Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
Protein Sci ; 30(5): 966-981, 2021 05.
Article in English | MEDLINE | ID: mdl-33686648

ABSTRACT

Stabilization of Torpedo californica acetylcholinesterase by the divalent cations Ca+2 , Mg+2 , and Mn+2 was investigated. All three substantially protect the enzyme from thermal inactivation. Electron paramagnetic resonance revealed one high-affinity binding site for Mn+2 and several much weaker sites. Differential scanning calorimetry showed a single irreversible thermal transition. All three cations raise both the temperature of the transition and the activation energy, with the transition becoming more cooperative. The crystal structures of the Ca+2 and Mg+2 complexes with Torpedo acetylcholinesterase were solved. A principal binding site was identified. In both cases, it consists of four aspartates (a 4D motif), within which the divalent ion is embedded, together with several water molecules. It makes direct contact with two of the aspartates, and indirect contact, via waters, with the other two. The 4D motif has been identified in 31 acetylcholinesterase sequences and 28 butyrylcholinesterase sequences. Zebrafish acetylcholinesterase also contains the 4D motif; it, too, is stabilized by divalent metal ions. The ASSAM server retrieved 200 other proteins that display the 4D motif, in many of which it is occupied by a divalent cation. It is a very versatile motif, since, even though tightly conserved in terms of RMSD values, it can contain from one to as many as three divalent metal ions, together with a variable number of waters. This novel motif, which binds primarily divalent metal ions, is shared by a broad repertoire of proteins. An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:Protein_Science:3.


Subject(s)
Acetylcholinesterase/chemistry , Fish Proteins/chemistry , Torpedo , Animals , Binding Sites , Cations, Divalent/chemistry , Crystallography, X-Ray , Enzyme Stability , Metals/chemistry
2.
Langmuir ; 36(35): 10429-10437, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32787070

ABSTRACT

In this report, we present a method to characterize the kinetics of electron transfer across the bilayer of a unilamellar liposome composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine. The method utilizes synthetic phospholipids containing noninvasive nitroxide spin labels having the >N-O• moiety at well-defined distances from the outer surface of the liposome to serve as reporters for their local environment and, at the same time, permit measurement of the kinetics of electron transfer. We used 5-doxyl and 16-doxyl stearic acids. The paramagnetic >N-O• moiety is photo-oxidized to the corresponding diamagnetic oxoammonium cation by a ruthenium electron acceptor formed in the solution. Electron transfer is monitored by three independent spectroscopic methods: by both steady-state and time-resolved electron paramagnetic resonance and by optical spectroscopy. These techniques allowed us to differentiate between the electron transfer rates of nitroxides located in the outer leaflet of the phospholipid bilayer and of those located in the inner leaflet. Measurement of electron transfer rates as a function of temperature revealed a low-activation barrier (ΔG‡ ∼ 40 kJ/mol) that supports a tunneling mechanism.

3.
Chemosphere ; 258: 127266, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32535443

ABSTRACT

Copper oxide nanoparticles (CuO-NPs) have been suggested as effective catalysts to degrade many persistent organic contaminants. In parallel, CuO-NPs are considered toxic to soil microorganisms, plants and human cells, possibly because they induce oxidative stress and generation of reactive oxygen species (ROS). However, the mechanism of the catalytic process and the generated ROS are poorly understood. Here we discuss the reaction mechanism of CuO-NPs during the catalytic degradation of enrofloxacin - an antibiotic pharmaceutical used in this study as a representative persistent organic compound. The degradation of an aqueous solution of the enrofloxacin exposed to CuO-NPs and hydrogen peroxide was studied showing fast removal of the enrofloxacin at ambient conditionsns. ROS production was identified by electron spin resonance and a spin trapping technique. The distribution of the free radical species indicated production of a high percentage of superoxide (O2-.) radicals as well as hydroxyl radicals; this production is similar to the "radical production" activity of the superoxide dismutase (SOD) enzyme in the presence of hydrogen peroxide. This activity was also tested in the opposite direction, to examine if CuO-NPs show reactivity that potentially mimics the classical SOD enzymatic activity. The CuO-NPs were found to catalyze the dismutation of superoxide to hydrogen peroxide and oxygen in a set of laboratory experiments.


Subject(s)
Copper/chemistry , Enrofloxacin/analysis , Nanoparticles/chemistry , Reactive Oxygen Species/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Catalysis , Enrofloxacin/chemistry , Humans , Hydrogen Peroxide/chemistry , Models, Theoretical , Oxidation-Reduction , Superoxide Dismutase/chemistry , Water Pollutants, Chemical/chemistry
4.
Curr Med Chem ; 25(40): 5528-5539, 2018.
Article in English | MEDLINE | ID: mdl-29303072

ABSTRACT

In this review, we first survey the mechanisms underlying the chemical modification of amino acid residues in proteins by singlet oxygen elicited by photosensitizers. Singlet oxygen has the capacity to cause widespread chemical damage to cellular proteins. Its use in photodynamic therapy of tumors thus requires the development of methodologies for specific addressing of the photosensitizer to malignant cells while sparing normal tissue. We describe three targeting paradigms for achieving this objective. The first involves the use of a photosensitizer with a high affinity for its target protein; in this case, the photosensitizer is methylene blue for acetylcholinesterase. The second paradigm involves the use of the hydrophobic photosensitizer hypericin, which has the capacity to interact selectively with partially unfolded forms of proteins, including nascent species in rapidly dividing or virus-infected and cancer cells, acting preferentially at membrane interfaces. In this case, partially unfolded molten globule species of acetylcholinesterase serve as the model system. In the third paradigm, the photodynamic approach takes advantage of a general approach in 'state-of-the-art' chemotherapy, by coupling the photosensitizer emodin to a specific peptide hormone, GnRH, which recognizes malignant cells via specific GnRH receptors on their surface.


Subject(s)
Acetylcholinesterase/metabolism , Methylene Blue/pharmacology , Neoplasms/drug therapy , Neoplasms/metabolism , Photosensitizing Agents/pharmacology , Reactive Oxygen Species/metabolism , Humans , Methylene Blue/chemistry , Neoplasms/pathology , Photochemotherapy , Photosensitizing Agents/chemistry
5.
Antioxid Redox Signal ; 28(15): 1394-1403, 2018 05 20.
Article in English | MEDLINE | ID: mdl-29161882

ABSTRACT

SIGNIFICANCE: Chemotherapy is currently the principal method for treating many malignancies. Thus, the development of improved antitumor drugs with enhanced efficacy and selectivity remains a high priority. Recent Advances: Anthracycline antibiotics (AAs), for example, doxorubicin, daunomycin, and mitomycin C, belong to an important family of antitumor agents widely used in chemotherapy. These compounds are all quinones. They are, thus, capable of being reduced by appropriate chemicals or reductases. One of their important properties is that under aerobic conditions their reduced forms undergo oxidation, with concomitant generation of reactive oxygen species (ROS), namely, superoxide anion radicals, hydrogen peroxide, and hydroxyl radicals. The presence of metal ions is essential for the generation of ROS by AAs in biological systems. CRITICAL ISSUES: A fundamental shortcoming of the AAs is their high cardiotoxicity. We have proposed, and experimentally realized, a new type of quinones that is capable of coordinating metal ions. We have demonstrated in vitro that they can be reduced by electron transfer chains and glutathione with concomitant generation of ROS. They can also produce ROS under photo-excitation. The mechanisms of these reactions have been characterized by using nuclear magnetic resonance and electron paramagnetic resonance. FUTURE DIRECTIONS: To enhance their therapeutic effectiveness, and decrease cardiotoxicity and other side effects, we intend to conjugate the quinone chelators with monoclonal antibodies and peptide hormones that are specifically targeted to receptors on the cancer cell surface. Some such candidates have already been synthesized. An alternative approach for delivery of our compounds involves the use of specific peptide-based nanoparticles. In addition, our novel approach for treating malignancies is also suitable for photodynamic therapy. Antioxid. Redox Signal. 28, 1394-1403.


Subject(s)
Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/pharmacology , Benzoquinones/chemistry , Benzoquinones/pharmacology , Neoplasms/drug therapy , Oxidation-Reduction/drug effects , Electron Spin Resonance Spectroscopy/methods , Humans , Reactive Oxygen Species/metabolism
6.
J Phys Chem B ; 121(17): 4333-4340, 2017 05 04.
Article in English | MEDLINE | ID: mdl-28379004

ABSTRACT

Xanthorhodopsin (xR) is a member of the retinal protein family and acts as a proton pump in the cell membranes of the extremely halophilic eubacterium Salinibacter ruber. In addition to the retinal chromophore, xR contains a carotenoid, which acts as a light-harvesting antenna as it transfers 40% of the quanta it absorbs to the retinal. Our previous studies have shown that the CD and absorption spectra of xR are dramatically affected due to the protonation of two different residues. It is still unclear whether xR can bind cations. Electron paramagnetic resonance (EPR) spectroscopy used in the present study revealed that xR can bind divalent cations, such as Mn2+ and Ca2+, to deionized xR (DI-xR). We also demonstrate that xR can bind 1 equiv of Mn2+ to a high-affinity binding site followed by binding of ∼40 equiv in cooperative manner and ∼100 equiv of Mn2+ that are weakly bound. SQUID magnetic studies suggest that the high cooperative binding of Mn2+ cations to xR is due to the formation of Mn2+ clusters. Our data demonstrate that Ca2+ cations bind to DI-xR with a lower affinity than Mn2+, supporting the assumption that binding of Mn2+ occurs through cluster formation, because Ca2+ cations cannot form clusters in contrast to Mn2+.


Subject(s)
Bacteroidetes/chemistry , Calcium/chemistry , Manganese/chemistry , Rhodopsins, Microbial/chemistry , Binding Sites , Cations/chemistry , Electron Spin Resonance Spectroscopy , Magnetic Phenomena
7.
Protein Sci ; 25(6): 1096-114, 2016 06.
Article in English | MEDLINE | ID: mdl-26990888

ABSTRACT

Structure-based drug design utilizes apoprotein or complex structures retrieved from the PDB. >57% of crystallographic PDB entries were obtained with polyethylene glycols (PEGs) as precipitant and/or as cryoprotectant, but <6% of these report presence of individual ethyleneglycol oligomers. We report a case in which ethyleneglycol oligomers' presence in a crystal structure markedly affected the bound ligand's position. Specifically, we compared the positions of methylene blue and decamethonium in acetylcholinesterase complexes obtained using isomorphous crystals precipitated with PEG200 or ammonium sulfate. The ligands' positions within the active-site gorge in complexes obtained using PEG200 are influenced by presence of ethyleneglycol oligomers in both cases bound to W84 at the gorge's bottom, preventing interaction of the ligand's proximal quaternary group with its indole. Consequently, both ligands are ∼3.0Å further up the gorge than in complexes obtained using crystals precipitated with ammonium sulfate, in which the quaternary groups make direct π-cation interactions with the indole. These findings have implications for structure-based drug design, since data for ligand-protein complexes with polyethylene glycol as precipitant may not reflect the ligand's position in its absence, and could result in selecting incorrect drug discovery leads. Docking methylene blue into the structure obtained with PEG200, but omitting the ethyleneglycols, yields results agreeing poorly with the crystal structure; excellent agreement is obtained if they are included. Many proteins display features in which precipitants might lodge. It will be important to investigate presence of precipitants in published crystal structures, and whether it has resulted in misinterpreting electron density maps, adversely affecting drug design.


Subject(s)
Acetylcholinesterase/chemistry , Drug Design , Fish Proteins/chemistry , Methylene Blue/chemistry , Molecular Docking Simulation , Torpedo , Animals
8.
Biochemistry ; 54(20): 3164-72, 2015 May 26.
Article in English | MEDLINE | ID: mdl-25910021

ABSTRACT

A member of the retinal protein family, halorhodopsin, acts as an inward light-driven Cl(-) pump. It was recently demonstrated that the Natronomonas pharaonis halorhodopsin-overproducing mutant strain KM-1 contains, in addition to the retinal chromophore, a lipid soluble chromophore, bacterioruberin, which binds to crevices between adjacent protein subunits. It is established that halorhodopsin has several chloride binding sites, with binding site I, located in the retinal protonated Schiff base vicinity, affecting retinal absorption. However, it remained unclear whether cations also bind to this protein. Our electron paramagnetic resonance spectroscopy examination of cation binding to the halorhodopsin mutant KM-1 reveals that divalent cations like Mn(2+) and Ca(2+) bind to the protein. Halorhodopsin has a high affinity for Mn(2+) ions, which bind initially to several strong binding sites and then to binding sites that exhibit positive cooperativity. The binding behavior is pH-dependent, and its strength is influenced by the nature of counterions. Furthermore, the binding strength of Mn(2+) ions decreases upon removal of the retinal chromophore from the protein or following bacterioruberin oxidation. Our results also indicate that Mn(2+) ions, as well as Cl(-) ions, first occupy binding sites other than site I. The observed synergetic effect between cation and anion binding suggests that while Cl(-) anions bind to halorhodopsin at low concentrations, the occupancy of site I requires a high concentration.


Subject(s)
Halorhodopsins/chemistry , Manganese/chemistry , Binding, Competitive , Cations , Chlorides/chemistry , Hydrogen-Ion Concentration , Models, Molecular , Natronobacterium/chemistry , Protein Binding
9.
J Am Chem Soc ; 137(14): 4634-7, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25827819

ABSTRACT

A unique mode of molecular oxygen activation, involving metal-ligand cooperation, is described. Ir pincer complexes [((t)BuPNP)Ir(R)] (R = C6H5 (1), CH2COCH3 (2)) react with O2 to form the dearomatized hydroxo complexes [((t)BuPNP*)Ir(R)(OH)] ((t)BuPNP* = deprotonated (t)BuPNP ligand), in a process which utilizes both O-atoms. Experimental evidence, including NMR, EPR, and mass analyses, indicates a binuclear mechanism involving an O-atom transfer by a peroxo intermediate.

10.
Plant Physiol ; 165(1): 249-61, 2014 May.
Article in English | MEDLINE | ID: mdl-24599491

ABSTRACT

The production of singlet oxygen is typically associated with inefficient dissipation of photosynthetic energy or can arise from light reactions as a result of accumulation of chlorophyll precursors as observed in fluorescent (flu)-like mutants. Such photodynamic production of singlet oxygen is thought to be involved in stress signaling and programmed cell death. Here we show that transcriptomes of multiple stresses, whether from light or dark treatments, were correlated with the transcriptome of the flu mutant. A core gene set of 118 genes, common to singlet oxygen, biotic and abiotic stresses was defined and confirmed to be activated photodynamically by the photosensitizer Rose Bengal. In addition, induction of the core gene set by abiotic and biotic selected stresses was shown to occur in the dark and in nonphotosynthetic tissue. Furthermore, when subjected to various biotic and abiotic stresses in the dark, the singlet oxygen-specific probe Singlet Oxygen Sensor Green detected rapid production of singlet oxygen in the Arabidopsis (Arabidopsis thaliana) root. Subcellular localization of Singlet Oxygen Sensor Green fluorescence showed its accumulation in mitochondria, peroxisomes, and the nucleus, suggesting several compartments as the possible origins or targets for singlet oxygen. Collectively, the results show that singlet oxygen can be produced by multiple stress pathways and can emanate from compartments other than the chloroplast in a light-independent manner. The results imply that the role of singlet oxygen in plant stress regulation and response is more ubiquitous than previously thought.


Subject(s)
Arabidopsis/physiology , Arabidopsis/radiation effects , Chloroplasts/metabolism , Chloroplasts/radiation effects , Light , Singlet Oxygen/metabolism , Stress, Physiological/radiation effects , Arabidopsis/drug effects , Arabidopsis/genetics , Chloroplasts/drug effects , Darkness , Electron Spin Resonance Spectroscopy , Flagellin/pharmacology , Fluorescence , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/radiation effects , Genes, Plant , Molecular Sequence Data , Mutation/genetics , Photosynthesis/drug effects , Photosynthesis/genetics , Photosynthesis/radiation effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rotenone/pharmacology , Stress, Physiological/drug effects , Stress, Physiological/genetics , Transcriptome/genetics
11.
Inorg Chem ; 53(3): 1779-87, 2014 Feb 03.
Article in English | MEDLINE | ID: mdl-24437566

ABSTRACT

High-valent oxo compounds of transition metals are often implicated as active species in oxygenation of hydrocarbons through carbon-hydrogen bond activation or oxygen transfer and also in water oxidation. Recently, several examples of cobalt-catalyzed water oxidation have been reported, and cobalt(IV) species have been suggested as active intermediates. A reactive species, formally a dicobalt(IV)-µ-oxo polyoxometalate compound [(α2-P2W17O61Co)2O](14-), [(POMCo)2O], has now been isolated and characterized by the oxidation of a monomeric [α2-P2W17O61Co(II)(H2O)](8-), [POMCo(II)H2O], with ozone in water. The crystal structure shows a nearly linear Co-O-Co moiety with a Co-O bond length of ∼1.77 Å. In aqueous solution [(POMCo)2O] was identified by (31)P NMR, Raman, and UV-vis spectroscopy. Reactivity studies showed that [(POMCo)2O]2O] is an active compound for the oxidation of H2O to O2, direct oxygen transfer to water-soluble sulfoxides and phosphines, indirect epoxidation of alkenes via a Mn porphyrin, and the selective oxidation of alcohols by carbon-hydrogen bond activation. The latter appears to occur via a hydrogen atom transfer mechanism. Density functional and CASSCF calculations strongly indicate that the electronic structure of [(POMCo)2O]2O] is best defined as a compound having two cobalt(III) atoms with two oxidized oxygen atoms.


Subject(s)
Cobalt/chemistry , Oxygen/chemistry , Tungsten Compounds/chemistry , Water/chemistry , Crystallography, X-Ray , Hydrogen Bonding , Models, Molecular , Oxidation-Reduction , Ozone/chemistry , Spectrum Analysis
13.
Structure ; 21(7): 1158-67, 2013 Jul 02.
Article in English | MEDLINE | ID: mdl-23769668

ABSTRACT

Agrobacterium is known for gene transfer to plants. In addition to a linear ssDNA oligonucleotide, Agrobacterium tumefaciens secretes an abundant ssDNA-binding effector, VirE2. In many ways VirE2 adapts the conjugation mechanism to transform the eukaryotic host. The crystal structure of VirE2 shows two compact domains joined by a flexible linker. Bound to ssDNA, VirE2 forms an ordered solenoidal shell, or capsid known as the T-complex. Here, we present a three-dimensional reconstruction of the VirE2-ssDNA complex using cryo-electron microscopy and iterative helical real-space reconstruction. High-resolution refinement was not possible due to inherent heterogeneity in the protein structure. By a combination of computational modeling, chemical modifications, mass spectroscopy, and electron paramagnetic resonance, we found that the N-terminal domain is tightly constrained by both tangential and longitudinal links, while the C terminus is weakly constrained. The quaternary structure is thus rigidly assembled while remaining locally flexible. This flexibility may be important in accommodating substrates without sequence specificity.


Subject(s)
Agrobacterium tumefaciens/ultrastructure , Bacterial Proteins/chemistry , DNA-Binding Proteins/chemistry , Ion Channels/chemistry , Bacterial Proteins/ultrastructure , Cryoelectron Microscopy , DNA, Bacterial/chemistry , DNA, Single-Stranded/chemistry , DNA-Binding Proteins/ultrastructure , Electron Spin Resonance Spectroscopy , Ion Channels/ultrastructure , Kinetics , Models, Molecular , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Structure, Quaternary
14.
Chem Commun (Camb) ; 49(27): 2771-3, 2013 Apr 07.
Article in English | MEDLINE | ID: mdl-23443914

ABSTRACT

A (PNP)Co(I)methyl diamagnetic complex formally loses an H atom from the pincer ligand, exhibiting a long-range metal-ligand cooperation in what may be considered as an unusual example of 'C-H cleavage'. Spectroscopic data indicate that the product is a neutral Co(I) complex with a radical delocalized in the ligand backbone.

15.
Chem Biol Interact ; 203(1): 63-6, 2013 Mar 25.
Article in English | MEDLINE | ID: mdl-23159732

ABSTRACT

The photosensitizer, methylene blue (MB), generates singlet oxygen ((1)O2) that irreversibly inhibits Torpedo californica acetylcholinesterase (TcAChE). In the dark MB inhibits reversibly, binding being accompanied by a bathochromic shift that can be used to show its displacement by other reversible inhibitors binding to the catalytic 'anionic' subsite (CAS), the peripheral 'anionic' subsite (PAS), or bridging them. Data concerning both reversible and irreversible inhibition are here reviewed. MB protects TcAChE from thermal denaturation, and differential scanning calorimetry reveals a ~8 °C increase in the denaturation temperature. The crystal structure of the MB/TcAChE complex reveals a single MB stacked against W279 in the PAS, pointing down the gorge towards the CAS. The intrinsic fluorescence of the irreversibly inhibited enzyme displays new emission bands that can be ascribed to N'-formylkynurenine (NFK); this was indeed confirmed using anti-NFK antibodies. Mass spectroscopy revealed that two Trp residues, Trp84 in the CAS, and Trp279 in the PAS, were the only Trp residues, out of a total of 14, significantly modified by photo-oxidation, both being converted to NFK. In the presence of competitive inhibitors that displace MB from the gorge, their modification is completely prevented. Thus, photo-oxidative damage caused by MB involves targeted release of (1)O2 by the bound photosensitizer within the aqueous milieu of the active-site gorge.


Subject(s)
Acetylcholinesterase/metabolism , Methylene Blue/metabolism , Photochemotherapy , Photosensitizing Agents/metabolism , Acetylcholinesterase/chemistry , Acetylcholinesterase/genetics , Amino Acid Sequence , Animals , Biophysical Phenomena , Catalytic Domain , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/metabolism , Cholinesterase Inhibitors/pharmacology , Kinetics , Methylene Blue/chemistry , Methylene Blue/pharmacology , Models, Biological , Models, Molecular , Molecular Sequence Data , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Protein Conformation , Torpedo
16.
Biochem J ; 448(1): 83-91, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-22888904

ABSTRACT

The principal role of AChE (acetylcholinesterase) is termination of impulse transmission at cholinergic synapses by rapid hydrolysis of the neurotransmitter acetylcholine. The active site of AChE is near the bottom of a long and narrow gorge lined with aromatic residues. It contains a CAS (catalytic 'anionic' subsite) and a second PAS (peripheral 'anionic' site), the gorge mouth, both of which bind acetylcholine via π-cation interactions, primarily with two conserved tryptophan residues. It was shown previously that generation of (1)O(2) by illumination of MB (Methylene Blue) causes irreversible inactivation of TcAChE (Torpedo californica AChE), and suggested that photo-oxidation of tryptophan residues might be responsible. In the present study, structural modification of the TcAChE tryptophan residues induced by MB-sensitized oxidation was investigated using anti-N-formylkynurenine antibodies and MS. From these analyses, we determined that N-formylkynurenine derivatives were specifically produced from Trp(84) and Trp(279), present at the CAS and PAS respectively. Peptides containing these two oxidized tryptophan residues were not detected when the competitive inhibitors, edrophonium and propidium (which should displace MB from the gorge) were present during illumination, in agreement with their efficient protection against the MB-induced photo-inactivation. Thus the bound MB elicited selective action of (1)O(2) on the tryptophan residues facing on to the water-filled active-site gorge. The findings of the present study thus demonstrate the localized action and high specificity of MB-sensitized photo-oxidation of TcAChE, as well as the value of this enzyme as a model system for studying the mechanism of action and specificity of photosensitizing agents.


Subject(s)
Acetylcholinesterase/chemistry , Cholinesterase Inhibitors/pharmacology , Methylene Blue/metabolism , Photosensitizing Agents/metabolism , Singlet Oxygen/pharmacology , Torpedo/metabolism , Acetylcholinesterase/drug effects , Animals , Binding, Competitive , Catalytic Domain , Cholinesterase Inhibitors/chemistry , Edrophonium/metabolism , Edrophonium/pharmacology , Electric Organ/enzymology , Hydrolysis , Kynurenine/analogs & derivatives , Kynurenine/chemistry , Mass Spectrometry , Methylene Blue/chemistry , Methylene Blue/radiation effects , Models, Molecular , Oxidation-Reduction , Photochemistry , Photosensitizing Agents/chemistry , Photosensitizing Agents/radiation effects , Propidium/metabolism , Propidium/pharmacology , Protein Conformation , Structure-Activity Relationship , Substrate Specificity , Tryptophan/chemistry , Water
17.
Protein Sci ; 21(8): 1138-52, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22674800

ABSTRACT

The photosensitizer, methylene blue (MB), generates singlet oxygen that irreversibly inhibits Torpedo californica acetylcholinesterase (TcAChE). In the dark, it inhibits reversibly. Binding is accompanied by a bathochromic absorption shift, used to demonstrate displacement by other acetylcholinesterase inhibitors interacting with the catalytic "anionic" subsite (CAS), the peripheral "anionic" subsite (PAS), or bridging them. MB is a noncompetitive inhibitor of TcAChE, competing with reversible inhibitors directed at both "anionic" subsites, but a single site is involved in inhibition. MB also quenches TcAChE's intrinsic fluorescence. It binds to TcAChE covalently inhibited by a small organophosphate (OP), but not an OP containing a bulky pyrene. Differential scanning calorimetry shows an ~8° increase in the denaturation temperature of the MB/TcAChE complex relative to native TcAChE, and a less than twofold increase in cooperativity of the transition. The crystal structure reveals a single MB stacked against Trp279 in the PAS, oriented down the gorge toward the CAS; it is plausible that irreversible inhibition is associated with photooxidation of this residue and others within the active-site gorge. The kinetic and spectroscopic data showing that inhibitors binding at the CAS can impede binding of MB are reconciled by docking studies showing that the conformation adopted by Phe330, midway down the gorge, in the MB/TcAChE crystal structure, precludes simultaneous binding of a second MB at the CAS. Conversely, binding of ligands at the CAS dislodges MB from its preferred locus at the PAS. The data presented demonstrate that TcAChE is a valuable model for understanding the molecular basis of local photooxidative damage.


Subject(s)
Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Fish Proteins/metabolism , Methylene Blue/pharmacology , Photosensitizing Agents/pharmacology , Torpedo/metabolism , Acetylcholinesterase/chemistry , Animals , Binding Sites , Crystallography, X-Ray , Fish Proteins/chemistry , Models, Molecular
18.
Photochem Photobiol ; 87(2): 308-16, 2011.
Article in English | MEDLINE | ID: mdl-21155827

ABSTRACT

The photosensitizer, methylene blue (MB), is a strong reversible inhibitor of Torpedo californica acetylcholinesterase (AChE) in the dark. Under illumination it causes irreversible inactivation. Loss of fluorescence of the singlet oxygen ((1)O(2)) trap, 9,10-dimethylanthracene, was retarded in the presence of AChE, and the rate of photo-inactivation was increased in the presence of D(2)O, indicating that inactivation was due to (1)O(2) generated by the photosensitizer. CD revealed slightly reduced far-UV ellipticity, and slightly enhanced binding of an amphiphilic probe, indicating limited unfolding of the photo-oxidized AChE. However, both near-UV ellipticity and intrinsic fluorescence were markedly reduced, suggesting photo-oxidative damage to tryptophans, (Trp) supported by appearance of novel emission peaks ascribed to N'-formylkynurenine and/or kynurenine. Like other partially unfolded forms, the photo-oxidized AChE was sensitive to proteolysis. Photosensitized inactivation produced exclusively chemically cross-linked dimers, whereas irradiation of a partially unfolded state generated higher-order oligomers. The active-site gorge of AChE contains Trp in inhibitor-binding sites that might be targets for photo-oxidation. Indeed, reversible inhibitors retard photo-inactivation, and photo-inactivation destroys their binding sites. An excess of AChE protects paraoxonase from photo-inactivation by sequestering the photosensitizer. Affinity photo-oxidation of AChE by MB thus provides a valuable model for studying site-specific photo-inactivation of enzymes in both fundamental and clinical contexts.


Subject(s)
Acetylcholinesterase/chemistry , Models, Biological , Acetylcholinesterase/metabolism , Animals , Catalytic Domain , Enzyme Inhibitors/chemistry , Methylene Blue/chemistry , Oxidation-Reduction , Singlet Oxygen , Torpedo/metabolism
19.
J Am Chem Soc ; 133(2): 188-90, 2011 Jan 19.
Article in English | MEDLINE | ID: mdl-21158388

ABSTRACT

A phenanthroline ligand decorated at the 5,6-position with a 15-crown-5 ether was used to prepare a metalorganic-polyoxometalate hybrid complex Re(I)(L)(CO)(3)CH(3)CN-MHPW(12)O(40) (L = 15-crown-5-phenanthroline, M = Na(+), H(3)O(+)). X-ray diffraction, (1)H and (13)C NMR, ESI-MS, IR, and elemental analysis were used to characterize this complex. In the presence of Pt/C, the polyoxometalate moiety in Re(I)(L)(CO)(3)CH(3)CN-MHPW(12)O(40) can oxidize H(2) to two protons and two electrons which in the presence of visible light can catalyze the photoreduction of CO(2) to CO with H(2) as the reducing agent instead of the universally used amines as sacrificial reducing agents. An EPR spectrum of a stable intermediate species under reaction conditions shows characteristics of a PW(V)W(VI)(11)O(40) and a Re(0) species with a tentative assignment of the intermediate as Re(0)(L)(CO)(3)(S)-MH(3)PW(V)W(VI)(11)O(40).


Subject(s)
Carbon Dioxide/chemistry , Carbon Monoxide/chemical synthesis , Hydrogen/chemistry , Organometallic Compounds/chemistry , Rhenium/chemistry , Carbon Monoxide/chemistry , Models, Molecular , Molecular Structure , Organometallic Compounds/chemical synthesis , Phenanthrolines/chemistry , Photochemical Processes , Tungsten Compounds/chemistry
20.
Biochim Biophys Acta ; 1797(3): 406-13, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20035711

ABSTRACT

Using a 'metal-first' approach, we computationally designed, prepared, and characterized a four-iron four-sulfur (Fe(4)S(4)) cluster protein with a non-natural alpha-helical coiled-coil fold. The novelty of this fold lies in the placement of a Fe(4)S(4) cluster within the hydrophobic core of a four-helix bundle, making it unique among previous iron-sulfur (FeS) protein designs, and different from known natural FeS proteins. The apoprotein, recombinantly expressed and purified from E. coli, readily self-assembles with Fe(4)S(4) clusters in vitro. UV-Vis absorption and CD spectroscopy, elemental analysis, gel filtration, and analytical ultracentrifugation confirm that the protein is folded and assembled as designed, namely, alpha-helical coiled-coil binding a single Fe(4)S(4) cluster. Dithionite-reduced holoprotein samples have characteristic rhombic EPR spectra, typical of low-potential, [Fe(4)S(4)](+) (S=1/2), with g values of g(zy)=(1.970, 1.975), and g(x)=2.053. The temperature, and power dependence of the signal intensity were also characteristic of [Fe(4)S(4)](+) clusters with very efficient spin relaxation, but almost without any interaction between adjacent clusters. The new design is very promising although optimization is required, particularly for preventing aggregation, and adding second shell interactions to stabilize the reduced state. Its main advantage is its extendibility into a multi-FeS cluster protein by simply duplicating and translating the binding site along the coiled-coil axis. This opens new possibilities for designing protein-embedded redox chains that may be used as "wires" for coupling any given set of redox enzymes.


Subject(s)
Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/metabolism , Iron/metabolism , Protein Folding , Sulfur/metabolism , Amino Acid Sequence , Binding Sites , Chromatography, Gel , Circular Dichroism , Computational Biology , Electron Spin Resonance Spectroscopy , Humans , Iron/chemistry , Iron-Sulfur Proteins/genetics , Molecular Sequence Data , Mutagenesis, Site-Directed , Oxidation-Reduction , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spectrophotometry, Ultraviolet , Sulfur/chemistry , Ultracentrifugation
SELECTION OF CITATIONS
SEARCH DETAIL
...