Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 15: 1360132, 2024.
Article in English | MEDLINE | ID: mdl-38707908

ABSTRACT

Introduction: Considerable evidence has unveiled a potential correlation between gut microbiota and spinal degenerative diseases. However, only limited studies have reported the direct association between gut microbiota and spinal stenosis. Hence, in this study, we aimed to clarify this relationship using a two-sample mendelian randomization (MR) approach. Materials and Methods: Data for two-sample MR studies was collected and summarized from genome-wide association studies (GWAS) of gut microbiota (MiBioGen, n = 13, 266) and spinal stenosis (FinnGen Biobank, 9, 169 cases and 164, 682 controls). The inverse variance-weighted meta-analysis (IVW), complemented with weighted median, MR-Egger, weighted mode, and simple mode, was used to elucidate the causality between gut microbiota and spinal stenosis. In addition, we employed mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) and the MR-Egger intercept test to assess horizontal multiplicity. Cochran's Q test to evaluate heterogeneity, and "leave-one-out" sensitivity analysis to determine the reliability of causality. Finally, an inverse MR analysis was performed to assess the reverse causality. Results: The IVW results indicated that two gut microbial taxa, the genus Eubacterium fissicatena group and the genus Oxalobacter, have a potential causal relationship with spinal stenosis. Moreover, eight potential associations between genetic liability of the gut microbiota and spinal stenosis were implied. No significant heterogeneity of instrumental variables or horizontal pleiotropy were detected. In addition, "leave-one-out" sensitivity analysis confirmed the reliability of causality. Finally, the reverse MR analysis revealed that no proof to substantiate the discernible causative relationship between spinal stenosis and gut microbiota. Conclusion: This analysis demonstrated a possible causal relationship between certain particular gut microbiota and the occurrence of spinal stenosis. Further studies focused on the mechanism of gut microbiota-mediated spinal stenosis can lay the groundwork for targeted prevention, monitoring, and treatment of spinal stenosis.


Subject(s)
Gastrointestinal Microbiome , Genome-Wide Association Study , Mendelian Randomization Analysis , Spinal Stenosis , Humans , Gastrointestinal Microbiome/genetics , Spinal Stenosis/genetics , Spinal Stenosis/microbiology , Genetic Predisposition to Disease
2.
Ecotoxicol Environ Saf ; 268: 115732, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38000301

ABSTRACT

Glutathione plays a critical role in plant growth, development and response to stress. It is a major cellular antioxidant and is involved in the detoxification of xenobiotics in many organisms, including plants. However, the role of glutathione-dependent redox homeostasis and associated molecular mechanisms regulating the antioxidant system and pesticide metabolism remains unclear. In this study, endogenous glutathione levels were manipulated by pharmacological treatments with glutathione synthesis inhibitors and oxidized glutathione. The application of oxidized glutathione enriched the cellular oxidation state, reduced the activity and transcript levels of antioxidant enzymes, upregulated the expression level of nitric oxide and Ca2+ related genes and the content, and increased the residue of chlorothalonil in tomato leaves. Further experiments confirmed that glutathione-induced redox homeostasis is critical for the reduction of pesticide residues. RNA sequencing analysis revealed that miRNA156 and miRNA169 that target transcription factor SQUAMOSA-Promoter Binding Proteins (SBP) and NUCLEAR FACTOR Y (NFY) potentially participate in glutathione-mediated pesticide degradation in tomato plants. Our study provides important clues for further dissection of pesticide degradation mechanisms via miRNAs in plants.


Subject(s)
Pesticides , Solanum lycopersicum , Antioxidants/metabolism , Solanum lycopersicum/genetics , Glutathione Disulfide/metabolism , Glutathione/metabolism , Oxidation-Reduction , Pesticides/metabolism , Plants/metabolism , Homeostasis , Oxidative Stress
3.
Food Chem X ; 16: 100511, 2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36519087

ABSTRACT

γ-aminobutyric acid (GABA) has been reported to improve stress resistance in plants. Nonetheless, little is known about the effects of GABA on the nutritional quality and regulatory mechanisms of edamame. Therefore, we analyzed the flavonoid and amino acid (AA) metabolism and the effects of GABA on the nutrient content of edamame seeds through physiological and metabolomic analyses. Exogenous GABA increased endogenous GABA metabolism and GABA transaminase activity and enhanced the oxoglutarate content, which entered into nitrogen metabolism and increased the activity and expression of nitrogen metabolism-related enzymes, to accumulate AAs and bioactive peptides. Meanwhile, exogenous GABA induced the metabolism of flavonoids, including total flavonoids, anthocyanins, 6''-o-malonyglycitin, glycitin, ononin, cyanin, and ginkgetin, by increasing the activity and expression of flavonoid biosynthetic enzymes. This is the first study to reveal that GABA effectively improves the nutritional quality of edamame through the accumulation of AAs, bioactive peptides, isoflavones, anthocyanins, sugars, and organic acids.

4.
Physiol Mol Biol Plants ; 28(6): 1261-1276, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35910446

ABSTRACT

Abiotic stress caused by unsuitable environmental changes brings serious impacts on the growth and development of sorghum, resulting in significant loss in yield and quality every year. Phospholipase D is one of the key enzymes that catalyze the hydrolysis of phospholipids, and participates in plants response to abiotic stresses and phytohormones, whereas as the main producers of Phosphatidic acid (PA) signal, the detailed information about Phospholipase D associated (SbPLD) family in sorghum has been rarely reported. This study was performed to identify the PLD family gene in sorghum based on the latest genome annotation and to determine the expression of PLDs under abiotic stresses by qRT-PCR analysis. In this study, 13 PLD genes were identified in sorghum genome and further divided into 7 groups according to the phylogenetic analysis. All sorghum PLD family members harbored two conserved domains (HDK1&2) with catalytic activity, and most members contained a C2 domain. In ζ subfamily, C2 domain was replaced by PX and PH domain. The exon-intron structure of SbPLD genes within the same subfamily was highly conservative. The tissue specific expression analysis revealed different expression of SbPLD genes in various developmental stages. High level expression of SbPLDα3 was observed in almost all tissues, whereas SbPLDα4 was mainly expressed in roots. Under abiotic stress conditions, SbPLD genes responded actively to NaCl, ABA, drought (PEG) and cold (4 °C) treatment at the transcriptional level. The expression of SbPLDß1 was significantly up-regulated, while the transcription of SbPLDζ was suppressed under various stress conditions. In addition, SbPLDß1 and SbPLDδ2 were predicted to be the target genes of sbi-miR159 and sbi-miR167, respectively. This study will help to decipher the roles of PLDs in sorghum growth and abiotic stress responses. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01200-9.

5.
Front Plant Sci ; 13: 893508, 2022.
Article in English | MEDLINE | ID: mdl-35860529

ABSTRACT

Reduced glutathione (GSH) is a key antioxidant, which plays a crucial role in the detoxification of xenobiotics in plants. In the present study, glutathione could reduce chlorothalonil (CHT) residues in tomatoes by inducing the expression of the UDP-glycosyltransferase (UGT) gene. In plants, UGT is an important glycosylation catalyst, which can respond to stresses in time by activating plant hormones and defense compounds. Given the importance of plant growth and development, the genome-wipe analyses of Arabidopsis and soybean samples have been carried out, though not on the tomato, which is a vital vegetable crop. In this study, we identified 143 UGT genes in the tomato that were unevenly distributed on 12 chromosomes and divided into 16 subgroups and found that a variety of plant hormones and stress response cis-elements were discovered in the promoter region of the SlUGT genes, indicating that the UGT genes were involved in several aspects of the tomato stress response. Transcriptome analysis and results of qRT-PCR showed that most SlUGT genes could be induced by CHT, and the expression of these genes was regulated by glutathione. In addition, we found that SlUGT genes could participate in plant detoxification through interaction with transcription factors. These findings further clarify the potential function of the UGT gene family in the detoxification of exogenous substances in tomatoes and provide valuable information for the future study of functional genomics of tomatoes.

6.
Ecotoxicol Environ Saf ; 233: 113296, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35158253

ABSTRACT

Glutathione (GSH) biosynthesis and regeneration play a significant role in the metabolism of chlorothalonil (CHT) in tomatoes. However, the specific regulatory mechanism of GSH in the degradation of CHT remains uncertain. To address this, we investigate the critical regulatory pathways in the degradation of residual CHT in tomatoes. The results revealed that the detoxification of CHT residue in tomatoes was inhibited by buthionine sulfoximine and oxidized glutathione pretreatment, which increased by 26% and 46.12% compared with control, respectively. Gene silencing of γECS, GS, and GR also compromised the CHT detoxification potential of plants, which could be alleviated by GSH application and decreased the CHT accumulation by 33%, 25%, and 21%, respectively. Notably, it was found that the jasmonic acid (JA) pathway participated in the degradation of CHT regulated by GSH. CHT residues reduced by 28% after application of JA. JA played a role downstream of the glutathione pathway by promoting the degradation of CHT residue in tomatoes via nitric oxide signaling and improving the gene expression of antioxidant and detoxification-related enzymes. This study unveiled a crucial regulatory mechanism of GSH via the JA pathway in CHT degradation in tomatoes and offered new insights for understanding residual pesticide degradation.


Subject(s)
Solanum lycopersicum , Cyclopentanes , Glutathione/metabolism , Solanum lycopersicum/genetics , Nitriles , Oxylipins/metabolism
7.
Genes (Basel) ; 10(6)2019 06 12.
Article in English | MEDLINE | ID: mdl-31210171

ABSTRACT

Plant fatty acid desaturases (FADs) catalyze the desaturation of fatty acids in various forms and play important roles in regulating fatty acid composition and maintaining membrane fluidity under temperature stress. A total of 30 FADs were identified from a maize genome, including 13 soluble and 17 membrane-bound FADs, which were further classified into two and five sub-groups, respectively, via phylogenetic analysis. Although there is no evolutionary relationship between the soluble and the membrane-bound FADs, they all harbor a highly conserved FA_desaturase domain, and the types and the distributions of conserved motifs are similar within each sub-group. The transcriptome analysis revealed that genes encoding FADs exhibited different expression profiles under cold and heat stresses. The expression of ZmFAD2.1&2.2, ZmFAD7, and ZmSLD1&3 were significantly up-regulated under cold stress; moreover, the expression of ZmFAD2.1&2.3 and ZmSLD1&3 were obviously down-regulated under heat stress. The co-expression analysis demonstrated close correlation among the transcription factors and the significant responsive FAD genes under cold or heat stress. This study helps to understand the roles of plant FADs in temperature stress responses.


Subject(s)
Cold-Shock Response/genetics , Fatty Acid Desaturases/genetics , Heat-Shock Response/genetics , Zea mays/genetics , Chromosomes, Plant , Cold Temperature , Conserved Sequence/genetics , Fatty Acid Desaturases/classification , Gene Duplication , Gene Expression Regulation, Plant , Hot Temperature , Phylogeny , Transcriptome/genetics , Zea mays/growth & development
8.
BMC Plant Biol ; 19(1): 16, 2019 Jan 09.
Article in English | MEDLINE | ID: mdl-30626322

ABSTRACT

BACKGROUND: Plant glycerol-3-phosphate dehydrogenase (GPDH) catalyzes the reduction of dihydroxyacetone phosphate (DHAP) to produce glycerol-3-phosphate (G-3-P), and plays a key role in glycerolipid metabolism as well as stress responses. RESULTS: In this study, we report the cloning, enzymatic and physiological characterization of a cytosolic NAD+-dependent GPDH from maize. The prokaryotic expression of ZmGPDH1 in E.coli showed that the enzyme encoded by ZmGPDH1 was capable of catalyzing the reduction of DHAP in the presence of NADH. The functional complementation analysis revealed that ZmGPDH1 was able to restore the production of glycerol-3-phosphate and glycerol in AtGPDHc-deficient mutants. Furthermore, overexpression of ZmGPDH1 remarkably enhanced the tolerance of Arabidopsis to salinity/osmotic stress by enhancing the glycerol production, the antioxidant enzymes activities (SOD, CAT, APX) and by maintaining the cellular redox homeostasis (NADH/NAD+, ASA/DHA, GSH/GSSG). ZmGPDH1 OE Arabidopsis plants also exhibited reduced leaf water loss and stomatal aperture under salt and osmotic stresses. Quantitative real-time RT-PCR analyses revealed that overexpression of ZmGPDH1 promoted the transcripts accumulation of genes involved in cellular redox homeostasis and ROS-scavenging system. CONCLUSIONS: Together, these data suggested that ZmGPDH1 is involved in conferring salinity and osmotic tolerance in Arabidopsis through modulation of glycerol synthesis, stomatal closure, cellular redox and ROS homeostasis.


Subject(s)
Cytosol/metabolism , Glycerol-3-Phosphate Dehydrogenase (NAD+)/metabolism , NAD/metabolism , Zea mays/metabolism , Cytosol/drug effects , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/genetics , Osmotic Pressure/drug effects , Oxidation-Reduction/drug effects , Sodium Chloride/pharmacology , Zea mays/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...