their deletion causes vertebral anomalies resembling human CVMs. Analysis of exome sequencing data from multiethnic CS patients revealed a number of rare and deleterious variants in VANGL1 and VANGL2, many of which exhibited loss-of-function and dominant-negative effects. Zebrafish models confirmed the pathogenicity of these variants. Furthermore, we found that Vangl1 knock-in (p.R258H) mice exhibited vertebral malformations in a Vangl gene dose- and environment-dependent manner. Our findings highlight critical roles for PCP signaling in vertebral development and predisposition to CVMs in CS patients, providing insights into the molecular mechanisms underlying this disorder.


Subject(s)
Carrier Proteins , Cell Polarity , Membrane Proteins , Spine , Zebrafish , Animals , Zebrafish/genetics , Zebrafish/embryology , Humans , Mice , Cell Polarity/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Spine/abnormalities , Spine/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Scoliosis/genetics , Scoliosis/congenital , Scoliosis/metabolism , Wnt Signaling Pathway/genetics , Genetic Predisposition to Disease , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Female
17.
Sci Rep ; 14(1): 9154, 2024 04 21.
Article in English | MEDLINE | ID: mdl-38644423

ABSTRACT

Lumbar spinal alignment is crucial for spine biomechanics and is linked to various spinal pathologies. However, limited research has explored gender-specific differences using CT scans. The objective was to evaluate and compare lumbar spinal alignment between standing and sitting CT in healthy individuals, focusing on gender differences. 24 young and 25 elderly males (M) and females (F) underwent standing and sitting CT scans to assess lumbar spinal alignment. Parameters measured and compared between genders included lumbar lordosis (LL), sacral slope (SS), pelvic tilt (PT), pelvic incidence (PI), lordotic angle (LA), foraminal height (FH), and bony boundary area (BBA). Females showed significantly larger changes in SS and PT when transitioning from standing to sitting (p = .044, p = .038). A notable gender difference was also observed in the L4-S LA among the elderly, with females showing a significantly larger decrease in lordotic angle compared to males (- 14.1° vs. - 9.2°, p = .039*). Females consistently exhibited larger FH and BBA values, particularly in lower lumbar segments, which was more prominent in the elderly group (M vs. F: L4/5 BBA 80.1 mm2 [46.3, 97.8] vs. 109.7 mm2 [74.4, 121.3], p = .019 in sitting). These findings underline distinct gender-related variations in lumbar alignment and flexibility, with a focus on noteworthy changes in BBA and FH in females. Gender differences in lumbar spinal alignment were evident, with females displaying greater pelvic and sacral mobility. Considering gender-specific characteristics is crucial for assessing spinal alignment and understanding spinal pathologies. These findings contribute to our understanding of lumbar spinal alignment and have implications for gender-specific spinal conditions and treatments.


Subject(s)
Lumbar Vertebrae , Tomography, X-Ray Computed , Humans , Female , Male , Aged , Tomography, X-Ray Computed/methods , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/physiology , Adult , Posture/physiology , Middle Aged , Lordosis/diagnostic imaging , Lordosis/physiopathology , Sex Characteristics , Sitting Position , Sex Factors , Biomechanical Phenomena , Young Adult , Standing Position , Spine/diagnostic imaging
18.
J Orthop ; 55: 97-104, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38681829

ABSTRACT

Purpose: Improper utilization of surgical antimicrobial prophylaxis frequently leads to increased risks of morbidity and mortality.This study aims to understand the common causative organism of postoperative orthopedic infection and document the surgical antimicrobial prophylaxis protocol across various institutions in to order to strengthen surgical antimicrobial prophylaxis practice and provide higher-quality surgical care. Methods: This multicentric multinational retrospective study, includes 24 countries from five different regions (Asia Pacific, South Eastern Africa, Western Africa, Latin America, and Middle East). Patients who developed orthopedic surgical site infection between January 2021 and December 2022 were included. Demographic details, bacterial profile of surgical site infection, and antibiotic sensitivity pattern were documented. Results: 2038 patients from 24 countries were included. Among them 69.7 % were male patients and 64.1 % were between 20 and 60 years. 70.3 % patients underwent trauma surgery and instrumentation was used in 93.5 %. Ceftriaxone was the most common preferred in 53.4 %. Early SSI was seen in 55.2 % and deep SSI in 59.7 %. Western Africa (76 %) and Asia-Pacific (52.8 %) reported a higher number of gram-negative infections whereas gram-positive organisms were predominant in other regions. Most common gram positive organism was Staphylococcus aureus (35 %) and gram-negative was Klebsiella (17.2 %). Majority of the organisms showed variable sensitivity to broad-spectrum antibiotics. Conclusion: Our study strongly proves that every institution has to analyse their surgical site infection microbiological profile and antibiotic sensitivity of the organisms and plan their surgical antimicrobial prophylaxis accordingly. This will help to decrease the rate of surgical site infection, prevent the emergence of multidrug resistance and reduce the economic burden of treatment.

20.
J Back Musculoskelet Rehabil ; 37(4): 1041-1047, 2024.
Article in English | MEDLINE | ID: mdl-38427465

ABSTRACT

BACKGROUND: The intrinsic foot muscles play an important role in medial longitudinal arch support, as well as several extrinsic foot muscles. While various strength training methods specific to intrinsic foot muscles have been conducted, these exercises are associated with certain concerns regarding their effectiveness and difficulty. We developed a new exercise for the intrinsic muscles (MTP flexion exercise). OBJECTIVE: The aim was to compare the shear modulus of the toe flexors as the muscle contraction activity during MTP flexion and short-foot exercises using ultrasound shear wave elastography. METHODS: Eleven healthy participants were included in this study. The shear modulus of the toe flexor muscles was measured during MTP flexion and short-foot exercises using ultrasound shear wave elastography. The muscle shear modulus was statistically compared between the resting phase, and during the two exercises. RESULTS: The shear modulus during MTP flexion exercise was significantly greater than in the resting phase in the abductor hallucis, flexor hallucis brevis, flexor digitorum brevis, quadratus plantae, and flexor digitorum longus. The flexor digitorum longus showed greater shear modulus during MTP flexion exercise than during short-foot exercise. CONCLUSION: MTP flexion exercise showed equivalent or greater contraction activity in certain intrinsic and extrinsic foot muscles when compared with short-foot exercise. This exercise is considered one of the training options for strengthening the intrinsic muscles of the foot.


Subject(s)
Elasticity Imaging Techniques , Muscle Contraction , Muscle, Skeletal , Toes , Humans , Male , Muscle, Skeletal/physiology , Muscle, Skeletal/diagnostic imaging , Muscle Contraction/physiology , Female , Adult , Toes/physiology , Toes/diagnostic imaging , Young Adult , Foot/physiology , Foot/diagnostic imaging , Exercise/physiology , Healthy Volunteers
SELECTION OF CITATIONS
SEARCH DETAIL