Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
1.
Stem Cells Dev ; 32(15-16): 434-449, 2023 08.
Article in English | MEDLINE | ID: mdl-37183401

ABSTRACT

The ShcA adapter protein is necessary for early embryonic development. The role of ShcA in development is primarily attributed to its 52 and 46 kDa isoforms that transduce receptor tyrosine kinase signaling through the extracellular signal regulated kinase (ERK). During embryogenesis, ERK acts as the primary signaling effector, driving fate acquisition and germ layer specification. P66Shc, the largest of the ShcA isoforms, has been observed to antagonize ERK in several contexts; however, its role during embryonic development remains poorly understood. We hypothesized that p66Shc could act as a negative regulator of ERK activity during embryonic development, antagonizing early lineage commitment. To explore the role of p66Shc in stem cell self-renewal and differentiation, we created a p66Shc knockout murine embryonic stem cell (mESC) line. Deletion of p66Shc enhanced basal ERK activity, but surprisingly, instead of inducing mESC differentiation, loss of p66Shc enhanced the expression of core and naive pluripotency markers. Using pharmacologic inhibitors to interrogate potential signaling mechanisms, we discovered that p66Shc deletion permits the self-renewal of naive mESCs in the absence of conventional growth factors, by increasing their responsiveness to leukemia inhibitory factor (LIF). We discovered that loss of p66Shc enhanced not only increased ERK phosphorylation but also increased phosphorylation of Signal transducer and activator of transcription in mESCs, which may be acting to stabilize their naive-like identity, desensitizing them to ERK-mediated differentiation cues. These findings identify p66Shc as a regulator of both LIF-mediated ESC pluripotency and of signaling cascades that initiate postimplantation embryonic development and ESC commitment.


Subject(s)
Extracellular Signal-Regulated MAP Kinases , Mouse Embryonic Stem Cells , Animals , Mice , Extracellular Signal-Regulated MAP Kinases/metabolism , Mouse Embryonic Stem Cells/metabolism , Src Homology 2 Domain-Containing, Transforming Protein 1/genetics , Leukemia Inhibitory Factor/genetics , Leukemia Inhibitory Factor/pharmacology , Leukemia Inhibitory Factor/metabolism , Cell Differentiation , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
2.
J Dev Biol ; 11(2)2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37092479

ABSTRACT

Normalizing RT-qPCR miRNA datasets that encompass numerous preimplantation embryo stages requires the identification of miRNAs that may be used as stable reference genes. A need has also arisen for the normalization of the accompanying conditioned culture media as extracellular miRNAs may serve as biomarkers of embryo developmental competence. Here, we evaluate the stability of six commonly used miRNA normalization candidates, as well as small nuclear U6, using five different means of evaluation (BestKeeper, NormFinder, geNorm, the comparative Delta Ct method and RefFinder comprehensive analysis) to assess their stability throughout murine preimplantation embryo development from the oocyte to the late blastocyst stages, both in whole embryos and the associated conditioned culture media. In descending order of effectiveness, miR-16, miR-191 and miR-106 were identified as the most stable individual reference miRNAs for developing whole CD1 murine preimplantation embryos, while miR-16, miR-106 and miR-103 were ideal for the conditioned culture media. Notably, the widely used U6 reference was among the least appropriate for normalizing both whole embryo and conditioned media miRNA datasets. Incorporating multiple reference miRNAs into the normalization basis via a geometric mean was deemed beneficial, and combinations of each set of stable miRNAs are further recommended, pending validation on a per experiment basis.

3.
Psychol Med ; 53(7): 2842-2851, 2023 May.
Article in English | MEDLINE | ID: mdl-35177144

ABSTRACT

BACKGROUND: Evidence suggests that cognitive subtypes exist in schizophrenia that may reflect different neurobiological trajectories. We aimed to identify whether IQ-derived cognitive subtypes are present in early-phase schizophrenia-spectrum disorder and examine their relationship with brain structure and markers of neuroinflammation. METHOD: 161 patients with recent-onset schizophrenia spectrum disorder (<5 years) were recruited. Estimated premorbid and current IQ were calculated using the Wechsler Test of Adult Reading and a 4-subtest WAIS-III. Cognitive subtypes were identified with k-means clustering. Freesurfer was used to analyse 3.0 T MRI. Blood samples were analysed for hs-CRP, IL-1RA, IL-6 and TNF-α. RESULTS: Three subtypes were identified indicating preserved (PIQ), deteriorated (DIQ) and compromised (CIQ) IQ. Absolute total brain volume was significantly smaller in CIQ compared to PIQ and DIQ, and intracranial volume was smaller in CIQ than PIQ (F(2, 124) = 6.407, p = 0.002) indicative of premorbid smaller brain size in the CIQ group. CIQ had higher levels of hs-CRP than PIQ (F(2, 131) = 5.01, p = 0.008). PIQ showed differentially impaired processing speed and verbal learning compared to IQ-matched healthy controls. CONCLUSIONS: The findings add validity of a neurodevelopmental subtype of schizophrenia identified by comparing estimated premorbid and current IQ and characterised by smaller premorbid brain volume and higher measures of low-grade inflammation (CRP).


Subject(s)
Schizophrenia , Adult , Humans , Schizophrenia/diagnostic imaging , C-Reactive Protein , Intelligence , Cognition , Brain/diagnostic imaging , Biomarkers
5.
Nat Commun ; 13(1): 7285, 2022 11 26.
Article in English | MEDLINE | ID: mdl-36435885

ABSTRACT

Throughout Earth's history, the abundance of oxygen in our atmosphere has varied, but by how much remains debated. Previously, an upper limit for atmospheric oxygen has been bounded by assumptions made regarding the fire window: atmospheric oxygen concentrations higher than 30-40% would threaten the regeneration of forests in the present world. Here we have tested these assumptions by adapting a Dynamic Global Vegetation Model to run over high atmospheric oxygen concentrations. Our results show that whilst global tree cover is significantly reduced under high O2 concentrations, forests persist in the wettest parts of the low and high latitudes and fire is more dependent on fuel moisture than O2 levels. This implies that the effect of fire on suppressing global vegetation under high O2 may be lower than previously assumed and questions our understanding of the mechanisms involved in regulating the abundance of oxygen in our atmosphere, with moisture as a potentially important factor.


Subject(s)
Fires , Forests , Trees , Atmosphere , Oxygen
6.
Gene Expr Patterns ; 46: 119281, 2022 12.
Article in English | MEDLINE | ID: mdl-36243294

ABSTRACT

Obese women experience greater incidence of infertility, with reproductive tracts exposing preimplantation embryos to elevated free fatty acids (FFA) such as palmitic acid (PA) and oleic acid (OA). PA treatment impairs mouse preimplantation development in vitro, while OA co-treatment rescues blastocyst development of PA treated embryos. In the present study, we investigated the effects of PA and OA treatment on NRF2/Keap1 localization, and relative antioxidant enzyme (Glutathione peroxidase; Gpx1, Catalase; Cat, Superoxide dismutase; Sod1 and γ-Glutamylcysteine ligase catalytic unit; Gclc) mRNA levels, during in vitro mouse preimplantation embryo development. Female mice were superovulated, mated, and embryos cultured in the presence of bovine Serum albumin (BSA) control or PA, or OA, alone (each at 100 µM) or PA + OA combined (each at 100 µM) treatment. NRF2 displayed nuclear localization at all developmental stages, whereas Keap1 primarily displayed cytoplasmic localization throughout control mouse preimplantation development in vitro. Relative transcript levels of Nrf2, Keap1, and downstream antioxidants significantly increased throughout control mouse preimplantation development in vitro. PA treatment significantly decreased blastocyst development and the levels of nuclear NRF2, while OA and PA + OA treatments did not. PA and OA treatments did not impact relative mRNA levels of Nrf2, Keap1, Gpx1, Cat, Sod1 or Gclc. Our outcomes demonstrate that cultured mouse embryos display nuclear NRF2, but that PA treatment reduces nuclear NRF2 and thus likely impacts NRF2/KEAP1 stress response mechanisms. Further studies should investigate whether free fatty acid effects on NRF2/KEAP1 contribute to the reduced fertility displayed by obese patients.


Subject(s)
Fatty Acids, Nonesterified , NF-E2-Related Factor 2 , Animals , Female , Mice , Pregnancy , Antioxidants/metabolism , Blastocyst/metabolism , Fatty Acids, Nonesterified/pharmacology , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Obesity/metabolism , RNA, Messenger/metabolism , Superoxide Dismutase-1/metabolism
7.
Br J Psychiatry ; 221(6): 714-721, 2022 12.
Article in English | MEDLINE | ID: mdl-36149012

ABSTRACT

BACKGROUND: Cognitive impairment is a core feature of schizophrenia, associated with poor functional outcomes. The course of cognitive function in the years following illness onset has remained a subject of debate, with a previous analysis finding no worsening, providing support for the neurodevelopmental model of schizophrenia. Since then, many more studies have reported on longitudinal cognitive performance in early psychosis, with some indicating deterioration, which does not align with this view. AIMS: This study aims to quantitatively review the literature on the longitudinal trajectory of cognitive deficits in the years following psychosis onset, in comparison with healthy controls. It is the first to also synthesise longitudinal data on social cognition. METHOD: Electronic databases ('PubMed', 'PsycInfo' and 'Scopus') were searched (to end September 2021). Meta-analyses of 25 longitudinal studies of cognition in early psychosis were conducted (1480 patients, 789 health controls). Unlike previous analyses, randomised controlled trials and those with multiple cognitive testing periods within the first year were excluded to minimise bias (PROSPERO, ID: CRD42021241525). RESULTS: Small improvements were observed for global cognition (g = 0.25, 95% CI 0.17-0.33) and individual cognitive domains, but these were comparable with healthy controls and likely an artefact of practice effects. CONCLUSIONS: There is no evidence of continued cognitive decline or improvement in the early years following psychosis onset, with a need for more studies over longer follow-up periods. Practice effects highlight the importance of including control samples in longitudinal and intervention studies. Further data are needed to evaluate the course of social cognition subdomains.


Subject(s)
Cognitive Dysfunction , Psychotic Disorders , Schizophrenia , Humans , Psychotic Disorders/psychology , Schizophrenia/complications , Neuropsychological Tests , Cognitive Dysfunction/etiology , Cognition
8.
Stem Cells Dev ; 31(11-12): 278-295, 2022 06.
Article in English | MEDLINE | ID: mdl-35469439

ABSTRACT

Cellular metabolism plays both an active and passive role in embryonic development, pluripotency, and cell-fate decisions. However, little is known regarding the role of metabolism in regulating the recently described "formative" pluripotent state. The pluripotent developmental continuum features a metabolic switch from a bivalent metabolism (both glycolysis and oxidative phosphorylation) in naive cells, to predominantly glycolysis in primed cells. We investigated the role of pyruvate kinase muscle isoforms 1/2 (PKM1/2) in naive, formative, and primed mouse embryonic stem cells through modulation of PKM1/2 messenger RNA transcripts using steric blocking morpholinos that downregulate PKM2 and upregulate PKM1. We have examined these effects in naive, formative, and primed cells by quantifying the effects of PKM1/2 modulation on pluripotent and metabolic transcripts and by measuring shifts in the population frequencies of cells expressing naive and primed cell surface markers by flow cytometry. Our results demonstrate that modulating PKM1 and PKM2 levels alters the transition from the naive state into a primed pluripotent state by enhancing the proportion of the affected cells seen in the "formative" state. Therefore, we conclude that PKM1/2 actively contributes to mechanisms that oversee early stem pluripotency and their progression toward a primed pluripotent state.


Subject(s)
Pluripotent Stem Cells , Pyruvate Kinase , Animals , Cell Differentiation/genetics , Mice , Morpholinos/metabolism , Muscles , Pluripotent Stem Cells/metabolism , Protein Isoforms , Pyruvate Kinase/genetics , Pyruvate Kinase/metabolism
9.
Methods Mol Biol ; 2490: 69-79, 2022.
Article in English | MEDLINE | ID: mdl-35486240

ABSTRACT

This chapter details 3D morphological topography of colony architecture optimization and nuclear protein localization by co-immunofluorescent confocal microscopy analysis. Colocalization assessment of nuclear and cytoplasmic cell regions is detailed to demonstrate nuclear and cytoplasmic localization in mEpiSCs by confocal microscopy and orthogonal colocalization assessment. Protein colocalization within mESCs, mEpiLCs, and mEpiSCs can be efficiently completed using these optimized protocols.


Subject(s)
Germ Layers , Mouse Embryonic Stem Cells , Animals , Cell Nucleus , Coloring Agents , Cytoplasm , Mice , Microscopy, Confocal
10.
Methods Mol Biol ; 2490: 81-92, 2022.
Article in English | MEDLINE | ID: mdl-35486241

ABSTRACT

Here we describe methodologies to characterize, delineate, and quantify pluripotent cells between naïve, formative, and primed pluripotent state mouse embryonic stem cell (mESCs) populations using flow cytometric analysis. This methodology can validate pluripotent states, sort individual cells of interest, and determine the efficiency of transitioning naïve mESCs to a primed-like state as mouse epiblast-like cells (mEpiLCs) and onto fully primed mouse epiblast stem cells (mEpiSCs). Quantification of the cell surface markers; SSEA1(CD15) and CD24 introduces an effective method of distinguishing individual cells from a population by their respective positioning in the pluripotent spectrum. Additionally, this protocol can be used to demarcate and sort cells via fluorescently activated cell sorting for downstream applications. Flow cytometric analysis within mESCs, mEpiLCs, and mEpiSCs can be efficiently completed using these optimized protocols.


Subject(s)
Pluripotent Stem Cells , Animals , Cell Differentiation , Germ Layers , Mice , Mouse Embryonic Stem Cells
11.
Am J Physiol Cell Physiol ; 322(5): C833-C848, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35319901

ABSTRACT

Treatment of mouse preimplantation embryos with elevated palmitic acid (PA) reduces blastocyst development, whereas cotreatment with PA and oleic acid (OA) together rescues blastocyst development to control frequencies. To understand the mechanistic effects of PA and OA treatment on early mouse embryos, we investigated the effects of PA and OA, alone and in combination, on autophagy during preimplantation development in vitro. We hypothesized that PA would alter autophagic processes and that OA cotreatment would restore control levels of autophagy. Two-cell stage mouse embryos were placed into culture medium supplemented with 100 µM PA, 250 µM OA, 100 µM PA and 250 µM OA, or potassium simplex optimization media with amino acid (KSOMaa) medium alone (control) for 18-48 h. The results demonstrated that OA cotreatment slowed developmental progression after 30 h of cotreatment but restored control blastocyst frequencies by 48 h. PA treatment elevated light chain 3 (LC3)-II puncta and p62 levels per cell whereas OA cotreatment returned to control levels of autophagy by 48 h. Autophagic mechanisms are altered by nonesterified fatty acid (NEFA) treatments during mouse preimplantation development in vitro, where PA elevates autophagosome formation and reduces autophagosome degradation levels, whereas cotreatment with OA reversed these PA effects. Autophagosome-lysosome colocalization only differed between PA and OA alone treatment groups. These findings advance our understanding of the effects of free fatty acid exposure on preimplantation development, and they uncover principles that may underlie the associations between elevated fatty acid levels and overall declines in reproductive fertility.


Subject(s)
Oleic Acid , Palmitic Acid , Animals , Autophagy , Blastocyst/metabolism , Culture Media/metabolism , Fatty Acids, Nonesterified , Mice , Oleic Acid/metabolism , Oleic Acid/pharmacology , Palmitic Acid/pharmacology
12.
Reproduction ; 163(3): 133-143, 2022 02 14.
Article in English | MEDLINE | ID: mdl-35038315

ABSTRACT

As obese and overweight patients commonly display hyperlipidemia and are increasingly accessing fertility clinics for their conception needs, our studies are directed at understanding the effects of hyperlipidemia on early pregnancy. We have focused on investigating palmitic acid (PA) and oleic acid (OA) treatment alone and in combination from the mouse two-cell stage embryos as a model for understanding their effects on the mammalian preimplantation embryo. We recently reported that PA exerts a negative effect on mouse two-cell progression to the blastocyst stage, whereas OA co-treatment reverses that negative effect. In the present study, we hypothesized that PA treatment of mouse embryos would disrupt proper localization of cell fate determining and blastocyst formation gene products and that co-treatment with OA would reverse these effects. Our results demonstrate that PA treatment significantly (P < 0.05) reduces blastocyst development and cell number but did not prevent nuclear localization of YAP in outer cells. PA treatment significantly reduced the number of OCT4+ and CDX2+ nuclei. PA-treated embryos had lower expression of blastocyst formation proteins (E-cadherin, ZO-1 and Na/K-ATPase alpha1 subunit). Importantly, co-treatment of embryos with OA reversed PA-induced effects on blastocyst development and increased inner cell mass (ICM) and trophectoderm (TE) cell numbers and expression of blastocyst formation proteins. Our findings demonstrate that PA treatment does not impede cell fate gene localization but does disrupt proper blastocyst formation gene localization during mouse preimplantation development. OA treatment is protective and reverses PA's detrimental effects. The results advance our understanding of the impact of FFA exposure on mammalian preimplantation development.


Subject(s)
Embryonic Development , Palmitic Acid , Animals , Blastocyst/metabolism , Cell Differentiation , Embryo, Mammalian , Female , Gene Expression Regulation, Developmental , Humans , Mammals , Mice , Palmitic Acid/metabolism , Palmitic Acid/pharmacology , Pregnancy
13.
BMC Psychiatry ; 21(1): 597, 2021 11 29.
Article in English | MEDLINE | ID: mdl-34844572

ABSTRACT

INTRODUCTION: Social cognition is an important area of mental functioning relevant to psychiatric disorders and social functioning, that may be affected by psychiatric drug treatments. The aim of this review was to investigate the effects of medications with sedative properties, on social cognition. METHOD: This systematic review included experimental and neuroimaging studies investigating drug effects on social cognition. Data quality was assessed using a modified Downs and Black checklist (Trac et al. CMAJ 188: E120-E129, 2016). The review used narrative synthesis to analyse the data. RESULTS: 40 papers were identified for inclusion, 11 papers investigating benzodiazepine effects, and 29 investigating antipsychotic effects, on social cognition. Narrative synthesis showed that diazepam impairs healthy volunteer's emotion recognition, with supporting neuroimaging studies showing benzodiazepines attenuate amygdala activity. Studies of antipsychotic effects on social cognition gave variable results. However, many of these studies were in patients already taking medication, and potential practice effects were identified due to short-term follow-ups. CONCLUSION: Healthy volunteer studies suggest that diazepam reduces emotional processing ability. The effects of benzodiazepines on other aspects of social cognition, as well as the effects of antipsychotics, remain unclear. Interpretations of the papers in this review were limited by variability in measures, small sample sizes, and lack of randomisation. More robust studies are necessary to evaluate the impact of these medications on social cognition.


Subject(s)
Antipsychotic Agents , Pharmaceutical Preparations , Schizophrenia , Antipsychotic Agents/therapeutic use , Benzodiazepines/therapeutic use , Humans , Schizophrenia/drug therapy , Social Cognition
14.
F S Rep ; 2(1): 30-35, 2021 Mar.
Article in English | MEDLINE | ID: mdl-34223270

ABSTRACT

OBJECTIVE: To study the impact of follitropin delta for ovarian stimulation on embryo development and quality compared with that of follitropin alfa or beta in in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) cycles. DESIGN: Retrospective cohort study. SETTING: University-affiliated, hospital-based fertility clinic. PATIENTS: A total of 403 IVF/ICSI cycles were conducted from September 1, 2018 to December 31, 2019. Cycles were grouped on the basis of stimulation with follitropin delta vs. follitropin alfa or beta. INTERVENTIONS: None. MAIN OUTCOME MEASURES: Embryo parameters and clinical pregnancy and implantation rates. RESULTS: Ovarian stimulation using follitropin delta resulted in no statistically significant difference in day 3 embryo quality between the control group and follitropin delta group (median 0.50 vs. 0.54 for good quality embryos and median 0.25 vs. 0.20 for intermediate quality embryos). Although on initial analysis there was a lower proportion of good quality blastocysts in the follitropin delta group than in the control group (0.11 vs. 0.22), this difference was no longer present when day 3 after fertilization vitrification and transfer cycles were excluded (0.26 vs. 0.33 follitropin delta vs. control). The clinical pregnancy rates and clinical implantation rates were similar in both groups in fresh transfer cycles. CONCLUSIONS: Stimulation with follitropin delta in IVF/ICSI cycles resulted in similar embryo development and pregnancy rates compared with those of stimulation with follitropin alfa or beta.

15.
Exp Cell Res ; 405(2): 112714, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34181938

ABSTRACT

Mouse embryonic stem cells (mESCs) and mouse epiblast stem cells (mEpiSCs) represent opposite ends of the pluripotency continuum, referred to as naïve and primed pluripotent states, respectively. These divergent pluripotent states differ in several ways, including growth factor requirements, transcription factor expression, DNA methylation patterns, and metabolic profiles. Naïve cells employ both glycolysis and oxidative phosphorylation (OXPHOS), whereas primed cells preferentially utilize aerobic glycolysis, a trait shared with cancer cells referred to as the Warburg Effect. Until recently, metabolism has been regarded as a by-product of cell fate, however, evidence now supports metabolism as being a driver of stem cell state and fate decisions. Pyruvate kinase muscle isoforms (PKM1 and PKM2) are important for generating and maintaining pluripotent stem cells (PSCs) and mediating the Warburg Effect. Both isoforms catalyze the final, rate limiting step of glycolysis, generating adenosine triphosphate and pyruvate, however, the precise role(s) of PKM1/2 in naïve and primed pluripotency is not well understood. The primary objective of this study was to characterize the cellular expression and localization patterns of PKM1 and PKM2 in mESCs, chemically transitioned epiblast-like cells (mEpiLCs) representing formative pluripotency, and mEpiSCs using immunoblotting and confocal microscopy. The results indicate that PKM1 and PKM2 are not only localized to the cytoplasm, but also accumulate in differential subnuclear regions of mESC, mEpiLCs, and mEpiSCs as determined by a quantitative confocal microscopy employing orthogonal projections and airyscan processing. Importantly, we discovered that the subnuclear localization of PKM1/2 changes during the transition from mESCs, mEpiLCs, and mEpiSCs. Finally, we have comprehensively validated the appropriateness and power of the Pearson's correlation coefficient and Manders's overlap coefficient for assessing nuclear and cytoplasmic protein colocalization in PSCs by immunofluorescence confocal microscopy. We propose that nuclear PKM1/2 may assist with distinct pluripotency state maintenance and lineage priming by non-canonical mechanisms. These results advance our understanding of the overall mechanisms controlling naïve, formative, and primed pluripotency.


Subject(s)
Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/metabolism , Pluripotent Stem Cells/metabolism , Protein Isoforms/metabolism , Pyruvate Kinase/metabolism , Animals , Cell Differentiation/physiology , Cell Nucleus/metabolism , Gene Expression Regulation/physiology , Germ Layers/metabolism , Mice , Pyruvate Kinase/genetics
16.
Cancers (Basel) ; 13(8)2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33924498

ABSTRACT

Reactivation of the multi-subunit ribonucleoprotein telomerase is the primary telomere maintenance mechanism in cancer, but it is rate-limited by the enzymatic component, telomerase reverse transcriptase (TERT). While regulatory in nature, TERT alternative splice variant/isoform regulation and functions are not fully elucidated and are further complicated by their highly diverse expression and nature. Our primary objective was to characterize TERT isoform expression across 7887 neoplastic and 2099 normal tissue samples using The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression Project (GTEx), respectively. We confirmed the global overexpression and splicing shift towards full-length TERT in neoplastic tissue. Stratifying by tissue type we found uncharacteristic TERT expression in normal brain tissue subtypes. Stratifying by tumor-specific subtypes, we detailed TERT expression differences potentially regulated by subtype-specific molecular characteristics. Focusing on ß-deletion splicing regulation, we found the NOVA1 trans-acting factor to mediate alternative splicing in a cancer-dependent manner. Of relevance to future tissue-specific studies, we clustered cancer cell lines with tumors from related origin based on TERT isoform expression patterns. Taken together, our work has reinforced the need for tissue and tumour-specific TERT investigations, provided avenues to do so, and brought to light the current technical limitations of bioinformatic analyses of TERT isoform expression.

17.
Nat Commun ; 12(1): 503, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33479227

ABSTRACT

The source of oxygen to Earth's atmosphere is organic carbon burial, whilst the main sink is oxidative weathering of fossil carbon. However, this sink is to insensitive to counteract oxygen rising above its current level of about 21%. Biogeochemical models suggest that wildfires provide an additional regulatory feedback mechanism. However, none have considered how the evolution of different plant groups through time have interacted with this feedback. The Cretaceous Period saw not only super-ambient levels of atmospheric oxygen but also the evolution of the angiosperms, that then rose to dominate Earth's ecosystems. Here we show, using the COPSE biogeochemical model, that angiosperm-driven alteration of fire feedbacks likely lowered atmospheric oxygen levels from ~30% to 25% by the end of the Cretaceous. This likely set the stage for the emergence of closed-canopy angiosperm tropical rainforests that we suggest would not have been possible without angiosperm enhancement of fire feedbacks.


Subject(s)
Atmosphere/chemistry , Feedback, Physiological , Fires , Magnoliopsida/metabolism , Oxygen/metabolism , Algorithms , Carbon/metabolism , Ecosystem , Fossils , Magnoliopsida/growth & development , Models, Theoretical , Time Factors
18.
Nat Commun ; 11(1): 4422, 2020 09 04.
Article in English | MEDLINE | ID: mdl-32887875

ABSTRACT

The ocean is a sink for ~25% of the atmospheric CO2 emitted by human activities, an amount in excess of 2 petagrams of carbon per year (PgC yr-1). Time-resolved estimates of global ocean-atmosphere CO2 flux provide an important constraint on the global carbon budget. However, previous estimates of this flux, derived from surface ocean CO2 concentrations, have not corrected the data for temperature gradients between the surface and sampling at a few meters depth, or for the effect of the cool ocean surface skin. Here we calculate a time history of ocean-atmosphere CO2 fluxes from 1992 to 2018, corrected for these effects. These increase the calculated net flux into the oceans by 0.8-0.9 PgC yr-1, at times doubling uncorrected values. We estimate uncertainties using multiple interpolation methods, finding convergent results for fluxes globally after 2000, or over the Northern Hemisphere throughout the period. Our corrections reconcile surface uptake with independent estimates of the increase in ocean CO2 inventory, and suggest most ocean models underestimate uptake.

19.
Reprod Sci ; 27(11): 2038-2051, 2020 11.
Article in English | MEDLINE | ID: mdl-32542540

ABSTRACT

Obesity is associated with altered fatty acid profiles, reduced fertility, and assisted reproductive technology (ART) success. The effects of palmitic acid (PA), oleic acid (OA), and their combination on mouse preimplantation development, endoplasmic reticulum (ER) stress pathway gene expression, lipid droplet formation, and mitochondrial reactive oxygen species (ROS) were characterized. Two-cell stage mouse embryos collected from superovulated and mated CD1 females were placed into culture with KSOMaa medium, or PA alone or in combination with OA for 46 h. PA significantly reduced blastocyst development in a concentration-dependent manner, which was prevented by co-treatment with OA. PA and OA levels in mouse reproductive tracts were assessed by liquid chromatography coupled to mass spectrometry (LC-MS). LC-MS indicated higher concentrations of PA in the mouse oviduct than the uterus. Transcript analysis revealed that PA alone groups had increased ER stress pathway (ATF3, CHOP, and XBP1 splicing) mRNAs, which was alleviated by OA co-treatment. OA co-treatment significantly increased lipid droplet accumulation and significantly decreased mitochondrial ROS from PA treatment alone. PA treatment for only 24 h significantly reduced its impact on blastocyst development from the 2-cell stage. Thus, PA affects ER stress pathway gene expression, lipid droplet accumulation, and mitochondrial ROS in treated preimplantation embryos. These mechanisms may serve to offset free fatty acid exposure effects on preimplantation development, but their protective ability may be overwhelmed by elevated PA.


Subject(s)
Blastocyst/metabolism , Embryonic Development/physiology , Fertility/physiology , Obesity/metabolism , Oleic Acid/metabolism , Palmitic Acid/metabolism , Animals , Blastocyst/drug effects , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/physiology , Female , Fertility/drug effects , Mice , Obesity/complications , Oleic Acid/administration & dosage , Oviducts/metabolism , Palmitic Acid/administration & dosage , Reactive Oxygen Species/metabolism , Uterus/metabolism
20.
J Biol Chem ; 294(23): 9225-9238, 2019 06 07.
Article in English | MEDLINE | ID: mdl-31061099

ABSTRACT

Eicosanoids are critical mediators of fever, pain, and inflammation generated by immune and tissue cells. We recently described a new bioactive eicosanoid generated by cyclooxygenase-1 (COX-1) turnover during platelet activation that can stimulate human neutrophil integrin expression. On the basis of mass spectrometry (MS/MS and MS3), stable isotope labeling, and GC-MS analysis, we previously proposed a structure of 8-hydroxy-9,11-dioxolane eicosatetraenoic acid (DXA3). Here, we achieved enzymatic synthesis and 1H NMR characterization of this compound with results in conflict with the previously proposed structural assignment. Accordingly, by using LC-MS, we screened autoxidation reactions of 11-hydroperoxy-eicosatetraenoic acid (11-HpETE) and thereby identified a candidate sharing the precise reverse-phase chromatographic and MS characteristics of the platelet product. We optimized these methods to increase yield, allowing full structural analysis by 1H NMR. The revised assignment is presented here as 8,9-11,12-diepoxy-13-hydroxyeicosadienoic acid, abbreviated to 8,9-11,12-DiEp-13-HEDE or DiEpHEDE, substituted for the previous name DXA3 We found that in platelets, the lipid likely forms via dioxolane ring opening with rearrangement to the diepoxy moieties followed by oxygen insertion at C13. We present its enzymatic biosynthetic pathway and MS/MS fragmentation pattern and, using the synthetic compound, demonstrate that it has bioactivity. For the platelet lipid, we estimate 16 isomers based on our current knowledge (and four isomers for the synthetic lipid). Determining the exact isomeric structure of the platelet lipid remains to be undertaken.


Subject(s)
Blood Platelets/metabolism , Eicosanoids/chemistry , Hydroxyeicosatetraenoic Acids/chemistry , Chromatography, High Pressure Liquid , Cyclooxygenase 1/metabolism , Eicosanoids/analysis , Gas Chromatography-Mass Spectrometry , Humans , Hydroxyeicosatetraenoic Acids/analysis , Hydroxyeicosatetraenoic Acids/chemical synthesis , Isomerism , Magnetic Resonance Spectroscopy , Molecular Conformation , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL