Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Gene ; 641: 349-354, 2018 Jan 30.
Article in English | MEDLINE | ID: mdl-29111206

ABSTRACT

Congenital heart diseases (CHDs) affect nearly 1% of all neonates and show an increasing tendency. The complex inheritance patterns and multifactorial etiologies make these defects difficult to be identified before complete manifestation. Genetic screening has identified hundreds of specific mutant sites for CHDs based on cardiac transcriptional factors. GATA4 is a master regulator required for ventral morphogenesis and heart tube formation. Its mutation is most widely studied in CHDs. In the past decades, over 100 GATA4 mutant sites have been reported, but only a few functional sites have been identified. Thus, it is important to distinguish deleterious sites from neutral sites. In silico prediction of functional sites using bioinformatics tools can provide the valuable information, but it is not solid enough. Here, the roles of GATA4 in heart development is discussed in detail and its mutation sites in protein coding region are summarized systematically, providing an integrated resource for GATA4 mutations. Furthermore, we discussed the advantage and disadvantage of different methods for functional mutation identification. Especially, the disease model of induced pluripotent stem cell is emerging as a powerful tool to assess GATA4 mutations in human. In the recent years, single-cell based high-throughput sequencing is being applied in preimplantation diagnosis and assisted reproduction progressively, providing a new strategy for the prevention of congenital diseases as we discussed. Based on functional mutant sites identification, preimplantation diagnosis will contribute to CHDs prevention eventually.


Subject(s)
GATA4 Transcription Factor/genetics , Heart Defects, Congenital/diagnosis , Heart Defects, Congenital/genetics , Mutation/genetics , Animals , Humans , Morphogenesis/genetics , Preimplantation Diagnosis/methods
2.
Environ Health Perspect ; 122(2): 159-64, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24316659

ABSTRACT

BACKGROUND: Maternal obesity has adverse effects on oocyte quality, embryo development, and the health of the offspring. OBJECTIVES: To understand the underlying mechanisms responsible for the negative effects of maternal obesity, we investigated the DNA methylation status of several imprinted genes and metabolism-related genes. METHODS: Using a high-fat-diet (HFD)-induced mouse model of obesity, we analyzed the DNA methylation of several imprinted genes and metabolism-related genes in oocytes from control and obese dams and in oocytes and liver from their offspring. Analysis was performed using combined bisulfite restriction analysis (COBRA) and bisulfite sequencing. RESULTS: DNA methylation of imprinted genes in oocytes was not altered in either obese dams or their offspring; however, DNA methylation of metabolism-related genes was changed. In oocytes of obese mice, the DNA methylation level of the leptin (Lep) promoter was significantly increased and that of the Ppar-α promoter was reduced. Increased methylation of Lep and decreased methylation of Ppar-α was also observed in the liver of female offspring from dams fed the high-fat diet (OHFD). mRNA expression of Lep and Ppar-α was also significantly altered in the liver of these OHFD. In OHFD oocytes, the DNA methylation level of Ppar-α promoter was increased. CONCLUSIONS: Our results indicate that DNA methylation patterns of several metabolism-related genes are changed not only in oocytes of obese mice but also in oocytes and liver of their offspring. These data may contribute to the understanding of adverse effects of maternal obesity on reproduction and health of the offspring.


Subject(s)
DNA Methylation/physiology , Diet, High-Fat/adverse effects , Inheritance Patterns/genetics , Liver/physiology , Obesity/complications , Obesity/etiology , Oocytes/physiology , Animals , Base Sequence , DNA Methylation/genetics , Female , Mice , Molecular Sequence Data , Polymerase Chain Reaction , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA
3.
Mol Aspects Med ; 38: 54-85, 2014 Aug.
Article in English | MEDLINE | ID: mdl-23796757

ABSTRACT

It is well known that maternal ageing not only causes increased spontaneous abortion and reduced fertility, but it is also a high genetic disease risk. Although assisted reproductive technologies (ARTs) have been widely used to treat infertility, the overall success is still low. The main reasons for age-related changes include reduced follicle number, compromised oocyte quality especially aneuploidy, altered reproductive endocrinology, and increased reproductive tract defect. Various approaches for improving or treating infertility in aged women including controlled ovarian hyperstimulation with intrauterine insemination (IUI), IVF/ICSI-ET, ovarian reserve testing, preimplantation genetic diagnosis and screening (PGD/PGS), oocyte selection and donation, oocyte and ovary tissue cryopreservation before ageing, miscarriage prevention, and caloric restriction are summarized in this review. Future potential reproductive techniques for infertile older women including oocyte and zygote micromanipulations, derivation of oocytes from germ stem cells, ES cells, and iPS cells, as well as through bone marrow transplantation are discussed.


Subject(s)
Aging/physiology , Infertility, Female/therapy , Reproductive Techniques , Bone Marrow Transplantation , Female , Humans , Maternal Age
4.
Biol Reprod ; 88(5): 117, 2013 May.
Article in English | MEDLINE | ID: mdl-23515675

ABSTRACT

Maternal diabetes has adverse effects not only on oocyte quality but also on embryo development. However, it is still unknown whether the DNA imprinting in oocytes is altered by diabetes. By using streptozotocin (STZ)-induced and nonobese diabetic (NOD) mouse models we investigated the effect of maternal diabetes on DNA methylation of imprinted genes in oocytes. Mice which were judged as being diabetic 4 days after STZ injection were used for experiments. In superovulated oocytes of diabetic mice, the methylation pattern of Peg3 differential methylation regions (DMR) was affected in a time-dependent manner, and evident demethylation was observed on Day 35 after STZ injection. The expression level of DNA methyltransferases (DNMTs) was also decreased in a time-dependent manner in diabetic oocytes. However, the methylation patterns of H19 and Snrpn DMRs were not significantly altered by maternal diabetes, although there were some changes in Snrpn. In NOD mice, the methylation pattern of Peg3 was similar to that of STZ-induced mice. Embryo development was adversely affected by maternal diabetes; however, no evident imprinting abnormality was observed in oocytes from female offspring derived from a diabetic mother. These results indicate that maternal diabetes has adverse effects on DNA methylation of maternally imprinted gene Peg3 in oocytes of a diabetic female in a time-dependent manner, but methylation in offspring's oocytes is normal.


Subject(s)
DNA Methylation , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/metabolism , Gene Expression , Oocytes/metabolism , Animals , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Type 1/genetics , Embryonic Development/genetics , Female , Genomic Imprinting , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Mice , Mice, Inbred NOD , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , snRNP Core Proteins
5.
Reprod Biol Endocrinol ; 11: 119, 2013 Dec 30.
Article in English | MEDLINE | ID: mdl-24378208

ABSTRACT

BACKGROUND: Maternal diabetes mellitus not only has severe deleterious effects on fetal development, but also it affects transmission to the next generation. However, the underlying mechanisms for these effects are still not clear. METHODS: We investigated the methylation patterns and expressions of the imprinted genes Peg3, Snrpn, and H19 in mid-gestational placental tissues and on the whole fetus utilizing the streptozotocin (STZ)-induced hyperglycemic mouse model for quantitative analysis of methylation by PCR and quantitative real-time PCR. The protein expression of Peg3 was evaluated by Western blot. RESULTS: We found that the expression of H19 was significantly increased, while the expression of Peg3 was significantly decreased in dpc10.5 placentas of diabetic mice. We further found that the methylation level of Peg3 was increased and that of H19 was reduced in dpc10.5 placentas of diabetic mice. When pronuclear embryos of normal females were transferred to normal/diabetic (NN/ND) pseudopregnant females, the methylation and expression of Peg3 in placentas was also clearly altered in the ND group compared to the NN group. However, when the pronuclear embryos of diabetic female were transferred to normal pesudopregnant female mice (DN), the methylation and expression of Peg3 and H19 in dpc10.5 placentas was similar between the two groups. CONCLUSIONS: We suggest that the effects of maternal diabetes on imprinted genes may primarily be caused by the adverse uterus environment.


Subject(s)
Diabetes Mellitus/genetics , Fetal Development/genetics , Genomic Imprinting , Pregnancy in Diabetics/genetics , Uterus/metabolism , Animals , Blotting, Western , DNA Methylation , Female , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Mice , Placenta/metabolism , Pregnancy , Pregnancy in Diabetics/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , snRNP Core Proteins/genetics , snRNP Core Proteins/metabolism
6.
Cell Cycle ; 11(5): 909-16, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22336914

ABSTRACT

The Ska (spindle and kinetochore-associated) complex is composed of three proteins: Ska1, Ska2 and Ska3. It is required for stabilizing kinetochore-microtubule (KT-MT) interactions and silencing spindle checkpoint during mitosis. However, its roles in meiosis remain unclear. The present study was designed to investigate the localization and function of the Ska complex during mouse oocyte meiotic maturation. Our results showed that the localization and function of Ska complex in mouse oocyte meiosis differ in part from those in mitosis. Injection of low dose exogenous Myc-Ska mRNA showed that, instead of localizing to the kinetochores (KTs) and mediating KT-MT interactions from pro-metaphase to mid-anaphase stages as in mitosis, the members of the Ska complex were only localized on spindle microtubules from the Pro-MI to MII stages in mouse oocyte meiosis. Time-lapse live imaging analysis showed that knockdown of any member of the Ska complex by Morpholino injection into mouse oocytes resulted in spindle movement defects and enlarged polar bodies. Depletion of the whole Ska complex disrupted the stability of the anaphase spindle and influenced the extrusion of the first polar body. Taken together, these results show that the Ska complex plays an important role in meiotic spindle migration and anaphase spindle stability during mouse oocyte maturation.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Meiosis , Oocytes/metabolism , Anaphase , Animals , Cell Cycle Proteins , Chromosomal Proteins, Non-Histone/analysis , Chromosomal Proteins, Non-Histone/genetics , Kinetochores/metabolism , Mice , Mice, Inbred ICR , Microtubule-Associated Proteins , Microtubules/metabolism , Morpholinos/pharmacology , Oocytes/drug effects , Oogenesis , Polar Bodies/physiology , Prometaphase , Spindle Apparatus/physiology
7.
Anat Rec (Hoboken) ; 294(11): 1809-17, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21972213

ABSTRACT

Nanog as an important transcription factor plays a pivotal role in maintaining pluripotency and in reprogramming the epigenome of somatic cells. Its ability to function on committed somatic cells and embryos has been well defined in mouse and human, but rarely in pig. To better understand Nanog's function on reprogramming in porcine fetal fibroblast (PFF) and nuclear transfer (NT) embryo, we cloned porcine Nanog CDS and constructed pcDNA3.1 (+)/Nanog and pEGFP-C1/Nanog overexpression vectors and transfected them into PFFs. We studied the cell biological changes and the expression of Nanog, Oct4, Sox2, Klf4, C-myc, and Sall4 in transfected PFFs. We also detected the development potential of the cloned embryos harboring Nanog stably overexpressed fibroblasts and the expression of Oct4, Sox2, and both endogenous and exogenous Nanog in these embryos. The results showed that transient overexpression Nanog in PFF could activate the expression of Oct4 (5-fold), C-myc (2-fold), and Sall4 (5-fold) in somatic cells, but they could not be maintained during G418 selection. In NT embryos, although Nanog overexpression did not have a significant effect on blastocyst development rate and blastocyst cell number, it could significantly activate the expression of endogenous Nanog, Oct4, Sox2 to 160-fold, 93-fold, and 182-fold, respectively (P < 0.05). Our results demonstrate that Nanog could interact with and activate other pluripotent genes both in PFFs and embryos.


Subject(s)
Embryo, Mammalian/metabolism , Embryonic Stem Cells/metabolism , Fetus/metabolism , Fibroblasts/metabolism , Homeodomain Proteins/metabolism , Nuclear Transfer Techniques , Pluripotent Stem Cells/metabolism , Animals , Cells, Cultured , Cloning, Molecular , Embryo Culture Techniques , Fetus/cytology , Gene Expression Regulation, Developmental , Gestational Age , Homeodomain Proteins/genetics , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Sus scrofa , Transfection , Up-Regulation
8.
Cell Cycle ; 10(11): 1861-70, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21552007

ABSTRACT

GM130, a cis-Golgi protein, plays key roles in various mitotic events, but its function in mammalian oocyte meiosis remains unknown. In this study, we found that GM130 was localized to the spindle poles at both metaphase I and metaphase II stages and associated with the midbody at telophase I stage. The association of GM130 with spindle poles was further confirmed by its colocalization with the centrosome-associated proteins, MEK1/2. By nocodazole treatment, we clarified that GM130 localization was consistently dependent on spindle assembly. Then we investigated the possible function of GM130 by specific morpholino microinjection. This treatment caused abnormal spindle formation, and decreased first polar body extrusion. Our results showed that knockdown of GM130 impaired the localization of MTOCs proteins γ-tubulin and Plk1. Using live cell imaging we observed that depletion of GM130 affected spindle migration and resulted in elongated spindle and large polar body extrusion. We further found that depletion of GM130 blocked p-MEK1/2 accumulation at the spindle poles. And, it was shown that GM130 detached from the spindle poles in oocytes treated with MEK specific inhibitor U0126. Taken together, our results suggested that GM130 regulates microtubule organization and might cooperate with the MAPK pathway to play roles in spindle organization, migration and asymmetric division during mouse oocyte maturation.


Subject(s)
Autoantigens/physiology , Cell Division , Cytoskeleton/metabolism , Meiosis , Membrane Proteins/physiology , Oocytes/cytology , Spindle Apparatus , Animals , Mice , Microtubules , Mitogen-Activated Protein Kinase 1 , Mitogen-Activated Protein Kinases
SELECTION OF CITATIONS
SEARCH DETAIL
...