Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Research (Wash D C) ; 7: 0398, 2024.
Article in English | MEDLINE | ID: mdl-39015205

ABSTRACT

Facing the challenge of achieving the goal of carbon neutrality, China is decoupling the currently close dependence of its economy on coal use. The energy supply and demand decarbonization has substantial influence on the resilience of the coal supply. However, a general understanding of the precise impact of energy decarbonization on the resilience of the coal energy supply is still lacking. Here, from the perspective of network science, we propose a theoretical framework to explore the resilience of the coal market of China. We show that the processes of increasing the connectivity and the competition between the coal enterprises, which are widely believed to improve the resilience of the coal market, can undermine the sustainability of the coal supply. Moreover, our results reveal that the policy of closing small-sized coal mines may not only reduce the safety accidents in the coal production but also improve the resilience of the coal market network. Using our model, we also suggest a few practical policies for minimizing the systemic risk of the coal energy supply.

2.
Article in English | MEDLINE | ID: mdl-39028596

ABSTRACT

This article develops a novel event-triggered finite-time control strategy to investigate the finite-time synchronization (F-tS) of fractional-order memristive neural networks with state-based switching fuzzy terms. A key distinction of this approach, compared with existing event-based finite-time control schemes, is the linearity of the measurement error function in the event-triggering mechanism (ETM). The advantage of linear measurement error not only simplifies computational tasks but also aids in demonstrating the exclusion of Zeno behavior for fractional-order systems (FSs). Furthermore, to derive F-tS criteria in the form of linear matrix inequalities (LMIs), a novel finite-time analytical framework for FSs is proposed. This framework includes two original inequalities and a weighted-norm-based Lyapunov function. The effectiveness and superiority of the theoretical results are demonstrated through two examples. Both theoretical and experimental results suggest that the criteria obtained using the new analytical framework are less conservative than existing results.

3.
Article in English | MEDLINE | ID: mdl-38722728

ABSTRACT

Hyperspectral image (HSI) restoration is a challenging research area, covering a variety of inverse problems. Previous works have shown the great success of deep learning in HSI restoration. However, facing the problem of distribution gaps between training HSIs and target HSI, those data-driven methods falter in delivering satisfactory outcomes for the target HSIs. In addition, the degradation process of HSIs is usually disturbed by noise, which is not well taken into account in existing restoration methods. The existence of noise further exacerbates the dissimilarities within the data, rendering it challenging to attain desirable results without an appropriate learning approach. To track these issues, in this article, we propose a supervise-assisted self-supervised deep-learning method to restore noisy degraded HSIs. Initially, we facilitate the restoration network to acquire a generalized prior through supervised learning from extensive training datasets. Then, the self-supervised learning stage is employed and utilizes the specific prior of the target HSI. Particularly, to restore clean HSIs during the self-supervised learning stage from noisy degraded HSIs, we introduce a noise-adaptive loss function that leverages inner statistics of noisy degraded HSIs for restoration. The proposed noise-adaptive loss consists of Stein's unbiased risk estimator (SURE) and total variation (TV) regularizer and fine-tunes the network with the presence of noise. We demonstrate through experiments on different HSI tasks, including denoising, compressive sensing, super-resolution, and inpainting, that our method outperforms state-of-the-art methods on benchmarks under quantitative metrics and visual quality. The code is available at https://github.com/ying-fu/SSDL-HSI.

4.
Sensors (Basel) ; 24(5)2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38475184

ABSTRACT

The development of many modern critical infrastructures calls for the integration of advanced technologies and algorithms to enhance the performance, efficiency, and reliability of network systems [...].

5.
IEEE Trans Cybern ; 54(3): 1734-1746, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37028358

ABSTRACT

In this work, we consider the safe deployment problem of multiple robots in an obstacle-rich complex environment. When a team of velocity and input-constrained robots is required to move from one area to another, a robust collision-avoidance formation navigation method is needed to achieve safe transferring. The constrained dynamics and the external disturbances make the safe formation navigation a challenging problem. A novel robust control barrier function-based method is proposed which enables collision avoidance under globally bounded control input. First, a nominal velocity and input-constrained formation navigation controller is designed which uses only the relative position information based on a predefined-time convergent observer. Then, new robust safety barrier conditions are derived for collision avoidance. Finally, a local quadratic optimization problem-based safe formation navigation controller is proposed for each robot. Simulation examples and comparison with existing results are provided to demonstrate the effectiveness of the proposed controller.

6.
IEEE Trans Cybern ; 54(4): 2271-2283, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37159318

ABSTRACT

The convergence rate and applicability to directed graphs with interaction topologies are two important features for practical applications of distributed optimization algorithms. In this article, a new kind of fast distributed discrete-time algorithms is developed for solving convex optimization problems with closed convex set constraints over directed interaction networks. Under the gradient tracking framework, two distributed algorithms are, respectively, designed over balanced and unbalanced graphs, where momentum terms and two time-scales are involved. Furthermore, it is demonstrated that the designed distributed algorithms attain linear speedup convergence rates provided that the momentum coefficients and the step size are appropriately selected. Finally, numerical simulations verify the effectiveness and the global accelerated effect of the designed algorithms.

7.
Article in English | MEDLINE | ID: mdl-37948149

ABSTRACT

Learning distributed cooperative policies for large-scale multirobot systems remains a challenging task in the multiagent reinforcement learning (MARL) context. In this work, we model the interactions among the robots as a graph and propose a novel off-policy actor-critic MARL algorithm to train distributed coordination policies on the graph by leveraging the ability of information extraction of graph neural networks (GNNs). First, a new type of Gaussian policy parameterized by the GNNs is designed for distributed decision-making in continuous action spaces. Second, a scalable centralized value function network is designed based on a novel GNN-based value function decomposition technique. Then, based on the designed actor and the critic networks, a GNN-based MARL algorithm named graph soft actor-critic (G-SAC) is proposed and utilized to train the distributed policies in an effective and centralized fashion. Finally, two custom multirobot coordination environments are built, under which the simulation results are performed to empirically demonstrate both the sample efficiency and the scalability of G-SAC as well as the strong zero-shot generalization ability of the trained policy in large-scale multirobot coordination problems.

8.
Article in English | MEDLINE | ID: mdl-37819816

ABSTRACT

This article proposes two novel projection neural networks (PNNs) with fixed-time ( FIXt ) convergence to deal with variational inequality problems (VIPs). The remarkable features of the proposed PNNs are FIXt convergence and more accurate upper bounds for arbitrary initial conditions. The robustness of the proposed PNNs under bounded noises is further studied. In addition, the proposed PNNs are applied to deal with absolute value equations (AVEs), noncooperative games, and sparse signal reconstruction problems (SSRPs). The upper bounds of the settling time for the proposed PNNs are tighter than the bounds in the existing neural networks. The effectiveness and advantages of the proposed PNNs are confirmed by numerical examples.

9.
Article in English | MEDLINE | ID: mdl-37018648

ABSTRACT

A new class of distributed multiagent reinforcement learning (MARL) algorithm suitable for problems with coupling constraints is proposed in this article to address the dynamic economic dispatch problem (DEDP) in smart grids. Specifically, the assumption made commonly in most existing results on the DEDP that the cost functions are known and/or convex is removed in this article. A distributed projection optimization algorithm is designed for the generation units to find the feasible power outputs satisfying the coupling constraints. By using a quadratic function to approximate the state-action value function of each generation unit, the approximate optimal solution of the original DEDP can be obtained by solving a convex optimization problem. Then, each action network utilizes a neural network (NN) to learn the relationship between the total power demand and the optimal power output of each generation unit, such that the algorithm obtains the generalization ability to predict the optimal power output distribution on an unseen total power demand. Furthermore, an improved experience replay mechanism is introduced into the action networks to improve the stability of the training process. Finally, the effectiveness and robustness of the proposed MARL algorithm are verified by simulation.

10.
IEEE Trans Cybern ; 53(6): 4054-4064, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37028391

ABSTRACT

This article aims to investigate the data-driven attack detection and identification problem for cyber-physical systems under sparse actuator attacks, by developing tools from subspace identification and compressive sensing theories. First, two sparse actuator attack models (additive and multiplicative) are formulated and the definitions of I/O sequence and data models are presented. Then, the attack detector is designed by identifying the stable kernel representation of cyber-physical systems, followed by the security analysis of data-driven attack detection. Moreover, two sparse recovery-based attack identification policies are proposed, with respect to sparse additive and multiplicative actuator attack models. These attack identification policies are realized by the convex optimization methods. Furthermore, the identifiability conditions of the presented identification algorithms are analyzed to evaluate the vulnerability of cyber-physical systems. Finally, the proposed methods are verified by the simulations on a flight vehicle system.

11.
IEEE Trans Cybern ; 53(9): 5970-5983, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37015577

ABSTRACT

In this article, both the fixed-time distributed consensus tracking and the fixed-time distributed average tracking problems for double-integrator-type multiagent systems with bounded input disturbances are studied. First, a new practical robust fixed-time sliding-mode control method based on the time-based generator is proposed. Second, two fixed-time distributed consensus tracking observers for double-integrator-type multiagent systems are designed to estimate the state disagreement between the leader and the followers under undirected and directed communication, respectively. Third, a fixed-time distributed average tracking observer for double-integrator-type multiagent systems is designed to measure the average value of multiple reference signals under undirected communication. Note that all the proposed observers are constructed with time-based generators and can be trivially extended to that for high-order integrator-type multiagent systems. Furthermore, by combining the proposed fixed-time sliding-mode control method with the information provided by the fixed-time observers, the fixed-time controllers are designed to solve the fixed-time distributed consensus tracking and the distributed average tracking problems. Finally, a few numerical simulations are shown to verify the results.

12.
IEEE Trans Cybern ; 53(2): 779-792, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35412996

ABSTRACT

This article investigates the event-triggered distributed average tracking (ETDAT) control problems for the Lipschitz-type nonlinear multiagent systems with bounded time-varying reference signals. By using the state-dependent gain design approach and event-triggered mechanism, two types of ETDAT algorithms called: 1) static and 2) adaptive-gain ETDAT algorithms are developed. It is the first time to introduce the event-triggered strategy into DAT control algorithms and investigate the ETDAT problem for multiagent systems with Lipschitz nonlinearities, which is more practical in real physical systems and can better meet the needs of practical engineering applications. Besides, the adaptive-gain ETDAT algorithms do not need any global information of the network topology and are fully distributed. Finally, a simulation example of the Watts-Strogatz small-world network is presented to illustrate the effectiveness of the adaptive-gain ETDAT algorithms.

13.
IEEE Trans Cybern ; 53(8): 5191-5201, 2023 Aug.
Article in English | MEDLINE | ID: mdl-35727790

ABSTRACT

The practical output containment problem for heterogeneous nonlinear multiagent systems under external disturbances generated by an exosystem is investigated in this article. It is required that the outputs of followers converge to the predefined convex combination of leaders' outputs. One of the major challenges in solving such a problem lies in dealing with the coupling among different nonlinearities, state dimensions, and system matrices of heterogeneous agents. To overcome the aforementioned challenge, a distributed observer-based control protocol is developed and employed. First, an adaptive state observer for estimating the states of all the leaders is constructed based on the neighboring interactions. Second, two new classes of observers are constructed for each follower exploiting the output information of the follower, in which the adaptive neural networks (NNs)-based approximation is exploited to compensate for the unknown nonlinearity in the followers' dynamics. A practical output containment control protocol is then generated by the proposed observers, where the control parameters are determined by an algorithm including two steps. Furthermore, with the help of the Lyapunov stability theory and the output regulation method, the practical output containment criteria for the considered closed-loop system under the influences of external disturbances are derived on the basis of the presented control protocol. Finally, the derived theoretical results are illustrated by a simulation example.

14.
IEEE Trans Neural Netw Learn Syst ; 34(11): 9149-9160, 2023 Nov.
Article in English | MEDLINE | ID: mdl-35298387

ABSTRACT

We study the asymptotical consensus problem for multi-agent systems (MASs) consisting of a high-dimensional leader and multiple followers with unknown nonlinear dynamics under directed switching topology by using a neural network (NN) adaptive control approach. First, we design an observer for each follower to reconstruct the states of the leader. Second, by using the idea of discontinuous control, we design a discontinuous consensus controller together with an NN adaptive law. Finally, by using the average dwell time (ADT) method and the Barbǎlat's lemma, we show that asymptotical neuroadaptive consensus can be achieved in the considered MAS if the ADT is larger than a positive threshold. Moreover, we study the asymptotical neuroadaptive consensus problem for MASs with intermittent topology. Finally, we perform two simulation examples to validate the obtained theoretical results. In contrast to the existing works, the asymptotical neuroadaptive consensus problem for MASs is firstly solved under directed switching topology.

15.
IEEE Trans Cybern ; 53(6): 3675-3687, 2023 Jun.
Article in English | MEDLINE | ID: mdl-35333728

ABSTRACT

The distributed Nash equilibrium (NE) seeking problem for multicoalition games has attracted increasing attention in recent years, but the research mainly focuses on the case without agreement demand within coalitions. This article considers a class of networked games among multiple coalitions where each coalition contains multiple agents that cooperate to minimize the sum of their costs, subject to the demand of reaching an agreement on their state values. Furthermore, the underlying network topology among the agents does not need to be balanced. To achieve the goal of NE seeking within such a context, two estimates are constructed for each agent, namely, an estimate of partial derivatives of the cost function and an estimate of global state values, based on which, an iterative state updating law is elaborately designed. Linear convergence of the proposed algorithm is demonstrated. It is shown that the consistency-constrained multicoalition games investigated in this article put the well-studied networked games among individual players and distributed optimization in a unified framework, and the proposed algorithm can easily degenerate into solutions to these problems.

16.
IEEE Trans Cybern ; PP2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36260592

ABSTRACT

This article addresses the resilient consensus problem of multiagent systems subject to cyber attacks on communication links, where the attacks on different links may collude to maintain undetectable. For the case with noncollusive attacks on links, a distributed fixed-time observer is designed so that the attack on each link can be detected by the two associated agents. A necessary and sufficient condition is derived to ensure the isolation of attacked links and no mistaken isolation of normal ones. For the case with collusive attacks on links, a novel attack isolation algorithm is proposed by constructing extra observers on the basis of the previous designed distributed fixed-time observer via sequentially removing the information associated with one of the links. Based on the isolation of the attacked links, a control algorithm is designed, and a necessary and sufficient condition is provided to achieve resilient consensus. Numerical examples corroborate the effectiveness of the proposed strategies.

17.
IEEE Trans Cybern ; 52(6): 5343-5355, 2022 Jun.
Article in English | MEDLINE | ID: mdl-33206618

ABSTRACT

We aim to address the Nash equilibrium (NE) seeking problem for multiple players over Markovian switching communication networks in this article, where a new type of distributed synchronous discrete-time algorithm is proposed and utilized. Specifically, each player in the present game model is assumed to employ a gradient-like projection algorithm to choose its action based upon the estimated ones for all the others. Under the mild condition that the union network of all communication network candidates is connected, we show that the players' actions could converge to an arbitrarily small neighborhood of the NE in the mean-square sense by adjusting the algorithm parameters. It is further found that the unique NE is mean-square stable when it is not restricted by any constraint set. In addition, we show that the proposed distributed discrete-time NE seeking algorithm can be utilized to deal with the energy trading problem in microgrids where each microgrid is modeled as a rational player using a purchase price as its action to buy energy from other microgrids with surplus supplies. The energy market allocates the excess energy according to the principle of proportional distribution. Some numerical simulations are finally presented to verify the validity of the present discrete-time NE seeking algorithm in solving the energy trading problem.


Subject(s)
Algorithms
18.
IEEE Trans Cybern ; 52(1): 630-640, 2022 Jan.
Article in English | MEDLINE | ID: mdl-32287033

ABSTRACT

We aim to address the consensus tracking problem for multiple-input-multiple-output (MIMO) linear networked systems under directed switching topologies, where the leader is subject to some nonzero but norm bounded inputs. First, based on the relative outputs, a full-order unknown input observer (UIO) is designed for each agent to track the full states' error among neighboring agents. With the aid of such an observer, a discontinuous feedback protocol is subtly designed. And it is proven that consensus tracking can be achieved in the closed-loop networked system if the average dwell time (ADT) for switching among different interaction graph candidates is larger than a given positive threshold. By using the boundary layer technique, a continuous feedback protocol is skillfully designed and employed. It is shown that the consensus error converges into a bounded set under the designed continuous protocol. Second, as part of the full states' error can be constructed via the agents' outputs, a reduced-order UIO is thus designed based on which discontinuous and continuous feedback protocols are, respectively, proposed. By using the stability theory of the switched systems, it is proven that the consensus error converges asymptotically to 0 under the designed discontinuous protocol, and converges into a bounded set under the designed continuous protocol. Finally, the obtained theoretical results are validated through simulations.

19.
IEEE Trans Cybern ; 52(9): 8838-8850, 2022 Sep.
Article in English | MEDLINE | ID: mdl-33635806

ABSTRACT

This work addresses the distributed consensus tracking problem for an extended class of high-order nonlinear multiagent networks with guaranteed performances over a directed graph. The adding one power integrator methodology is skillfully incorporated into the distributed protocol so as to tackle high powers in a distributed fashion. The distinguishing feature of the proposed design, besides guaranteeing closed-loop stability, is that some transient-state and steady-state metrics (e.g., maximum overshoot and convergence rate) can be preselected a priori by devising a novel performance function. More precisely, as opposed to conventional prescribed performance functions, a new asymmetry local tracking error-transformed variable is designed to circumvent the singularity problem and alleviate the computational burden caused by the conventional transformation function and its inverse function, and to solve the nondifferentiability issue that exists in most existing designs. Furthermore, the consensus tracking error is shown to converge to a residual set, whose size can be adjusted as small as desired through selecting proper parameters, while ensuring closed-loop stability and preassigned performances. One numerical and one practical example have been conducted to highlight the superiority of the proposed strategy.

20.
IEEE Trans Cybern ; 52(8): 8246-8257, 2022 Aug.
Article in English | MEDLINE | ID: mdl-33531321

ABSTRACT

In this article, a periodic self-triggered impulsive (PSTI) control scheme is proposed to achieve synchronization of neural networks (NNs). Two kinds of impulsive gains with constant and random values are considered, and the corresponding synchronization criteria are obtained based on tools from impulsive control, event-driven control theory, and stability analysis. The designed triggering protocol is simpler, easier to implement, and more flexible compared with some previously reported algorithms as the protocol combines the advantages of the periodic sampling and event-driven control. In addition, the chaotic synchronization of NNs via the presented PSTI sampling is further applied to encrypt images. Several examples are also utilized to illustrate the validity of the presented synchronization algorithm of NNs based on PSTI control and its potential applications in image processing.


Subject(s)
Algorithms , Neural Networks, Computer , Image Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL