Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 273: 125853, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38460422

ABSTRACT

Semiconductor metal oxides (SMOs) nanomaterials are a category of sensing materials that are widely applied to chemiresistive NOx gas sensors. However, there is much space to improve the sensing performance of SMOs nanomaterials. Therefore, how to improve the sensing performance of SMOs nanomaterials for NOx gases has always attracted the interest of researchers. Up to now, there are few reviews focus on the modification strategies of SMOs which applied to NOx gas sensors. In order to compensate for the limitation, this review summarizes the existing modification strategies of SMOs, hoping to provide researchers a view of the research progress in this filed as comprehensive as possible. This review focuses on the progress of the modification of SMOs nanomaterials for chemiresistive NOx (NO, NO2) gas sensors, including the morphology modulation of SMOs, compositing SMOs, loading noble metals, doping metal ions, compositing with carbon nanomaterials, compositing with biomass template, and compositing with MXene, MOFs, conducting polymers. The mechanism of each strategy to enhance the NOx sensing performance of SMOs-based nanomaterials is also discussed and summarized. In addition, the limitations of some of the modification strategies and ways to address them are discussed. Finally, future perspectives for SMOs-based NOx gas sensors are also discussed.

2.
Chem Asian J ; 18(17): e202300498, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37401141

ABSTRACT

In recent years, single-atom catalysts (SACs) have received increasing attention in the field of electrochemical CO2 RR with their efficient atom utilization efficiency and excellent catalytic performance. However, their low metal loading and the presence of linear relationships for single active sites with simple structures possibly restrict their activity and practical applications. Active site tailoring at the atomic level is a visionary approach to break the existing limitations of SACs. This paper first briefly introduces the synthesis strategies of SACs and DACs. Then, combining previous experimental and theoretical studies, this paper introduces four optimization strategies, namely spin-state tuning engineering, axial functionalization engineering, ligand engineering, and substrate tuning engineering, for improving the catalytic performance of SACs in the electrochemical CO2 RR process by combining previous experimental and theoretical studies. Then it is introduced that DACs exhibit significant advantages over SACs in increasing metal atom loading, promoting the adsorption and activation of CO2 molecules, modulating intermediate adsorption, and promoting C-C coupling. At the end of this paper, we briefly and succinctly summarize the main challenges and application prospects of SACs and DACs in the field of electrochemical CO2 RR at present.

3.
Chem Asian J ; 18(12): e202300291, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37106554

ABSTRACT

Excess CO2 can be effectively converted into valuable fuels and chemicals by electrochemical CO2 reduction, which can help establish a low-carbon emission economy and solve the current energy crisis. In recent years, metal-organic frameworks (MOFs), as an emerging multifunctional material with porous structure, high chemical tunability and large specific surface area, has received increasing attention in the field of electrochemical CO2 RR. In this paper, we present a comprehensive overview of various MOFs and their derivatives as CO2 RR electrocatalysts and analyze their roles in the catalytic process from physical and chemical aspects. In addition, combining experiments and theory, this article also offers a personal view on the electronic structure modulation strategies to improve electrocatalytic performance. The article concludes with an analysis of the challenges in realizing MOFs and their derivatives for electrocatalytic CO2 RR applications.


Subject(s)
Carbon Dioxide , Metal-Organic Frameworks , Catalysis , Porosity
4.
Nanoscale ; 15(8): 3666-3692, 2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36734996

ABSTRACT

The electrochemical CO2 reduction reaction can effectively convert CO2 into promising fuels and chemicals, which is helpful in establishing a low-carbon emission economy. Compared with other types of electrocatalysts, single-atom catalysts (SACs) immobilized on carbon substrates are considered to be promising candidate catalysts. Atomically dispersed SACs exhibit excellent catalytic performance in CO2RR due to their maximum atomic utilization, unique electronic structure, and coordination environment. In this paper, we first briefly introduce the synthetic strategies and characterization techniques of SACs. Then, we focus on the optimization strategies of the atomic structure of carbon-based SACs, including adjusting the coordination atoms and coordination numbers, constructing the axial chemical environment, and regulating the carbon substrate, focusing on exploring the structure-performance relationship of SACs in the CO2RR process. In addition, this paper also briefly introduces the diatomic catalysts (DACs) as an extension of SACs. At the end of the paper, we summarize the article with an exciting outlook discussing the current challenges and prospects for research on the application of SACs in CO2RR.

SELECTION OF CITATIONS
SEARCH DETAIL
...