Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Int J Urol ; 30(12): 1122-1132, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37602677

ABSTRACT

OBJECTIVES: This study aims to reveal immunophenotypes associated with immunotherapy response in bladder cancer, identify the signature genes of immune subtypes, and provide new molecular targets for improving immunotherapy response. METHODS: Bladder cancer immunophenotypes were characterized in the bulk RNA sequencing dataset GSE32894 and Imvigor210, and gene expression signatures were established to identify the immunophenotypes. Expression of gene signatures were validated in single-cell RNA sequencing dataset GSE145140 and human proteins expression data source. Investigation of Immunotherapy Response was performed in IMvigor210 dataset. Prognosis of tumor immunophenotypes was further analyzed. RESULTS: Inflamed and immune-excluded immunophenotypes were characterized based on the tumor immune cell scores. Risk score models that were established rely on RNA sequencing profiles and overall survival of bladder cancer cohorts. The inflamed tumors had lower risk scores, and the low-risk tumors were more likely to respond to atezolizumab, receiving complete response/partial response (CR/PR). Patients who responded to atezolizumab had higher SRRM4 and lower NPHS1 and TMEM72 expression than the non-responders. SRRM4 expression was a protective factor for bladder cancer prognosis, while the NPHS1 and TMEM72 showed the opposite pattern. CONCLUSION: This study provided a novel classification method for tumor immunophenotypes. Bladder cancer immunophenotypes can predict the response to immune checkpoint blockade. The immunophenotypes can be identified by the expression of signature genes.


Subject(s)
Nephrotic Syndrome , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Urinary Bladder , Immunotherapy , Tumor Microenvironment , Prognosis , Nerve Tissue Proteins
2.
Front Microbiol ; 14: 1179087, 2023.
Article in English | MEDLINE | ID: mdl-37213510

ABSTRACT

Eight Gram-negative, aerobic, motile with paired polar flagella and rod-shaped bacteria were isolated from six tobacco fields in Yunnan, PR China. 16S rRNA gene sequence analysis revealed that all the strains belonged to the genus Ralstonia. Among them, strain 22TCCZM03-6 had an identical 16S rRNA sequence to that of R. wenshanensis 56D2T, and the other strains were closely related to R. pickettii DSM 6297T (98.34­99.86%), R. wenshanensis 56D2T (98.70­99.64%), and R. insidiosa CCUG 46789T (97.34­98.56%). Genome sequencing yielded sizes ranging from 5.17 to 5.72 Mb, with overall G + C contents of 63.3­64.1%. Pairwise genome comparisons showed that strain 22TCCZM03-6 shared average nucleotide identity (ANI) and digital DNA­DNA hybridization (dDDH) values above the species cut-off with R. wenshanensis 56D2T, suggesting that strain 22TCCZM03-6 is a special strain of the R. wenshanensis. Five strains, including 21MJYT02-10T, 21LDWP02-16, 22TCJT01-1, 22TCCZM01-4, and 22TCJT01-2, had ANI values >95% and dDDH values >70% when compared with each other. These five strains had ANI values of 73.32­94.17% and dDDH of 22.0­55.20% with the type strains of the genus Ralstonia individually, supporting these five strains as a novel species in the genus Ralstonia. In addition, strains 21YRMH01-3T and 21MJYT02-11T represent two independent species. They both had ANI and dDDH values below the thresholds for species delineation when compared with the type species of the genus Ralstonia. In strains 21YRMH01-3T and 21MJYT02-10T, the main fatty acids were summed features 3, 8, and C16:0; however, strain 21MJYT02-11T contained C16:0, cyclo-C17:0, and summed features 3 as major fatty acids. The main polar lipids, including diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine, were identified from strains 21YRMH01-3T, 21MJYT02-10T, and 21MJYT02-11T. The ubiquinones Q-7 and Q-8 were also detected in these strains, with Q-8 being the predominant quinone. Based on the above data, we propose that the eight strains represent one known species and three novel species in the genus Ralstonia, for which the names Ralstonia chuxiongensis sp. nov., Ralstonia mojiangensis sp. nov., and Ralstonia soli sp. nov. are proposed. The type strains are 21YRMH01-3T (=GDMCC 1.3534T = JCM 35818T), 21MJYT02-10T (=GDMCC 1.3531T = JCM 35816T), and 21MJYT02-11T (=GDMCC 1.3532T = JCM 35817T), respectively.

3.
Sci Rep ; 8(1): 10555, 2018 Jul 12.
Article in English | MEDLINE | ID: mdl-30002385

ABSTRACT

Wnt4 is a secreted growth factor associated with renal tubulogenesis. Our previous studies identified that renal and urinary Wnt4 are upregulated following ischemia-reperfusion injury in mice, but the roles of Wnt4 in other forms of acute kidney injury (AKI) remain unclear. Here, we investigated the changes in Wnt4 expression using a cisplatin-induced AKI model. We found that renal and urinary Wnt4 expression increased as early as 12 hours, peaked at day 4 following cisplatin-induced AKI and was closely correlated with histopathological alterations. By contrast, the serum creatinine level was significantly elevated until day 3, indicating that Wnt4 is more sensitive to early tubular injury than serum creatinine. In addition, renal Wnt4 was co-stained with aquaporin-1 and thiazide-sensitive NaCl cotransporter, suggesting that Wnt4 can detect both proximal and distal tubular injuries. These data were further confirmed in a clinical study. Increased urinary Wnt4 expression was detected earlier than serum creatinine and eGFR in patients with contrast-induced AKI after vascular intervention. This study is the first to demonstrate that increased expression of renal and urinary Wnt4 can be detected earlier than serum creatinine after drug-induced AKI. In particular, urinary Wnt4 can potentially serve as a noninvasive biomarker for monitoring patients with tubular injury.


Subject(s)
Acute Kidney Injury/diagnosis , Kidney Tubules/pathology , Wnt4 Protein/urine , Acute Kidney Injury/blood , Acute Kidney Injury/chemically induced , Acute Kidney Injury/urine , Aged , Animals , Biomarkers/metabolism , Biomarkers/urine , Cisplatin/toxicity , Contrast Media/administration & dosage , Contrast Media/adverse effects , Creatinine/blood , Disease Models, Animal , Female , Glomerular Filtration Rate , Humans , Kidney Tubules/drug effects , Kidney Tubules/physiopathology , Male , Middle Aged , Pilot Projects , Rats , Rats, Sprague-Dawley , Up-Regulation , Wnt4 Protein/metabolism
4.
Oncotarget ; 9(1): 67-74, 2018 Jan 02.
Article in English | MEDLINE | ID: mdl-29416596

ABSTRACT

Since urine samples more directly reflect kidney alterations and damage than blood samples, we investigated whether urine anti-PLA2R antibody (uPLA2R-Ab) could be utilized similarly to serum anti-PLA2R antibody (sPLA2R-Ab) as a noninvasive biomarker of idiopathic membranous nephropathy (IMN). In this study, we performed a qualitative analysis using an indirect immunofluorescence test (IIFT) and measured uPLA2R-Ab and sPLA2R-Ab concentrations using an enzyme-linked immunosorbent assay (ELISA) in 28 patients with biopsy-proven IMN and 12 patients with secondary membranous nephropathy (SMN). Overall, 64.3% (n=18) of patients with IMN had IIFT-positive sPLA2R-Ab, 67.9% (n=19) of patients with IMN had IIFT-positive uPLA2R-Ab, and none of the SMN patients had IIFT-positive sPLA2R-Ab or uPLA2R-Ab. The titers of the anti-PLA2R antibody from the IMN patients in the urine (10.72±22.24 RU/µmol, presented as uPLA2R-Ab/urine creatinine) and serum (107.36±140.93 RU/ml) were higher than those from the SMN patients (0.51±0.46 RU/µmol, 0.008±0.029 RU/ml, respectively, p<0.05). Statistical analyses indicated that there were positive correlations between uPLA2R-Ab and gPLA2R, sPLA2R-Ab or urinary protein and negative correlations between uPLA2R-Ab and serum albumin in patients with IMN. In conclusion, uPLA2R-Ab is a novel biomarker of IMN. sPLA2R-Ab combined with uPLA2R-Ab might be more helpful for diagnosis and activity in PLA2R associated MN.

5.
Sci Rep ; 7: 45952, 2017 04 06.
Article in English | MEDLINE | ID: mdl-28383024

ABSTRACT

Salt-sensitive hypertension (SSHT) leads to kidney interstitial fibrosis. However, the potential mechanisms leading to renal fibrosis have not been well investigated. In present study, Dahl salt-sensitive (DS) rats were divided into three groups: normal salt diet (DSN), high salt diet (DSH) and high salt diet treated with hydrochlorothiazide (HCTZ) (DSH + HCTZ). A significant increase in systolic blood pressure (SBP) was observed 3 weeks after initiating the high salt diet, and marked histological alterations were observed in DSH rats. DSH rats showed obvious podocyte injury, peritubular capillary (PTC) loss, macrophage infiltration, and changes in apoptosis and cell proliferation. Moreover, Wnt/ß-catenin signaling was significantly activated in DSH rats. However, HCTZ administration attenuated these changes with decreased SBP. In addition, increased renal and urinary Wnt4 expression was detected with time in DSH rats and was closely correlated with histopathological alterations. Furthermore, these alterations were also confirmed by clinical study. In conclusion, the present study provides novel insight into the mechanisms related to PTC loss, macrophage infiltration and Wnt/ß-catenin signaling in SSHT-induced renal injury and fibrosis. Therefore, multi-target therapeutic strategies may be the most effective in preventing these pathological processes. Moreover, urinary Wnt4 may be a noninvasive biomarker for monitoring renal injury after hypertension.


Subject(s)
Hypertension/complications , Kidney Diseases/pathology , Kidney/pathology , Animals , Antihypertensive Agents/pharmacology , Blood Pressure/drug effects , Capillaries/drug effects , Capillaries/metabolism , Fibrosis/etiology , Hydrochlorothiazide/pharmacology , Hypertension/physiopathology , Hypertension/prevention & control , Kidney/drug effects , Kidney/metabolism , Kidney Diseases/etiology , Kidney Diseases/prevention & control , Kidney Tubules/blood supply , Kidney Tubules/metabolism , Kidney Tubules/pathology , Male , Podocytes/drug effects , Podocytes/metabolism , Rats, Inbred Dahl , Sodium Chloride, Dietary/administration & dosage , Sodium Chloride, Dietary/toxicity , Wnt4 Protein/metabolism , Wnt4 Protein/urine
6.
Sci Rep ; 6: 32610, 2016 09 07.
Article in English | MEDLINE | ID: mdl-27600466

ABSTRACT

Earlier intervention after acute kidney injury would promote better outcomes. Our previous study found that Wnt proteins are promptly upregulated after ischemic kidney injury. Thus, we assessed whether Wnt4 could be an early and sensitive biomarker of tubular injury. We subjected mice to bilateral ischemia/reperfusion injury (IRI). Kidney and urinary Wnt4 expression showed an early increase at 3 hours and increased further at 24 hours post-IRI and was closely correlated with histopathological alterations. Serum creatinine slightly increased at 6 hours, indicating that it was less sensitive than Wnt4 expression. These data were further confirmed by clinical study. Both kidney and urinary Wnt4 expression were significantly increased in patients diagnosed with biopsy-proven minimal change disease (MCD) with tubular injury, all of whom nevertheless had normal estimated glomerular filtration rate (eGFR) and serum creatinine. The increased Wnt4 expression also strongly correlated with histopathological alterations in these MCD patients. In conclusion, this is the first demonstration that increases in both kidney and urinary Wnt4 expression can be detected more sensitively and earlier than serum creatinine after kidney injury. In particular, urinary Wnt4 could be a potential noninvasive biomarker for the early detection of tubular injury.


Subject(s)
Kidney Tubules/injuries , Kidney Tubules/pathology , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Wnt4 Protein/metabolism , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Adult , Animals , Biomarkers/blood , Biomarkers/metabolism , Creatinine/blood , Female , Fluorescent Antibody Technique , Glomerular Filtration Rate , Hepatitis A Virus Cellular Receptor 1/metabolism , Humans , In Situ Nick-End Labeling , Ki-67 Antigen/metabolism , Kidney Tubules/metabolism , Kidney Tubules/physiopathology , Male , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Nephrosis, Lipoid/metabolism , Nephrosis, Lipoid/pathology , Reperfusion Injury/blood , Reperfusion Injury/physiopathology , Up-Regulation , Wnt4 Protein/urine
7.
PLoS One ; 11(1): e0147084, 2016.
Article in English | MEDLINE | ID: mdl-26765329

ABSTRACT

Renal fibrosis plays an important role in the onset and progression of chronic kidney diseases. Many studies have demonstrated that heme oxygenase-1 (HO-1) is involved in diverse biological processes as a cytoprotective molecule, including anti-inflammatory, anti-oxidant, anti-apoptotic, antiproliferative, and immunomodulatory effects. However, the mechanisms of HO-1 prevention in renal interstitial fibrosis remain unknown. In this study, HO-1 transgenic (TG) mice were employed to investigate the effect of HO-1 on renal fibrosis using a unilateral ureter obstruction (UUO) model and to explore the potential mechanisms. We found that HO-1 was adaptively upregulated in kidneys of both TG and wild type (WT) mice after UUO. The levels of HO-1 mRNA and protein were increased in TG mice compared with WT mice under normal conditions. HO-1 expression was further enhanced after UUO and remained high during the entire experimental process. Renal interstitial fibrosis in the TG group was significantly attenuated compared with that in the WT group after UUO. Moreover, overexpression of HO-1 inhibited the loss of peritubular capillaries. In addition, UUO-induced activation and proliferation of myofibroblasts were suppressed by HO-1 overexpression. Furthermore, HO-1 restrained tubulointerstitial infiltration of macrophages and regulated the secretion of inflammatory cytokines in UUO mice. We also found that high expression of HO-1 inhibited reactivation of Wnt/ß-catenin signaling, which could play a crucial role in attenuating renal fibrosis. In conclusion, these data suggest that HO-1 prevents renal tubulointerstitial fibrosis possibly by regulating the inflammatory response and Wnt/ß-catenin signaling. This study provides evidence that augmentation of HO-1 levels may be a therapeutic strategy against renal interstitial fibrosis.


Subject(s)
Gene Expression , Heme Oxygenase-1/genetics , Nephritis, Interstitial/etiology , Nephritis, Interstitial/pathology , Ureteral Obstruction/complications , Animals , Apoptosis/genetics , Cell Proliferation , Disease Models, Animal , Fibrosis , Gene Expression Regulation , Mice , Myofibroblasts/metabolism , Up-Regulation , Wnt Signaling Pathway
8.
PLoS One ; 10(9): e0137049, 2015.
Article in English | MEDLINE | ID: mdl-26352670

ABSTRACT

Podocyte injury plays central roles in proteinuria and kidney dysfunction, therefore, identifying specific biomarker to evaluate earlier podocyte injury is highly desirable. Podocyte-secreted angiopoietin-like-4 (Angptl4) mediates proteinuria in different types of podocytopathy. In the present study, we established an experimental minimal change disease (MCD) rat model, induced by adriamycin (ADR) and resulted in definite podocyte injury, to identify the dynamic changes in Angptl4 expression. We also investigated the direct effects of tacrolimus on Angptl4 and podocyte repair. We determined that the glomerular Angptl4 expression was rapidly upregulated and reached a peak earlier than desmin, an injured podocyte marker, in the ADR rats. Furthermore, this upregulation occurred prior to heavy proteinuria and was accompanied by increased urinary Angptl4. We observed that the Angptl4 upregulation occurred only when podocyte was mainly damaged since we didn't observe little Angptl4 upregulation in MsPGN patients. In addition, we observed the glomerular Angptl4 mainly located in injured podocytes rather than normal podocytes. Moreover, we found that tacrolimus treatment significantly promoted podocyte repair and reduced glomerular and urinary Angptl4 expression at an earlier stage with a significant serum Angptl4 upregulation. And similar results were confirmed in MCD patients. In conclusion, this study represents the first investigation to demonstrate that Angptl4 can predict podocyte injury at earlier stages in MCD and the identification of earlier podocyte injury biomarkers could facilitate the prompt diagnosis and treatment of patients with podocytopathy, as well as determination of the prognosis and treatment efficacy in these diseases.


Subject(s)
Angiopoietins/biosynthesis , Nephrosis, Lipoid/genetics , Podocytes/metabolism , Tacrolimus/administration & dosage , Angiopoietin-Like Protein 4 , Angiopoietins/blood , Angiopoietins/genetics , Animals , Disease Models, Animal , Doxorubicin/toxicity , Humans , Kidney Glomerulus/metabolism , Kidney Glomerulus/pathology , Nephrosis, Lipoid/chemically induced , Nephrosis, Lipoid/drug therapy , Nephrosis, Lipoid/pathology , Podocytes/drug effects , Podocytes/pathology , Proteinuria , Rats
9.
Endocrine ; 49(2): 373-84, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25424436

ABSTRACT

Podocyte injury plays a key role in the development of diabetic nephropathy (DN). Understanding the changes in podocyte structure and function in diabetes mellitus may lead to novel diagnostic tools and treatment strategies for DN. Albuminuria, histological alterations, and podocyte injury were detected at different time points in streptozotocin (STZ)-induced diabetic rats. Increased urinary albumin-to-creatinine ratios (ACR) and podocyte injury were significantly observed 4 weeks post-STZ injection. We determined the glomerular expression and distribution of angiopoietin-like 4 (Angptl4) by immunofluorescence and real-time PCR. Glomerular Angptl4 expression was mostly colocalized with synaptopodin, a podocyte marker, with substantial additional overlap with the glomerular basement membrane (GBM). This finding indicated that Angptl4 might be primarily secreted by podocytes and moved toward the GBM. Moreover, we observed by Western blot analysis and ELISA that the urinary Angptl4 level was gradually upregulated in both STZ-induced rats and diabetic patients with microalbuminuria and macroalbuminuria. We further found that the increased glomerular Angptl4 expression was closely related to the urinary ACR level and podocyte injury. In addition, the urinary Angptl4 expression was closely associated with albuminuria in the rats and patients with DN. This study is the first to show that podocyte-secreted Angptl4 is upregulated in DN and can be detected in urine. Angptl4 might function as a podocyte injury marker and could be a potential and novel diagnostic and therapeutic biomarker for DN.


Subject(s)
Albuminuria/metabolism , Angiopoietins/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/metabolism , Glomerular Basement Membrane/metabolism , Podocytes/metabolism , Angiopoietin-Like Protein 4 , Animals , Antibiotics, Antineoplastic/toxicity , Diabetes Mellitus, Experimental/chemically induced , Humans , Male , Microfilament Proteins , Podocytes/pathology , Rats , Rats, Sprague-Dawley , Streptozocin/toxicity , Up-Regulation
10.
PLoS One ; 9(8): e106164, 2014.
Article in English | MEDLINE | ID: mdl-25165975

ABSTRACT

Tacrolimus is an anticalcineurinic agent with potent immunosuppressive activity that has recently been shown to have the added benefit of reducing proteinuria in membranous nephropathy (MN) patients. However, its potential mechanisms remain unknown. To reveal the mechanism, rat cohorts were administered tacrolimus or vehicle from days 7 to 28 after the induction of passive Heymann nephritis (PHN). PHN induction resulted in heavy proteinuria and increased expression of desmin, a marker of injured podocytes. We also showed that the glomerular expression of angiopoietin-like-4 (Angptl4) was markedly upregulated in PHN rats and human MN followed by an increase in urine Angptl4 excretion. In addition, increased Angptl4 expression may be related to podocyte injury and proteinuria. Furthermore, upregulated Angptl4 expression primarily colocalized with podocytes rather than endothelial or mesangial cells, indicating that podocytes may be the source of Angptl4, which then gradually migrated to the glomerular basement membrane over time. However, tacrolimus treatment markedly reduced glomerular and urinary Angptl4, accompanied by a reduction in the established proteinuria and the promotion of podocyte repair. Additionally, glomerular immune deposits and circulating IgG levels induced by PHN clearly decreased following tacrolimus treatment. In conclusion, this is the first demonstration that the calcineurin inhibitor tacrolimus can reduce Angptl4 in podocytes accompanied by a decrease in established proteinuria and promotion of podocyte repair in MN.


Subject(s)
Angiopoietins/metabolism , Calcineurin Inhibitors/administration & dosage , Glomerulonephritis, Membranous/drug therapy , Podocytes/metabolism , Proteinuria/drug therapy , Tacrolimus/administration & dosage , Adult , Angiopoietin-Like Protein 4 , Animals , Calcineurin Inhibitors/pharmacology , Disease Models, Animal , Female , Glomerulonephritis, Membranous/metabolism , Glomerulonephritis, Membranous/pathology , Humans , Immunoglobulin G/blood , Immunoglobulin G/drug effects , Male , Middle Aged , Podocytes/drug effects , Podocytes/pathology , Proteinuria/metabolism , Proteinuria/pathology , Rats , Tacrolimus/pharmacology , Up-Regulation , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...