Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Med ; 30(1): 61, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760717

ABSTRACT

BACKGROUND: Triple negative breast cancer (TNBC) is a heterogeneous and aggressive disease characterized by a high risk of mortality and poor prognosis. It has been reported that Laminin γ2 (LAMC2) is highly expressed in a variety of tumors, and its high expression is correlated with cancer development and progression. However, the function and mechanism by which LAMC2 influences TNBC remain unclear. METHODS: Kaplan-Meier survival analysis and Immunohistochemical (IHC) staining were used to examine the expression level of LAMC2 in TNBC. Subsequently, cell viability assay, wound healing and transwell assay were performed to detect the function of LAMC2 in cell proliferation and migration. A xenograft mouse model was used to assess tumorigenic function of LAMC2 in vivo. Luciferase reporter assay and western blot were performed to unravel the underlying mechanism. RESULTS: In this study, we found that higher expression of LAMC2 significantly correlated with poor survival in the TNBC cohort. Functional characterization showed that LAMC2 promoted cell proliferation and migration capacity of TNBC cell lines via up-regulating CD44. Moreover, LAMC2 exerted oncogenic roles in TNBC through modulating the expression of epithelial-mesenchymal transition (EMT) markers. Luciferase reporter assay verified that LAMC2 targeted ZEB1 to promote its transcription. Interestingly, LAMC2 regulated cell migration in TNBC via STAT3 signaling pathway. CONCLUSION: LAMC2 targeted ZEB1 via activating CD44/STAT3 signaling pathway to promote TNBC proliferation and migration, suggesting that LAMC2 could be a potential therapeutic target in TNBC patients.


Subject(s)
Cell Proliferation , Gene Expression Regulation, Neoplastic , Hyaluronan Receptors , Laminin , STAT3 Transcription Factor , Signal Transduction , Triple Negative Breast Neoplasms , Zinc Finger E-box-Binding Homeobox 1 , Humans , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Animals , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/mortality , Cell Line, Tumor , Female , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , Zinc Finger E-box-Binding Homeobox 1/metabolism , Zinc Finger E-box-Binding Homeobox 1/genetics , Laminin/metabolism , Laminin/genetics , Mice , Epithelial-Mesenchymal Transition/genetics , Cell Movement/genetics , Middle Aged , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics
2.
Gene ; 908: 148304, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38387708

ABSTRACT

Hereditary cancer syndromes result from the presence of inherited pathogenic variants within susceptibility genes. However, the susceptibility genes associated with hereditary cancer syndrome remain predominantly unidentified. Here, we reported a case of hereditary cancer syndrome observed in a Chinese family harboring a germline mutation in Tensin1 (TNS1). We described a 59-year-old female patient presented with Multiple myeloma and Thyroid carcinoma. The proband and her family members exhibited suspected tumor syndrome due to occurrences of other cancer cases. After oncogenetic counseling, whole-exome sequencing and Sanger sequencing were conducted and a primary driver mutation of TNS1 (NM_022648.7:c.2999-1G > C) was detected. Gene Expression Profiling Interactive Analysis revealed that TNS1 was expressed lower in different tumors when compared to normal, including Pancreatic adenocarcinoma, Breast invasive carcinoma, Thyroid carcinoma andColon adenocarcinoma cells. Despite the well-established role of TNS1 as a tumor suppressor in breast cancer and colorectal cancer, its potential utility as a marker gene for diagnosis and treatment of pancreatic cancer remains uncertain. Here, our data demonstrated that knockdown of TNS1 could promote cell proliferation and migration in Pancreatic adenocarcinoma (PDAC) cells. In addition, TNS1 regulated migration through EMT signaling pathway in PDAC cells. Our findings proposed that this variant was likely involved in cancer predisposition by disrupting the normal splicing process. In summary, we presented a genetic disease by linking an intronic mutation inTNS1. We aim to provide early detection of cancers by identifying germline variants in susceptibility genes.


Subject(s)
Adenocarcinoma , Neoplastic Syndromes, Hereditary , Pancreatic Neoplasms , Humans , Female , Middle Aged , Germ-Line Mutation , Pancreatic Neoplasms/genetics , Adenocarcinoma/genetics , Genetic Predisposition to Disease , Neoplastic Syndromes, Hereditary/genetics , Germ Cells , Tensins/genetics
3.
Adv Sci (Weinh) ; 11(15): e2306623, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38342622

ABSTRACT

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Functionally uncharacterized genes are an attractive repository to explore candidate oncogenes. It is demonstrated that C21orf58 displays an oncogenic role in promoting cell growth, tumorigenesis and sorafenib resistance of HCC cells by abnormal activation of STAT3 signaling. Mechanistically, a novel manner to regulate STAT3 signaling that adaptor C21orf58 forms a ternary complex is reveal with N-terminal domain of STAT3 and SH2 domain of JAK2, by which C21orf58 overactivates wild-type STAT3 by facilitating its phosphorylation mediated by JAK2, and hyper-activates of constitutively mutated STAT3 due to preferred binding with C21orf58 and JAK2. Moreover, it is validated that inhibition of C21orf58 with drug alminoprofen, selected by virtual screening, could effectively repress the viability and tumorigenesis of HCC cells. Therefore, it is identified that C21orf58 functions as an oncogenic adaptor, reveal a novel regulatory mechanism of JAK2/STAT3 signaling, explain the cause of abnormal activity of activated mutants of STAT3, and explore the attractive therapeutic potential by targeting C21orf58 in HCC.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Carcinogenesis , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
4.
Cancer Lett ; 585: 216647, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38301911

ABSTRACT

The Notch signaling pathway plays pivotal roles in cell proliferation, stemness and invasion of non-small cell lung cancer (NSCLC). The human Notch family consists of four receptors, namely Notch1, Notch2, Notch3, and Notch4. These receptors are transmembrane proteins that play crucial roles in various cellular processes. Notch1 mostly acts as a pro-carcinogenic factor in NSCLC but sometimes acts as a suppressor. Notch2 has been demonstrated to inhibit the growth and progression of NSCLC, whereas Notch3 facilitates these biological behaviors of NSCLC. The role of Notch4 in NSCLC has not been fully elucidated, but it is evident that Notch4 promotes tumor progression. At present, drugs targeting the Notch pathway are being explored for NSCLC therapy, a majority of which are already in the stage of preclinical research and clinical trials, with bright prospects in the clinical treatment of NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Receptor, Notch1/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Receptors, Notch/metabolism , Receptor, Notch2/metabolism , Receptor, Notch3 , Signal Transduction
5.
Heliyon ; 10(1): e23165, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38163179

ABSTRACT

Multiple myeloma (MM) is a malignant plasma cell disease. The activity of PIK3CG (PI3K catalytic subunit γ) is regulated directly by G-protein-coupled receptor and has been confirmed to be highly expressed in MM cells. This study aimed to determine the effect of pharmacological inhibition of PIK3CG on MM. We found that different concentrations of the PIK3CG inhibitor AS-605240 could suppress the growth of MM cell lines and the expression of c-Myc. The combination of PIK3CG inhibitor and the chemotherapy Melphalan could effectively inhibit the proliferation and migration of MM cells, promote the cell apoptosis, and decrease the ratio of Bcl-2/Bax and the expression of vimentin. The expression of proto-oncogene c-Myc was decreased and the sensitivity of cells to chemotherapeutic drugs was enhanced. Collectively, PIK3CG regulates growth of MM via c-Myc pathway, thus emerging as a promising molecular targeted therapy.

6.
J Mol Med (Berl) ; 101(10): 1255-1265, 2023 10.
Article in English | MEDLINE | ID: mdl-37615686

ABSTRACT

Screening tumor susceptibility genes helps in identifying powerful biomarkers for hereditary cancer monitoring, prevention, and diagnosis, providing opportunities for understanding potential molecular mechanisms and biomarkers for the precise treatment of hereditary cancer syndromes. Whole-exome sequencing of blood and bioinformatics analysis uncovered a novel RBBP8(p.E281*) germline mutation in a family with hereditary cancer syndrome, which was verified by Sanger sequencing. Cell proliferation, colony formation, cell migration, and in vivo tumorigenesis were investigated by CCK8, colony formation, Transwell, and in vivo xenograft assays. Protein localization and interaction were detected by immunofluorescence, nuclear and cytoplasmic protein extraction kits, and Co-IP. A new heterozygous germline mutation of the RBBP8(p.E281*) gene was found to be associated with familial hereditary cancer syndrome. RBBP8-WT was mainly detected in the nucleus and interacts with BRCA1. In contrast, RBBP8(p.E281*) is mainly located in the cytoplasm, with no interaction with BRCA1. RBBP8(p.E281*) variant plays an oncogenic role in the cytoplasm in addition to its loss of function in the nucleus, which promotes breast cancer proliferation, in vivo tumorigenesis, and migration. Compared with the control group, RBBP8(p.E281*) showed elevated cell death in response to cisplatin and olaparib treatment. A novel RBBP8(p.E281*) germline mutation was identified from familial hereditary cancer syndrome. RBBP8(p.E281*) is not able to enter the nucleus or interact with BRCA1 through the lost binding motif, and RBBP8(p.E281*) variant appears to promote tumorigenesis in the cytoplasm in addition to its loss of function in the nucleus. RBBP8(p.E281*) variant may promote tumor susceptibility and serve as a precision medicine biomarker in familial hereditary cancer syndrome. KEY MESSAGES: RBBP8(p.E281*) is a susceptibility gene in this familial hereditary cancer syndrome RBBP8(p.E281*) lost its ability to enter the nucleus and the BRCA1 binding motif A novel RBBP8(p.E281*) germline mutation promotes breast cancer tumorigenesis Patients with RBBP8(p.E281*) germline mutation may benefit from Olaparib, Cisplatin.


Subject(s)
Breast Neoplasms , Neoplastic Syndromes, Hereditary , Humans , Female , Germ-Line Mutation , Cisplatin , Genetic Predisposition to Disease , Mutation , Neoplastic Syndromes, Hereditary/genetics , Breast Neoplasms/genetics , Carcinogenesis/genetics , Biomarkers , Endodeoxyribonucleases/genetics
7.
FASEB J ; 37(9): e23157, 2023 09.
Article in English | MEDLINE | ID: mdl-37615242

ABSTRACT

Zinc finger proteins (ZNFs) are the largest family of transcriptional factors in mammalian cells. Recently, their role in the development, progression, and metastasis of malignant tumors via regulating gene transcription and translation processes has become evident. Besides, their possible involvement in drug resistance has also been found, indicating that ZNFs have the potential to become new biological markers and therapeutic targets. In this review, we summarize the oncogenic and suppressive roles of various ZNFs in malignant tumors, including lung, breast, liver, gastric, colorectal, pancreatic, and other cancers, highlighting their role as prognostic markers, and hopefully provide new ideas for the treatment of malignant tumors in the future.


Subject(s)
Neoplasms , Animals , Liver , Pancreas , Stomach , Zinc Fingers , Mammals
8.
Cancers (Basel) ; 14(13)2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35804829

ABSTRACT

Triple-negative breast cancer (TNBC) accounts for approximately 20% of all breast carcinomas and has the worst prognosis of all breast cancer subtypes due to the lack of an effective target. Therefore, understanding the molecular mechanism underpinning TNBC progression could explore a new target for therapy. While the Notch pathway is critical in the development process, its dysregulation leads to TNBC initiation. Previously, we found that manic fringe (MFNG) activates the Notch signaling and induces breast cancer progression. However, the underlying molecular mechanism of MFNG upstream remains unknown. In this study, we explore the regulatory mechanisms of MFNG in TNBC. We show that the increased expression of MFNG in TNBC is associated with poor clinical prognosis and significantly promotes cell growth and migration, as well as Notch signaling activation. The mechanistic studies reveal that MFNG is a direct target of GATA3 and miR205-5p and demonstrate that GATA3 and miR205-5p overexpression attenuate MFNG oncogenic effects, while GATA3 knockdown mimics MFNG phenotype to promote TNBC progression. Moreover, we illustrate that GATA3 is required for miR205-5p activation to inhibit MFNG transcription by binding to the 3' UTR region of its mRNA, which forms the GATA3/miR205-5p/MFNG feed-forward loop. Additionally, our in vivo data show that the miR205-5p mimic combined with polyetherimide-black phosphorus (PEI-BP) nanoparticle remarkably inhibits the growth of TNBC-derived tumors which lack GATA3 expression. Collectively, our study uncovers a novel GATA3/miR205-5p/MFNG feed-forward loop as a pathway that could be a potential therapeutic target for TNBC.

9.
J Nanosci Nanotechnol ; 15(3): 2094-8, 2015 Mar.
Article in English | MEDLINE | ID: mdl-26413625

ABSTRACT

Radix Trichosanthis is a Chinese herbal medicine that has great medical value and pharmacological actions. There is already a long history of using the plant Radix Trichosanthis as treatment for hepatitis B virus in China. This research mainly focused on investigating the therapeutic effect of different extracts from Radix Trichosanthis on hepatitis B virus, on a cellular level (ex vivo). Cell survival rate of HepG2.2.15 cells was detected by MTT assay. HBsAg and HBeAg in HepG 2.2.15 cell supernatant were evaluated by enzyme linked immunosorbent assay (ELISA). Results showed that water extract from Radix Trichosanthis had a stronger inhibitive effect on expression of HBsAg and HBeAg in HepG2.2.15 cells than the alcohol extract from the same plant. Considering that the most active component of Radix Trichosanthis was in its aqueous extract and this might be related to the active component Trichosanthin. Trichosanthin was further used for related experiments to confirm this hypothesis. The results showed that Trichosanthin, in the aqueous extract from Radix Trichosanthis, is likely the main component responsible for the anti-hepatitis B viral effect.


Subject(s)
Antiviral Agents/pharmacology , Drugs, Chinese Herbal/pharmacology , Hepatitis B virus/drug effects , Trichosanthin/pharmacology , Cell Proliferation/drug effects , Culture Media, Conditioned/metabolism , Hep G2 Cells , Hepatitis B Surface Antigens/metabolism , Hepatitis B e Antigens/metabolism , Hepatitis B virus/immunology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...