Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 199
1.
OTA Int ; 7(2 Suppl): e328, 2024 Mar.
Article En | MEDLINE | ID: mdl-38487403

The immune system plays an integral role in the regulation of cellular processes responsible for fracture healing. Local and systemic influences on fracture healing correlate in many ways with fracture-related outcomes, including soft tissue healing quality and fracture union rates. Impaired soft tissue healing, restricted perfusion of a fracture site, and infection also in turn affect the immune response to fracture injury. Modern techniques used to investigate the relationship between immune system function and fracture healing include precision medicine, using vast quantities of data to interpret broad patterns of inflammatory response. Early data from the PRECISE trial have demonstrated distinct patterns of inflammatory response in polytrauma patients, which thereby directly and indirectly regulate the fracture healing response. The clearly demonstrated linkage between immune function and fracture healing suggests that modulation of immune function has significant potential as a therapeutic target that can be used to enhance fracture healing.

2.
OTA Int ; 7(2 Suppl): e303, 2024 Mar.
Article En | MEDLINE | ID: mdl-38487400

Orthopaedic trauma remains a leading cause of patient morbidity, mortality, and global health care burden. Although significant advances have been made in the diagnosis, treatment, and rehabilitation of these injuries, complications such as malunion, nonunion, infection, disuse muscle atrophy and osteopenia, and incomplete return to baseline function still occur. The significant inherent clinical variability in fracture care such as differing patient demographics, injury patterns, and treatment protocols make standardized and replicable study, especially of cellular and molecular based mechanisms, nearly impossible. Hence, the scientists dedicated to improving therapy and treatments for patients with orthopaedic trauma rely on preclinical models. Preclinical models have proven to be invaluable in understanding the timing between implant insertion and bacterial inoculation on the bioburden of infection. Posttraumatic arthritis (PTOA) can take years to develop clinically, but with a porcine pilon fracture model, posttraumatic arthritis can be reliably induced, so different surgical and therapeutic strategies can be tested in prevention. Conversely, the racehorse presents a well-accepted model of naturally occurring PTOA. With preclinical polytrauma models focusing on chest injury, abdominal injury, multiple fractures, and/or head injury, one can study how various injury patterns affect fracture healing can be systemically studied. Finally, these preclinical models serve as a translational bridge to for clinical application in human patients. With selection of the right preclinical model, studies can build a platform to decrease the risk of emerging technologies and provide foundational support for therapeutic clinical trials. In summary, orthopaedic trauma preclinical models allow scientists to simplify a complex clinical challenge, to understand the basic pathways starting with lower vertebrate models. Then, R&D efforts progress to higher vertebrate models to build in more complexity for translation of findings to the clinical practice.

3.
J Spec Oper Med ; 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38488823

BACKGROUND: Irrigation is used to minimize infection of open wounds. Sterile saline is preferred, but potable water is becoming more widely accepted. However, the large volumes of water that are recommended are usually not available in austere environments. This study determined the long-term antimicrobial effectiveness of military purification powder compared with currently available civilian methods. The study also compared the physical characteristics and outcomes under the logistical constraints. METHODS: Six commercially available water decontamination procedures were used to decontaminate five different sources of water (pond water, river water, inoculated saline, tap water, and sterile saline). Each product was evaluated based on six different parameters: bacterial culture, pH, turbidity, cost, flow rate, and size. RESULTS: All methods of treatment decreased the bacterial count below the limit of detection. However, they had variable effects on pH and turbidity of the five water sources. Prices ranged from $7.95 to $350, yielding 10-10,000L of water, and weighing between 18 and 500g. CONCLUSION: In austere settings, where all equipment is carried manually, no single decontamination device is available to optimize all the measured parameters. Since all products effectively reduced microbial levels, their size, cost, and production capability should be evaluated for the intended application.

4.
J Clin Orthop Trauma ; 48: 102332, 2024 Jan.
Article En | MEDLINE | ID: mdl-38282804

Background: Despite the fact that preoperative corticosteroid injections within three to six months of surgery increase the risk of postoperative infection, there is a growing trend of using corticosteroid injections intraoperatively as an effort to decrease postoperative pain and opiate use. Our aim with this review was to answer the question "Do intraoperative corticosteroid injections increase the risk of infections in arthroscopic surgery?" Methods: A systematic search of MEDLINE, Cochrane, and PMC databases was conducted adhering to PRISMA 2020 guidelines after registration with PROSPERO (ID: CRD42023459138). We included studies comparing infection rates in patients who received intraoperative corticosteroid injections (IOCSI) to those who received no injection. The MINORS risk of bias tool was used to assess the quality of included studies. Results: 305 individual records were screened and a total of 8 studies met the criteria for inclusion in the study, containing data from over 700,000 patient records. All 7 retrospective studies showed an increase in infection rates and the single small randomized controlled trial had no infections in either the control or intervention group. The combined weighted odds ratio of infection rates in comparable studies was 2.23 95% CI (1.66-3.11). Conclusions: Current data shows that IOCSIs more than double the risk of postoperative infection during arthroscopic surgery. Surgeons should consider and weigh the impact of infection to the minor clinical benefit corticosteroid injections add over other multimodal injections. We expect similar increases in infection rates in other surgeries where IOCSIs are used due to the inherent immunosuppressive mechanisms of corticosteroids.

5.
Clin Orthop Relat Res ; 482(2): 375-383, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-37606954

BACKGROUND: Infection remains a serious clinical concern in patients with open fractures, despite timely antibiotic administration and surgical debridement. Soft tissue and periosteal stripping may alter local tissue homeostasis and antibiotic pharmacokinetics in the injured limb. The tissue (interstitial) concentration of intravenously administered antibiotics at an open fracture site has not been characterized using direct sampling techniques. QUESTION/PURPOSE: We performed this study to evaluate the concentration and pharmacokinetics of intravenously delivered cefazolin at an open fracture site after surgical debridement. METHODS: Twelve patients with an open fracture distal to the knee who presented at a regional Level I trauma center were approached for enrollment in this nonrandomized, observational study. Of the 12 patients, eight adults (one female, seven male) with a median age of 32 years (range 23 to 51 years) were enrolled and underwent successful sample collection for analysis. Three patients had incomplete datasets because of equipment malfunction and one elected not to participate. Seven patients had open tibia fractures, and one patient had an open fibula fracture associated with a closed tibia fracture. There were six Gustilo-Anderson Type II injuries and two Type IIIA injuries. Empiric antibiotics were administered in the prehospital setting or in the emergency department according to institutional protocol. When patients were taken to the operating room, a 2-g intravenous dose of cefazolin was administered. After surgical debridement, fracture stabilization, and wound closure, a microdialysis catheter was placed transdermally into the injury zone (within 5 cm of the fracture site) and a second catheter was placed in the contralateral uninjured (control) limb. Additional doses of cefazolin were administered every 8 hours postoperatively. Baseline and periodic interstitial fluid and whole blood (plasma) samples were collected in the operating room and at prespecified times for 24 hours postoperatively. Free cefazolin in the interstitial fluid and plasma samples were analyzed by ultra-high-performance liquid chromatography using C 18 column separation with quadrupole time-of-flight mass spectrometry detection. Data from the second postoperative dose of cefazolin were used to characterize pharmacokinetic parameters through a noncompartmental analysis using time-concentration curves of free cefazolin and assuming first-order elimination. For pharmacodynamic analyses, the modal cefazolin minimum inhibitory concentration (MIC) of Staphylococcus aureus (1 µg/mL) was used. RESULTS: With the samples available, no difference was observed in the median free cefazolin exposure over 24 hours ( f area under the curve [AUC] 0→24hrs ) between injured limbs (352 µg∙hr/mL [IQR 284 to 594 µg∙hr/mL]) and uninjured limbs (341 µg∙hr/mL [IQR 263 to 438 µg∙hr/mL]; p = 0.64). The median time to achieve the maximum concentration of free cefazolin ( f T max ) for injured limbs was delayed (2.7 hours [IQR 2.2 to 3.1 hours]) compared with control limbs (1.7 hours [IQR 1.2 to 2.0 hours]; p = 0.046). The time to the maximum concentration for plasma was not different from that of control limbs (p = 0.08). The time the cefazolin concentration was above the modal S. aureus MIC (T > MIC) in the injured and control limbs over 24 hours was 100% (IQR 100% to 100%) and 100% (IQR 97% to 100%), respectively. CONCLUSION: These preliminary findings suggest that current prophylactic cefazolin dosing regimens result in successful antibiotic delivery to the traumatized limb in moderately severe open fractures. Although cefazolin delivery to open-fracture wound beds was delayed compared with healthy tissues, the cefazolin concentration was sustained above the European Union Committee Antimicrobial Susceptibility Testing modal MIC for S. aureus , demonstrating a high likelihood of a prophylactic antimicrobial environment at an open fracture site with this empiric antimicrobial regimen. Importantly, patients in this analysis had Gustilo-Anderson Types II and IIIA injuries. Further research with a larger patient cohort is needed to determine whether antibiotic delivery to traumatized soft tissues in patients with higher-grade open fractures (Gustilo-Anderson Types IIIB and IIIC) demonstrates similar pharmacokinetic characteristics. LEVEL OF EVIDENCE: Level II, therapeutic study.


Fractures, Open , Tibial Fractures , Adult , Humans , Male , Female , Young Adult , Middle Aged , Cefazolin , Fractures, Open/complications , Surgical Wound Infection/etiology , Staphylococcus aureus , Treatment Outcome , Retrospective Studies , Anti-Bacterial Agents , Tibial Fractures/surgery , Tibial Fractures/complications , Lower Extremity
6.
J Spec Oper Med ; 23(3): 91-100, 2023 Oct 05.
Article En | MEDLINE | ID: mdl-37733954

The potential for delayed evacuation of injured Service members from austere environments highlights the need to develop solutions that can stabilize a wound and enable mobility during these prolonged casualty care (PCC) scenarios. Lower extremity fractures have traditionally been treated by immobilization (splinting) followed by air evacuation - a paradigm not practical in PCC scenarios. In the civilian sector, treatment of extremity injuries sustained during remote recreational activities have similar challenges, particularly when adverse weather or terrain precludes early ground or air rescue. This review examines currently available fracture treatment solutions to include splinting, orthotic devices, and biological interventions and evaluates their feasibility: 1) for prolonged use in austere environments and 2) to enable patient mobilization. This review returned three common types of splints to include: a simple box splint, pneumatic splints, and traction splints. None of these splinting techniques allowed for ambulation. However, fixed facility-based orthotic interventions that include weight-bearing features may be combined with common splinting techniques to improve mobility. Biologically-focused technologies to stabilize a long bone fracture are still in their infancy. Integrating design features across these technologies could generate advanced treatments which would enable mobility, thus maximizing survivability until patient evacuation is feasible.

7.
J Exp Orthop ; 10(1): 90, 2023 Sep 01.
Article En | MEDLINE | ID: mdl-37656236

PURPOSE: The mitochondrial DNA (mtDNA) activated cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes (cGAS-STING) signaling pathway is a key player in mediating immune responses in autoimmune disorders and cancer. However, its role in severe trauma associated fracture healing is unknown. This study investigated if the cGAS-STING signaling pathway contributes to delayed bone healing in polytrauma (PT) fractures. METHODS: For preliminary analyses, therapeutic dosage of RU.521 (cGAS inhibitor) (n = 2) was determined in C57BL/6 J mice by mass spectrometry, and IFNß expression levels in serum and bronchioalveolar fluid (BALF) at 6 and 24 h (h) in RU.521/vehicle + mtDNA injected mice (n = 3/treatment and time point) was measured by ELISA. In the main study, plasma mtDNA was quantified by qPCR in a clinically relevant delayed fracture healing PT rat model with burn injury, blunt trauma, and a femoral fracture at 3 h post-trauma (hpt). Next, PT rats received either RU.521 (12 mg/kg in povidone; n = 8) or vehicle (povidone only; n = 5) immediately after injury and were followed up for 5 weeks post-trauma to assess bone regeneration by radiography and histology. RESULTS: IFNß levels were significantly decreased only at 24 h in BALF of RU.521 treated mice. At 3hpt mtDNA was significantly elevated in PT rats compared to rats without injury. When treated with RU.521, PT rats showed improvement in bone healing compared to vehicle control PT rats. CONCLUSIONS: These data reveal that the cGAS-STING signaling pathway influences trauma-induced delayed bone healing. However, further evaluation of this pathway at the cellular and molecular levels to augment PT associated detrimental effects is needed.

8.
Sci Rep ; 13(1): 10250, 2023 06 24.
Article En | MEDLINE | ID: mdl-37355693

Burn injury is associated with muscle wasting, though the involved signaling mechanisms are not well understood. In this study, we aimed to examine the role of high mobility group box 1 (HMGB1) in signaling hyper-inflammation and consequent skeletal muscle impairment after burn. Sprague Dawley rats were randomly assigned into three groups: (1) sham burn, (2) burn, (3) burn/treatment. Animals in group 2 and group 3 received scald burn on 30% of total body surface area (TBSA) and immediately treated with chicken IgY and anti-HMGB1 antibody, respectively. Muscle tissues and other samples were collected at 3-days after burn. Body mass and wet/dry weights of the hind limb muscles (total and individually) were substantially decreased in burn rats. Acute burn provoked the mitochondrial stress and cell death and enhanced the protein ubiquitination and LC3A/B levels that are involved in protein degradation in muscle tissues. Further, an increase in muscle inflammatory infiltrate associated with increased differentiation, maturation and proinflammatory activation of bone marrow myeloid cells and αß CD4+ T and γδ T lymphocytes was noted in in circulation and spleen of burn rats. Treatment with one dose of HMGB1 neutralizing antibody reduced the burn wound size and preserved the wet/dry weights of the hind limb muscles associated with a control in the markers of cell death and autophagy pathways in burn rats. Further, anti-HMGB1 antibody inhibited the myeloid and T cells inflammatory activation and subsequent dysregulated inflammatory infiltrate in the muscle tissues of burn rats. We conclude that neutralization of HMGB1-dependent proteolytic and inflammatory responses has potential beneficial effects in preventing the muscle loss after severe burn injury.


Antibodies, Neutralizing , Burns , HMGB1 Protein , Animals , Rats , Burns/metabolism , Burns/therapy , Inflammation/metabolism , Muscle, Skeletal/metabolism , Rats, Sprague-Dawley , T-Lymphocytes/metabolism , Antibodies, Neutralizing/therapeutic use
9.
Med J (Ft Sam Houst Tex) ; (Per 23-1/2/3): 103-111, 2023.
Article En | MEDLINE | ID: mdl-36607307

BACKGROUND: Open fractures are at high risk for complications both in the military and civilian setting. Treatments to prevent fractures are limited in the Role 1 (prehospital, battalion aid station) setting. The goal of this study is to assess the efficacy of topical vancomycin powder, administered within 24 hours of an open fracture injury, in the prevention of infection and infection-related complications. METHODS: The POWDER study is a multicenter, prospective, randomized controlled clinical trial using a pragmatic open-label design. We will recruit 200 long bone open fracture patients from University Hospital at University of Texas Health at San Antonio (UTHSA) and the Brooke Army Medical Center (BAMC). We will screen and randomize patients in a 1:1 ratio to receive either usual care plus 2g topical vancomycin or usual care only. The primary objective of this study is to compare the proportion of infection and infection-related complications which occur in the 2 arms. An additional objective is to develop a risk-prediction model for open fracture wound complications. CONCLUSIONS: The infection rates seen in open fractures remain alarmingly high in both combat and civilian settings. Several orthopedic surgery studies suggest vancomycin powder is effective in reducing surgical site infections when applied topically at the time of wound closure. We expect to see a reduction in infections in open fracture injuries treated acutely with vancomycin powder. This study may provide important information regarding the use of local vancomycin powder during the acute treatment of open fractures. If shown to be efficacious, vancomycin powder could provide a simple, time- and cost-effective infection prophylaxis strategy for these injuries.


Anti-Bacterial Agents , Fractures, Open , Humans , Anti-Bacterial Agents/therapeutic use , Vancomycin/therapeutic use , Fractures, Open/complications , Fractures, Open/drug therapy , Fractures, Open/surgery , Powders , Prospective Studies , Treatment Outcome , Emergency Service, Hospital
10.
Prehosp Emerg Care ; 27(1): 18-23, 2023.
Article En | MEDLINE | ID: mdl-34731068

BACKGROUND: Combat injury related wound infections are common. Untreated, these wound infections may progress to sepsis and septic shock leading to increased morbidity and mortality rates. Understanding infectious complications, patterns, progression, and correlated prehospital interventions are vital to understand the development of sepsis. We aim to analyze demographics, injury patterns, and interventions associated with sepsis in battlefield settings. MATERIALS AND METHODS: This is a secondary analysis of previously published data from the Department of Defense Trauma Registry (DoDTR) from 2007 to 2020. We searched for casualties diagnosed with sepsis (excluding line-sepsis) throughout their initial hospitalization. Regression models were used to seek associations. RESULTS: Our initial request yielded 28,950 encounters, of which 25,654 (88.6%) were adults that met inclusion, including 243 patients (0.9%) diagnosed with sepsis. Patients included US military (34%), non-North Atlantic Treaty Organization (NATO) military (33%) and humanitarian (30%) groups. Patients diagnosed with sepsis had a significantly lower survival rate than non-septic patients (78.1% vs. 95.7%, p < 0.001). There was no significant difference in administration of prehospital antibiotics between septic and the general populations (10.6% vs. 12.3%, p = 0.395). Prehospital intraosseous access (OR 1.56, 95% CI 1.27-1.91, p = 0.207) and packed red cell administration (1.63, 1.24-2.15, 0.029) were the interventions most associated with sepsis. CONCLUSIONS: Sepsis occurred infrequently in the DoDTR when evacuation from battlefield is not delayed, but despite increased intervention frequency, developing sepsis demonstrates a significant drop in survival rates. Future research would benefit from the development of risk mitigation measures.


Emergency Medical Services , Military Personnel , Sepsis , Wounds and Injuries , Adult , Humans , Retrospective Studies , Sepsis/epidemiology , Sepsis/therapy , Registries
11.
J Surg Orthop Adv ; 31(3): 169-176, 2022.
Article En | MEDLINE | ID: mdl-36413164

Despite improved surgical techniques and prophylactic procedures, orthopaedic implant-associated infections remain high with complications that can lead to devastating outcomes for the patient. Implant coatings and associated surface modification techniques represent a promising means to prevent infections. Various approaches have emerged to address the challenges associated with implant infections, such as antibacterial resistance, biofilm prevention, and appropriate efficacy kinetics. Methods including antibiotic and antimicrobial peptide surface tethering, use of osteo-conductive and -inductive materials, and altering hydrophobicity and hydrophilicity of the implant surface, have all demonstrated efficacy toward diminished infection risk. Though many of these techniques have shown great potential in in vitro and in vivo studies, clinical translation remains limited with very few commercially available implant coatings globally. This review summarizes recent advancements in orthopaedic implant coatings, pre-clinical studies, and clinical translation, as well as potential future marketed products. (Journal of Surgical Orthopaedic Advances 31(3):169-176, 2022).


Orthopedics , Humans , Prostheses and Implants , Biofilms , Anti-Bacterial Agents/therapeutic use
12.
BMC Musculoskelet Disord ; 23(1): 716, 2022 Jul 27.
Article En | MEDLINE | ID: mdl-35897089

BACKGROUND: Delayed fracture healing caused by soft tissue loss can be resolved by the administration of a Th1 immunosuppressant, such as FK506. Additionally, open fractures are at high risk for infection. We hypothesized that the inclusion of an immunosuppressant to a subject at risk for a musculoskeletal infection will increase the likelihood of infection. METHODS: A rat model of musculoskeletal infection was used. Sprague Dawley rats received a stabilized femur defect and were inoculated with 104 CFU Staphylococcus aureus via a collagen matrix. Six hours after inoculation, the wounds were debrided of collagen and devitalized tissue and irrigated with sterile saline. The animals were randomized into two groups: carrier control and FK506, which were administered daily for 14 days and were euthanized and the tissues harvested to measure local bioburden. RESULTS: The dosing regimen of FK506 that restored bone healing increased the bioburden in the bone and on the fixation implant compared to the carrier control animals. As expected, the administration of FK506 decreased circulating white blood cells, lymphocytes, neutrophils, and monocytes. Additionally, the red blood cell count, hematocrit, and body weight were lower in those animals that received FK506 compared to carrier control. CONCLUSIONS: FK506 administration decreased the systemic immune cell counts and increased the bacterial bioburden within a model of musculoskeletal infection. Collectively, these outcomes could be attributed to the overall T cell suppression by FK506 and the altered antimicrobial activity of innate cells, thereby allowing S. aureus to thrive and subsequently leading to infection of severe, musculoskeletal injuries. These observations reveal the crucial continued investigation for the clinical use of FK506, and other immunosuppressant compounds, in trauma patients who are at increased risk of developing infections.


Staphylococcal Infections , Tacrolimus , Animals , Disease Models, Animal , Femur , Immunosuppressive Agents/pharmacology , Rats , Rats, Sprague-Dawley , Rodentia , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Staphylococcus aureus , Tacrolimus/pharmacology
13.
J Orthop Surg Res ; 17(1): 347, 2022 Jul 15.
Article En | MEDLINE | ID: mdl-35840981

BACKGROUND: Treatment of open fractures remains a significant challenge in trauma care as these fractures are accompanied by extensive soft tissue damage, exposing the wound site to contaminants and increasing infection risk. Formation of biofilm, a capsule-like environment that acts as a barrier to treatment, is a primary mode by which infecting pathogens persist at the wound site. Therefore, a pressing need exists to identify irrigation methods that can disrupt biofilm and expose pathogens to treatment. This study aims to evaluate the antibiofilm wound lavage, Bactisure™, in comparison with saline for care of severe musculoskeletal wounds and elucidate potential effects on antibiotic treatment success. METHODS: UAMS-1 Staphylococcus aureus biofilms were formed in vitro and treated with Bactisure™ wound lavage or sterile normal saline, alone, or in combination with sub-biofilm inhibitory levels of vancomycin. Characterization methods included quantification of biofilm biomass, quantification of viable biofilm bacteria, and biofilm matrix imaging. For in vivo assessment, a delayed treatment model of contaminated open fracture was used wherein a critical-sized defect was created in a rat femur and wound site inoculated with UAMS-1. Following a 6 h delay, wounds were debrided, irrigated with lavage of interest, and antibiotic treatments administered. Bacterial enumeration was performed on bone and hardware samples after two weeks. RESULTS: An immediate reduction in biofilm biomass was observed in vitro following antibiofilm lavage treatment, with a subsequent 2- to 3- log reduction in viable bacteria achieved after 24 h. Furthermore, biofilms treated with antibiofilm lavage in combination with vancomycin exhibited a minor, but statistically significant, decrease in viable bacteria compared to irrigation alone. In vivo, a minor, not statistically significant, decrease in median bioburden was observed for the antibiofilm lavage compared to saline when used in combination with antibiotics. However, the percentage of bone and hardware samples with detectable bacteria was reduced from 50 to 38%. CONCLUSIONS: These results suggest that the antibiofilm wound lavage, Bactisure™, may hold promise in mitigating infection in contaminated musculoskeletal wounds and warrants further investigation. Here, we proposed multiple mechanisms in vitro by which this antibiofilm lavage may help mitigate infection, and demonstrate this treatment slightly outperforms saline in controlling bioburden in vivo.


Fractures, Open , Wound Infection , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria , Biofilms , Fractures, Open/therapy , Rats , Staphylococcus aureus , Therapeutic Irrigation , Vancomycin/pharmacology , Wound Infection/drug therapy
14.
Tissue Eng Part C Methods ; 28(7): 363-374, 2022 07.
Article En | MEDLINE | ID: mdl-35615881

Regenerating large bone defects requires a multifaceted approach combining optimal scaffold designs with appropriate growth factor delivery. Supraphysiological doses of recombinant human bone morphogenetic protein 2 (rhBMP2), typically used for the regeneration of large bone defects clinically in conjunction with an acellular collagen sponge (ACS), have resulted in many complications. In this study, we develop a hydroxyapatite/collagen I (HA/Col) scaffold to improve the mechanical properties of the HA scaffolds, while maintaining open connected porosity. Varying rhBMP2 dosages were then delivered from a collagenous periosteal membrane and paired with HA or HA/Col scaffolds to treat critical-sized (15 mm) diaphyseal radial defect in New Zealand white rabbits. The groups examined were ACS +76 µg rhBMP2 (clinically used INFUSE dosage), HA +76 µg rhBMP2, HA +15 µg rhBMP2, HA/Col +15 µg rhBMP2, and HA/Col +15 µg rhBMP2 + bone marrow-derived stromal cells (bMSCs). After 8 weeks of implantation, all regenerated bones were evaluated using microcomputed tomography, histology, histomorphometry, and torsional testing. It was observed that the bone volume regenerated in the HA/Col +15 µg rhBMP2 group was significantly higher than that in the groups with 76 µg rhBMP2. The same scaffold and growth factor combination resulted in the highest bone mineral density of the regenerated bone, and the most bone apposition on the scaffold surface. Both the HA and HA/Col scaffolds paired with 15 µg rhBMP2 had sustained ingrowth of the mineralization front after 2 weeks compared to the groups with 76 µg rhBMP2, which had far greater mineralization in the first 2 weeks after implantation. Complete bridging of the defect site and no significant difference in torsional strength, stiffness, or angle at failure were observed across all groups. No benefit of additional bMSC seeding was observed on any of the quantified metrics, while bone-implant apposition was reduced in the cell-seeded group. This study demonstrated that the controlled spatial delivery of rhBMP2 at the periosteum at significantly lower doses can be used as a strategy to improve bone regeneration around space maintaining scaffolds. Tweet Inside-out or outside-in: growth factors delivered from the outside of porous mineral-collagen scaffolds, maintain strength and regrow bone better in a rabbit study. Twitter handle for senior author (@Guda_Lab) and sponsoring institution (@UTSA) Impact Statement This study provides insights on bone regeneration in the presence of spatially controlled delivery of recombinant human bone morphogenetic protein 2 (rhBMP2) from porous hydroxyapatite scaffolds coated with collagen I films. Using critical-sized defects created in the radial diaphysis of skeletally mature New Zealand White rabbits, microcomputed tomography and histomorphometry indicated significantly higher bone regeneration, bone mineral density, and bone-implant contact, as well as sustained regeneration over longer durations with lower dosage of rhBMP2 delivered periosteally.


Bone Morphogenetic Protein 2 , Durapatite , Animals , Bone Morphogenetic Protein 2/pharmacology , Bone Regeneration , Collagen/pharmacology , Humans , Periosteum , Rabbits , Radius/diagnostic imaging , Tissue Scaffolds , X-Ray Microtomography
15.
J Exp Orthop ; 9(1): 21, 2022 Feb 28.
Article En | MEDLINE | ID: mdl-35229226

PURPOSE: Delayed fracture healing is a common consequence of polytrauma (PT) occurring in patients with multiple injuries. We believe that when early release of high mobility group box 1 (HMGB1) molecules from necrotic tissues exceed their normal levels in blood, they dysregulate immune responses associated with normal healing. This study investigates the detrimental effect of such dysregulate immune responses by targeting HMGB1 in a PT rat model with debilitating injuries. We hypothesized that neutralization of extracellular HMGB1 immediately post-trauma would ameliorate local immune dysregulation and improve fracture healing in a PT rat model. METHODS: PT rats received a single dose of either anti-rat HMGB1 polyclonal antibody (PT-Ab HMGB1) or IgY isotype (PT-IgY), were left untreated (PT-C), or had a single injury/osteotomy only (OST). Fracture healing was evaluated by micro-computed tomography (µCT) and histology at 5 weeks; and macrophages and T cell counts within the fracture site were determined with flow cytometry  at 1 week. RESULTS: Notably, bone regeneration within the fracture site in PT-Ab HMGB1 rats was improved with comparable connective tissue organization than PT-C rats. Further, only γδTCR+ T cells, but not macrophages and CD4+ and CD8+ T cells, were diminished at the fracture site in PT-C and PT-IgY rats. Interestingly, the PT-Ab HMGB1 rats had increased γδTCR+ T cells compared to PT-C and PT-IgY, suggesting their potential role in regulating fracture healing. CONCLUSIONS: Therefore, the initial burst of systemic HMGB1 following trauma may have a role in regulating bone regeneration via the modulation of a subclass of T cells within the fracture site, suggesting it's importance as a therapeutic target in PT to combat immune dysregulation and delayed fracture healing.

16.
J Appl Physiol (1985) ; 132(2): 541-552, 2022 02 01.
Article En | MEDLINE | ID: mdl-34989649

Extended tourniquet application, often associated with battlefield extremity trauma, can lead to severe ischemia-reperfusion (I/R) injury in skeletal muscle. Particulate oxygen generators (POGs) can be directly injected into tissue to supply oxygen to attenuate the effects of I/R injury in muscle. The goal of this study was to investigate the efficacy of a sodium percarbonate (SPO)-based POG formulation in reducing ischemic damage in a rat hindlimb during tourniquet application. Male Lewis rats were anesthetized and underwent tourniquet application for 3 h at a pressure of 300 mmHg. Shortly after tourniquet inflation, animals received intramuscular injections of either 0.2 mg/mL SPO with catalase (n = 6) or 2.0 mg/mL SPO with catalase (n = 6) directly into the tibialis anterior (TA) muscle. An additional Tourniquet-Only group (n = 12) received no intervention. Functional recovery was monitored by in vivo contractile testing of the hindlimb at 1, 2, and 4 wk after injury. By the 4 wk time point, the Low-Dose POG group continued to show improved functional recovery (85% of baseline) compared with the Tourniquet-Only (48%) and High-Dose POG (56%) groups. In short, the low-dose POG formulation appeared, at least in part, to mitigate the impact of ischemic tissue injury, thus improving contractile function after tourniquet application. Functional improvement correlated with maintenance of larger muscle fiber cross-sectional area and the presence of fewer fibers containing centrally located nuclei. As such, POGs represent a potentially attractive therapeutic solution for addressing I/R injuries associated with extremity trauma.NEW & NOTEWORTHY Skeletal muscle contraction was evaluated in the same animals at multiple time points up to 4 wk after injury, following administration of particulate oxygen generators (POGs) in a clinically relevant rat hindlimb model of tourniquet-induced ischemia. The observed POG-mediated improvement of muscle function over time confirms and extends previous studies to further document the potential clinical applications of POGs. Of particular significance in austere environments, this technology can be applied in the absence of an intact circulation.


Reperfusion Injury , Animals , Hindlimb , Male , Muscle Contraction , Muscle, Skeletal , Oxygen/pharmacology , Rats , Rats, Inbred Lew , Tourniquets
17.
J Orthop Res ; 40(3): 541-552, 2022 03.
Article En | MEDLINE | ID: mdl-35076097

Infection is a common cause of impaired fracture healing. In the clinical setting, definitive fracture treatment and infection are often treated separately and sequentially, by different clinical specialties. The ability to treat infection while promoting fracture healing will greatly reduce the cost, number of procedures, and patient morbidity associated with infected fractures. In order to develop new therapies, scientists and engineers must understand the clinical need, current standards of care, pathologic effects of infection on fractures, available preclinical models, and novel technologies. One of the main causes of poor fracture healing is infection; unfortunately, bone regeneration and infection research are typically approached independently and viewed as two separate disciplines. Here, we aim to bring these two groups together in an educational workshop to promote research into the basic and translational science that will address the clinical challenge of delayed fracture healing due to infection. Statement of clinical significance: Infection and nonunion are each feared outcomes in fracture care, and infection is a significant driver of nonunion. The impact of nonunions on patie[Q2]nt well-being is substantial. Outcome data suggests a long bone nonunion is as impactful on health-related quality of life measures as a diagnosis of type 1 diabetes and fracture-related infection has been shown to significantly l[Q3]ower a patient's quality of life for over 4 years.  Although they frequently are associated with one another, the treatment approaches for infections and nonunions are not always complimentary and cannot be performed simultaneously without accepting tradeoffs. Furthermore, different clinical specialties are often required to address the problem, the orthopedic surgeon treating the fracture and an infectious disease specialist addressing the sources of infection. A sequential approach that optimizes treatment parameters requires more time, more surgeries, and thus confers increased morbidity to the patient. The ability to solve fracture healing and infection clearance simultaneously in a contaminated defect would benefit both the patient and the health care system.


Fractures, Bone , Fractures, Ununited , Orthopedics , Fracture Healing , Fractures, Bone/complications , Fractures, Bone/therapy , Fractures, Ununited/drug therapy , Humans , Quality of Life , Treatment Outcome
18.
J Exp Orthop ; 8(1): 58, 2021 Aug 12.
Article En | MEDLINE | ID: mdl-34383202

PURPOSE: Volumetric muscle loss is a uniquely challenging pathology that results in irrecoverable functional deficits. Furthermore, a breakthrough drug or bioactive factor has yet to be established that adequately improves repair of these severe skeletal muscle injuries. This study sought to assess the ability of an orally administered selective retinoic acid receptor-γ agonist, palovarotene, to improve recovery of neuromuscular strength in a rat model of volumetric muscle loss. METHODS: An irrecoverable, full thickness defect was created in the tibialis anterior muscle of Lewis rats and animals were survived for 4 weeks. Functional recovery of the tibialis anterior muscle was assessed in vivo via neural stimulation and determination of peak isometric torque. Histological staining was performed to qualitatively assess fibrous scarring of the defect site. RESULTS: Treatment with the selective retinoic acid receptor-γ agonist, palovarotene, resulted in a 38% improvement of peak isometric torque in volumetric muscle loss affected limbs after 4 weeks of healing compared to untreated controls. Additionally, preliminary histological assessment suggests that oral administration of palovarotene reduced fibrous scarring at the defect site. CONCLUSIONS: These results highlight the potential role of selective retinoic acid receptor-γ agonists in the design of regenerative medicine platforms to maximize skeletal muscle healing. Additional studies are needed to further elucidate cellular responses, optimize therapeutic delivery, and characterize synergistic potential with adjunct therapies.

19.
Cells ; 10(7)2021 06 30.
Article En | MEDLINE | ID: mdl-34209240

We previously reported an early surge in high mobility group box protein 1 (HMGB1) levels in a polytrauma (PT) rat model. This study investigates the association of HMGB1 levels in mediating PT associated dysregulated immune responses and its influence on the cellular levels of receptor for advanced glycation end products (RAGE) and toll-like receptor 4 (TLR4). Using the same PT rat model treated with anti-HMGB1 polyclonal antibody, we evaluated changes in circulating inflammatory cytokines, monocytes/macrophages and T cells dynamics and cell surface expression of RAGE and TLR4 at 1, 3, and 7 days post-trauma (dpt) in blood and spleen. Notably, PT rats demonstrating T helper (Th)1 and Th2 cells type early hyper-inflammatory responses also exhibited increased monocyte/macrophage counts and diminished T cell counts in blood and spleen. In blood, expression of RAGE and TLR4 receptors was elevated on CD68+ monocyte/macrophages and severely diminished on CD4+ and CD8+ T cells. Neutralization of HMGB1 significantly decreased CD68+ monocyte/macrophage counts and increased CD4+ and CD8+ T cells, but not γδ+TCR T cells in circulation. Most importantly, RAGE and TLR4 expressions were restored on CD4+ and CD8+ T cells in treated PT rats. Overall, findings suggest that in PT, the HMGB1 surge is responsible for the onset of T cell exhaustion and dysfunction, leading to diminished RAGE and TLR4 surface expression, thereby possibly hindering the proper functioning of T cells.


HMGB1 Protein/metabolism , Inflammation/immunology , Multiple Trauma/immunology , T-Lymphocytes/immunology , Animals , Antibodies/pharmacology , Blood Proteins/metabolism , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cell Count , Cell Membrane/metabolism , Cytokines/blood , Disease Models, Animal , Male , Models, Biological , Multiple Trauma/blood , Myeloid Cells/drug effects , Myeloid Cells/metabolism , Neutralization Tests , Osteotomy , Rats, Sprague-Dawley , Receptor for Advanced Glycation End Products/metabolism , Spleen/immunology , Toll-Like Receptor 4/metabolism
20.
Materials (Basel) ; 14(14)2021 Jul 15.
Article En | MEDLINE | ID: mdl-34300888

Autograft (AG) is the gold standard for bone grafts, but limited quantities and patient morbidity are associated with its use. AG extenders have been proposed to minimize the volume of AG while maintaining the osteoinductive properties of the implant. In this study, poly(ester urethane) (PEUR) and poly(thioketal urethane) (PTKUR) AG extenders were implanted in a 20-mm rabbit radius defect model to evaluate new bone formation and graft remodeling. Outcomes including µCT and histomorphometry were measured at 12 weeks and compared to an AG (no polymer) control. AG control examples exhibited new bone formation, but inconsistent healing was observed. The implanted AG control was resorbed by 12 weeks, while AG extenders maintained implanted AG throughout the study. Bone growth from the defect interfaces was observed in both AG extenders, but residual polymer inhibited cellular infiltration and subsequent bone formation within the center of the implant. PEUR-AG extenders degraded more rapidly than PTKUR-AG extenders. These observations demonstrated that AG extenders supported new bone formation and that polymer composition did not have an effect on overall bone formation. Furthermore, the results indicated that early cellular infiltration is necessary for harnessing the osteoinductive capabilities of AG.

...