Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Cell Sci ; 117(Pt 26): 6497-509, 2004 Dec 15.
Article in English | MEDLINE | ID: mdl-15572406

ABSTRACT

Phagocytosis and chemotaxis are receptor-mediated processes that require extensive rearrangements of the actin cytoskeleton, and are controlled by lipid second messengers such as phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3] and phosphatidylinositol 3,4-bisphosphate [PtdIns(3,4)P2]. We used a panel of pleckstrin homology (PH) domains with distinct binding specificities for PtdIns(3,4,5)P3 and PtdIns(3,4)P2 to study the spatiotemporal dynamics of these phosphoinositides in vivo. During phagocytosis and macropinocytosis PtdIns(3,4,5)P3 levels transiently increased at sites of engulfment, followed by a rapid PtdIns(3,4)P2 production round the phagosome/macropinosome upon its internalisation, suggesting that PtdIns(3,4,5)P3 is degraded to PtdIns(3,4)P2. PTEN null mutants, which are defective in phagocytosis, showed normal rates of PtdIns(3,4,5)P3 degradation, but unexpectedly an accelerated PtdIns(3,4)P2 degradation. During chemotaxis to cAMP only PtdIns(3,4,5)P3 was formed in the plasma membrane, and no PtdIns(3,4)P2 was detectable, showing that all PtdIns(3,4,5)P3 was degraded by PTEN to PtdIns(4,5)P2. Furthermore, we showed that different PtdIns(3,4,5)P3 binding PH domains gave distinct spatial and temporal readouts of the same underlying PtdIns(3,4,5)P3 signal, enabling distinct biological responses to one signal.


Subject(s)
Chemotaxis , Dictyostelium/physiology , Phagocytosis , Phosphatidylinositol Phosphates/metabolism , Animals , Cell Membrane/metabolism , Cyclic AMP/metabolism , Gene Deletion , Green Fluorescent Proteins/metabolism , Lipid Metabolism , PTEN Phosphohydrolase , Phosphoric Monoester Hydrolases/chemistry , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Pinocytosis , Protein Binding , Protein Structure, Tertiary , Recombinant Fusion Proteins/metabolism , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
2.
Curr Biol ; 12(14): 1178-88, 2002 Jul 23.
Article in English | MEDLINE | ID: mdl-12176327

ABSTRACT

BACKGROUND: Starving amoebae of Dictyostelium discoideum communicate by relaying extracellular cAMP signals, which direct chemotactic movement, resulting in the aggregation of thousands of cells into multicellular aggregates. Both cAMP relay and chemotaxis require the activation of PI3 kinase signaling. The spatiotemporal dynamics of PI3 kinase signaling can be followed in individual cells via the cAMP-induced membrane recruitment of a GFP-tagged PH domain-containing protein, CRAC, which is required for the activation of adenylylcyclase. RESULTS: We show that polarized periodic CRAC-GFP translocation occurs during the aggregation and mound stages of development in response to periodic cAMP signals. The duration of CRAC translocation to the membrane is determined by the duration of the rising phase of the cAMP signal. The system shows rapid adaptation and responds to the rate of change of the extracellular cAMP concentration. When the cells are in close contact, it takes 10 s for the signal to propagate from one cell to the next. In slugs, all cells show a permanent polarized PI3 kinase signaling in their leading edge, which is dependent on cell-cell contact. CONCLUSIONS: Measuring the redistribution of GFP-tagged CRAC has enabled us to study the dynamics of PI3 kinase-mediated cell-cell communication at the individual cell level in the multicellular stages of Dictyostelium development. This approach should also be useful to study the interactions between cell-cell signaling, cell polarization, and movement in the development of other organisms.


Subject(s)
Cell Communication/physiology , Dictyostelium/cytology , Phosphatidylinositol 3-Kinases/physiology , Signal Transduction/physiology , Animals , Cell Membrane/metabolism , Dictyostelium/enzymology , Green Fluorescent Proteins , Luminescent Proteins/metabolism , Protozoan Proteins/metabolism , Recombinant Fusion Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL