Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Sci Rep ; 14(1): 8256, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38589552

ABSTRACT

Yellowfin tuna, Thunnus albacares, represents an important component of commercial and recreational fisheries in the Gulf of Mexico (GoM). We investigated the influence of environmental conditions on the spatiotemporal distribution of yellowfin tuna using fisheries' catch data spanning 2012-2019 within Mexican waters. We implemented hierarchical Bayesian regression models with spatial and temporal random effects and fixed effects of several environmental covariates to predict habitat suitability (HS) for the species. The best model included spatial and interannual anomalies of the absolute dynamic topography of the ocean surface (ADTSA and ADTIA, respectively), bottom depth, and a seasonal cyclical random effect. High catches occurred mainly towards anticyclonic features at bottom depths > 1000 m. The spatial extent of HS was higher in years with positive ADTIA, which implies more anticyclonic activity. The highest values of HS (> 0.7) generally occurred at positive ADTSA in oceanic waters of the central and northern GoM. However, high HS values (> 0.6) were observed in the southern GoM, in waters with cyclonic activity during summer. Our results highlight the importance of mesoscale features for the spatiotemporal distribution of yellowfin tunas and could help to develop dynamic fisheries management strategies in Mexico and the U.S. for this valuable resource.


Subject(s)
Ecosystem , Tuna , Animals , Gulf of Mexico , Bayes Theorem , Oceans and Seas
2.
PLoS One ; 19(3): e0298394, 2024.
Article in English | MEDLINE | ID: mdl-38451937

ABSTRACT

Atlantic tarpon (Megalops atlanticus) are capable of long-distance migrations (hundreds of kilometers) but also exhibit resident behaviors in estuarine and coastal habitats. The aim of this study was to characterize the spatial distribution of juvenile tarpon and identify migration pathways of adult tarpon in the northern Gulf of Mexico. Spatial distribution of juvenile tarpon was investigated using gillnet data collected by Texas Parks and Wildlife Department (TPWD) over the past four decades. Generalized additive models (GAMs) indicated that salinity and water temperature played a significant role in tarpon presence, with tarpon occurrences peaking in the fall and increasing over the past four decades in this region. Adult tarpon caught off Texas (n = 40) and Louisiana (n = 4) were tagged with acoustic transmitters to characterize spatial and temporal trends in their movements and migrations. Of the 44 acoustic transmitters deployed, 18 of the individuals were detected (n = 16 west of the Mississippi River Delta and n = 2 east of the Mississippi River Delta). Tarpon tagged west of the Mississippi River Delta off Texas migrated south in the fall and winter into areas of south Texas and potentially into Mexico, while individuals tagged east of the delta migrated into Florida during the same time period, suggesting the presence of two unique migratory contingents or subpopulations in this region. An improved understanding of the habitat requirements and migratory patterns of tarpon inhabiting the Gulf of Mexico is critically needed by resource managers to assess the vulnerability of each contingent to fishing pressure, and this information will guide multi-state and multi-national conservation efforts to rebuild and sustain tarpon populations.


Subject(s)
Ecosystem , Fishes , Humans , Animals , Gulf of Mexico , Animals, Wild , Movement
3.
PLoS One ; 15(7): e0234868, 2020.
Article in English | MEDLINE | ID: mdl-32667920

ABSTRACT

The tiger shark (Galeocerdo cuvier) is globally distributed with established coastal and open-ocean movement patterns in many portions of its range. While all life stages of tiger sharks are known to occur in the Gulf of Mexico (GoM), variability in habitat use and movement patterns over ontogeny have never been quantified in this large marine ecosystem. To address this data gap we fitted 56 tiger sharks with Smart Position and Temperature transmitting tags between 2010 and 2018 and examined seasonal and spatial distribution patterns across the GoM. Additionally, we analyzed overlap of core habitats (i.e., 50% kernel density estimates) among individuals relative to large benthic features (oil and gas platforms, natural banks, bathymetric breaks). Our analyses revealed significant ontogenetic and seasonal differences in distribution patterns as well as across-shelf (i.e., regional) and sex-linked variability in movement rates. Presumably sub-adult and adult sharks achieved significantly higher movement rates and used off-shelf deeper habitats at greater proportions than juvenile sharks, particularly during the fall and winter seasons. Further, female maximum rate of movement was higher than males when accounting for size. Additionally, we found evidence of core regions encompassing the National Oceanographic and Atmospheric Administration designated Habitat Areas of Particular Concern (i.e., shelf-edge banks) during cooler months, particularly by females, as well as 2,504 oil and gas platforms. These data provide a baseline for future assessments of environmental impacts, such as climate variability or oil spills, on tiger shark movements and distribution in the region. Future research may benefit from combining alternative tracking tools, such as acoustic telemetry and genetic approaches, which can facilitate long-term assessment of the species' movement dynamics and better elucidate the ecological significance of the core habitats identified here.


Subject(s)
Animal Migration/physiology , Demography/methods , Sharks/growth & development , Animals , Ecosystem , Female , Gulf of Mexico , Life Cycle Stages/physiology , Male , Sharks/metabolism , Sharks/physiology
4.
Conserv Physiol ; 8(1): coaa041, 2020.
Article in English | MEDLINE | ID: mdl-32440352

ABSTRACT

Understanding the stress responses of sharks to recreational catch and release fishing has important management and conservation implications. The blacktip shark Carcharhinus limbatus is a popular recreational species targeted throughout the western, central and eastern Gulf of Mexico (Gulf) yet it is unclear what levels of physiological stress result from catch-release fishing practices with hook and line gear and if the stress levels result in post-release mortality. This study correlates physiological response to stress through blood chemistry analysis and examines post-release behaviour of adult blacktip sharks caught to determine post-release mortality rates. Release behaviour was determined by pop-up satellite archival transmitting (PSAT) tags that record temperature, depth and light level data. To quantify physiological stress levels, blood samples were collected from 52 blacktip sharks and a suite of metabolic and osmotic markers were measured. Thirty-six of those blacktip sharks were also outfitted with a PSAT tag yielding time-at-large from 3 to 180 days. Of the 36 tags, 22 (61%) provided sufficient data to confirm post-release fate and 11 (31%) were recovered providing high-resolution data. Tag data suggests a post-release morality rate of 22.7% (95% confidence interval 7.8-45.4%), with mortality occurring within minutes (immediate mortality) to over 12 h post-release (delayed mortality). Compared to survivors, immediate mortalities exhibited significantly higher lactate (median 2.8 mmol/Lsurvivor vs 5.9 mmol/Limmediate mortality) and significantly lower hematocrit (median 24.4% survivor vs 14% immediate mortality) levels, but no difference was detected between survivors and delayed mortalities. Higher mortality in the western (30%) compared to the central (20%) Gulf may be due to shark handling. All PSATs from mortalities (N = 5) were recovered, and archived data revealed evidence of tag ingestion by predators. Results suggest reduced fight time, decreased handling time and limited air exposure provide blacktip sharks the best survival chances after release by recreational anglers.

5.
Commun Biol ; 2: 403, 2019.
Article in English | MEDLINE | ID: mdl-31701031

ABSTRACT

Climate change impacts physical and chemical properties of the oceans, and these changes affect the ecology of marine organisms. One important ecological consequence of climate change is the distribution shift of marine species toward higher latitudes. Here, the prevalence of nearly 150 species of fish and invertebrates were investigated to find changes in their distributions over 35 years along a subtropical coast within the Gulf of Mexico. Our results show that 90 species increased their occupancy probability, while 33 decreased (remaining species neither increase or decrease), and the ranges of many species expanded. Using rarefaction analysis, which allows for the estimation of species diversity, we show that species diversity has increased across the coast of Texas. Climate-mediated environmental variables are related to the changes in the occupancy probability, suggesting the expansion of tropical species into the region is increasing diversity.


Subject(s)
Biodiversity , Climate Change , Fishes , Invertebrates , Animals , Aquatic Organisms , Ecosystem , Gulf of Mexico , Models, Biological , Population Dynamics , Texas , Tropical Climate
6.
Sci Rep ; 9(1): 1663, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30733508

ABSTRACT

The timing and extent of international crossings by billfishes, tunas, and sharks in the Cuba-Mexico-United States (U.S.) triangle was investigated using electronic tagging data from eight species that resulted in >22,000 tracking days. Transnational movements of these highly mobile marine predators were pronounced with varying levels of bi- or tri-national population connectivity displayed by each species. Billfishes and tunas moved throughout the Gulf of Mexico and all species investigated (blue marlin, white marlin, Atlantic bluefin tuna, yellowfin tuna) frequently crossed international boundaries and entered the territorial waters of Cuba and/or Mexico. Certain sharks (tiger shark, scalloped hammerhead) displayed prolonged periods of residency in U.S. waters with more limited displacements, while whale sharks and to a lesser degree shortfin mako moved through multiple jurisdictions. The spatial extent of associated movements was generally associated with their differential use of coastal and open ocean pelagic ecosystems. Species with the majority of daily positions in oceanic waters off the continental shelf showed the greatest tendency for transnational movements and typically traveled farther from initial tagging locations. Several species converged on a common seasonal movement pattern between territorial waters of the U.S. (summer) and Mexico (winter).


Subject(s)
Animal Migration/physiology , Ecosystem , Perciformes/physiology , Population Dynamics , Sharks/physiology , Tuna/physiology , Animals , Cuba , Mexico , Oceans and Seas , United States
7.
PLoS One ; 13(10): e0203873, 2018.
Article in English | MEDLINE | ID: mdl-30278043

ABSTRACT

The feeding ecology of two reef fishes associated with artificial reefs in the northwest Gulf of Mexico (GoM) was examined using gut contents and natural stable isotopes. Reefs were divided into three regions (east, central, west) across an east to west gradient of increasing reef complexity and salinity. Gray triggerfish (Balistes capriscus) primarily consumed reef-associated prey (xanthid crabs, bivalves, barnacles) and pelagic gastropods, while red snapper (Lutjanus campechanus) diets were mainly comprised of non-reef prey (stomatopods, fishes, portunid crabs). Natural stable isotopes of carbon (δ13C), nitrogen (δ15N), and sulfur (δ34S) were measured in consumer muscle tissue as well as potential primary producers. Gray triggerfish occupied a lower trophic position than red snapper, with lower δ13C and δ15N values across all size classes and regions, and generally higher δ34S values. Red snapper had a smaller range of stable isotope values and corrected standard ellipse areas across all size classes and regions, indicating a smaller isotopic niche. Contribution estimates of particulate organic matter (26 to 54%) and benthic microalgae (BMA, 47 to 74%) for both species were similar, with BMA contributions greater across all three size classes (juveniles, sub-adults, adults) of red snapper and all but the juvenile size class for gray triggerfish. Species gut contents and stable isotopes differed by region, with fishes consuming more crabs in the east region and more gastropods in the central and west regions. δ13C and δ15N values generally decreased from east to west, while δ34S increased across this gradient. Results highlight species-specific feeding differences associated with artificial reefs, where gray triggerfish may be more dependent on the reef structure for foraging opportunities. In addition, results offer further information on the integral role of BMA in primary production at nearshore artificial reefs.


Subject(s)
Animal Feed/analysis , Carbon Isotopes/analysis , Fishes/physiology , Nitrogen Isotopes/analysis , Sulfur Isotopes/analysis , Animals , Ecosystem , Fishes/classification , Food Chain , Gulf of Mexico , Isotope Labeling , Predatory Behavior , Species Specificity
8.
PLoS One ; 8(10): e76080, 2013.
Article in English | MEDLINE | ID: mdl-24130759

ABSTRACT

Time-series data collected over a four-year period were used to characterize patterns of abundance for pelagic fishes in the northern Gulf of Mexico (GoM) before (2007-2009) and after (2010) the Deepwater Horizon oil spill. Four numerically dominant pelagic species (blackfin tuna, blue marlin, dolphinfish, and sailfish) were included in our assessment, and larval density of each species was lower in 2010 than any of the three years prior to the oil spill, although larval abundance in 2010 was often statistically similar to other years surveyed. To assess potential overlap between suitable habitat of pelagic fish larvae and surface oil, generalized additive models (GAMs) were developed to evaluate the influence of ocean conditions on the abundance of larvae from 2007-2009. Explanatory variables from GAMs were then linked to environmental data from 2010 to predict the probability of occurrence for each species. The spatial extent of surface oil overlapped with early life habitat of each species, possibly indicating that the availability of high quality habitat was affected by the DH oil spill. Shifts in the distribution of spawning adults is another factor known to influence the abundance of larvae, and the spatial occurrence of a model pelagic predator (blue marlin) was characterized over the same four-year period using electronic tags. The spatial extent of oil coincided with areas used by adult blue marlin from 2007-2009, and the occurrence of blue marlin in areas impacted by the DH oil spill was lower in 2010 relative to pre-spill years.


Subject(s)
Ecosystem , Fishes , Animals , Gulf of Mexico , Petroleum Pollution/adverse effects
9.
Environ Toxicol Chem ; 32(2): 434-41, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23180665

ABSTRACT

The presence of total mercury (Hg) in fish tissue and the potential associated health risks has become a global concern in marine ecosystems. Few studies have examined basin-scale variation in Hg accumulation in marine ecosystems, and determining if Hg concentrations in fish tissue vary across marine ecosystems is a key monitoring question. The present study evaluated Hg concentrations in red snapper (Lutjanus campechanus) tissue across three regions of the northern Gulf of Mexico (Alabama, Louisiana, and Texas, USA) and between two habitat types (oil and gas platforms and nonplatforms) within each region. Nitrogen (δ(15)N), carbon (δ(13)C), and sulfur (δ(34)S) stable isotopes were used to investigate ecological differences that may affect Hg concentrations among regions and between habitats. Mercury concentrations in red snapper tissue were positively correlated with fish total length. Regional differences in Hg concentrations were significant, with fish collected from Alabama having the highest concentrations and fish collected from Louisiana having the lowest. No significant difference existed in Hg concentrations between habitats, suggesting that association with platforms may not be a significant factor contributing to red snapper Hg concentrations. While δ(15)N did not differ significantly among the three regions, Texas red snapper were more enriched in δ(34)S and depleted in δ(13)C compared with Alabama and Louisiana red snapper. Although the majority of red snapper collected in the present study had Hg concentrations below safe consumption guidelines, regional differences suggest that spatially explicit monitoring programs may be important for basin-wide assessments.


Subject(s)
Mercury/metabolism , Perciformes/metabolism , Water Pollutants, Chemical/metabolism , Alabama , Animals , Ecosystem , Environmental Monitoring , Gulf of Mexico , Isotopes/metabolism , Louisiana , Mercury/analysis , Texas , Water Pollutants, Chemical/analysis , Water Pollution, Chemical/statistics & numerical data
10.
PLoS One ; 7(4): e34180, 2012.
Article in English | MEDLINE | ID: mdl-22509277

ABSTRACT

Ichthyoplankton surveys were conducted in surface waters of the northern Gulf of Mexico (NGoM) over a three-year period (2006-2008) to determine the relative value of this region as early life habitat of sailfish (Istiophorus platypterus), blue marlin (Makaira nigricans), white marlin (Kajikia albida), and swordfish (Xiphias gladius). Sailfish were the dominant billfish collected in summer surveys, and larvae were present at 37.5% of the stations sampled. Blue marlin and white marlin larvae were present at 25.0% and 4.6% of the stations sampled, respectively, while swordfish occurred at 17.2% of the stations. Areas of peak production were detected and maximum density estimates for sailfish (22.09 larvae 1000 m(-2)) were significantly higher than the three other species: blue marlin (9.62 larvae 1000 m(-2)), white marlin (5.44 larvae 1000 m(-2)), and swordfish (4.67 larvae 1000 m(-2)). The distribution and abundance of billfish and swordfish larvae varied spatially and temporally, and several environmental variables (sea surface temperature, salinity, sea surface height, distance to the Loop Current, current velocity, water depth, and Sargassum biomass) were deemed to be influential variables in generalized additive models (GAMs). Mesoscale features in the NGoM affected the distribution and abundance of billfish and swordfish larvae, with densities typically higher in frontal zones or areas proximal to the Loop Current. Habitat suitability of all four species was strongly linked to physicochemical attributes of the water masses they inhabited, and observed abundance was higher in slope waters with lower sea surface temperature and higher salinity. Our results highlight the value of the NGoM as early life habitat of billfishes and swordfish, and represent valuable baseline data for evaluating anthropogenic effects (i.e., Deepwater Horizon oil spill) on the Atlantic billfish and swordfish populations.


Subject(s)
Ecosystem , Perciformes , Animals , Gulf of Mexico , Larva/classification , Models, Theoretical , Perciformes/classification , Seawater , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL