Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters











Publication year range
1.
Biomolecules ; 14(7)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39062509

ABSTRACT

Cry toxins, produced by the bacterium Bacillus thuringiensis, are of significant agronomic value worldwide due to their potent and highly specific activity against various insect orders. However, some of these pore-forming toxins display specific activity against a range of human cancer cells whilst possessing no known insecticidal activity; Cry41Aa is one such toxin. Cry41Aa has similarities to its insecticidal counterparts in both its 3-domain toxic core structure and pore-forming abilities, but how it has evolved to target human cells is a mystery. This work shows that some insecticidal Cry toxins can enhance the toxicity of Cry41Aa against hepatocellular carcinoma cells, despite possessing no intrinsic toxicity themselves. This interesting crossover is not limited to human cancer cells, as Cry41Aa was found to inhibit some Aedes-active Cry toxins in mosquito larval assays. Here, we present findings that suggest that Cry41Aa shares a receptor with several insecticidal toxins, indicating a stronger evolutionary relationship than their divergent activities might suggest.


Subject(s)
Bacillus thuringiensis Toxins , Bacillus thuringiensis , Bacterial Proteins , Endotoxins , Hemolysin Proteins , Humans , Endotoxins/chemistry , Endotoxins/genetics , Endotoxins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacillus thuringiensis/genetics , Bacillus thuringiensis/metabolism , Bacillus thuringiensis Toxins/metabolism , Hemolysin Proteins/chemistry , Hemolysin Proteins/genetics , Hemolysin Proteins/metabolism , Hemolysin Proteins/pharmacology , Animals , Insecticides/chemistry , Insecticides/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Aedes/drug effects , Aedes/genetics , Cell Line, Tumor
2.
Biochem J ; 479(23): 2395-2417, 2022 12 09.
Article in English | MEDLINE | ID: mdl-36383217

ABSTRACT

The cancer-associated Epstein-Barr virus (EBV) latently infects and immortalises B lymphocytes. EBV latent membrane protein 2A and EBV-encoded microRNAs are known to manipulate B cell receptor signalling to control cell growth and survival and suppress lytic replication. Here, we show that the EBV transcription factors EBNA2, 3A, 3B and 3C bind to genomic sites around multiple B cell receptor (BCR) pathway genes, regulate their expression and affect BCR signalling. EBNA2 regulates the majority of BCR pathway genes associated with binding sites, where EBNA3 proteins regulate only 42% of targets predicted by binding. Both EBNA2 and 3 proteins predominantly repress BCR pathway gene expression and target some common genes. EBNA2 and at least one EBNA3 protein repress the central BCR components CD79A and CD79B and the downstream genes BLNK, CD22, CD72, NFATC1, PIK3CG and RASGRP3. Studying repression of CD79B, we show that EBNA2 decreases transcription by disrupting binding of Early B cell Factor-1 to the CD79B promoter. Consistent with repression of BCR signalling, we demonstrate that EBNA2 and EBNA3 proteins suppress the basal or active BCR signalling that culminates in NFAT activation. Additionally, we show that EBNA2, EBNA3A and EBNA3C expression can result in reductions in the active serine 473 phosphorylated form of Akt in certain cell contexts, consistent with transcriptional repression of the PI3K-Akt BCR signalling arm. Overall, we identify EBNA2, EBNA3A and EBNA3C-mediated transcription control of BCR signalling as an additional strategy through which EBV may control the growth and survival of infected B cells and maintain viral latency.


Subject(s)
Epstein-Barr Virus Infections , Epstein-Barr Virus Nuclear Antigens , Humans , Epstein-Barr Virus Nuclear Antigens/genetics , Herpesvirus 4, Human/genetics , Epstein-Barr Virus Infections/genetics , Phosphatidylinositol 3-Kinases , Receptors, Antigen, B-Cell/genetics
3.
Hematol Oncol ; 40(3): 417-429, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35544413

ABSTRACT

B-cell progenitor fate determinant interferon regulatory factor 4 (IRF4) exerts key roles in the pathogenesis and progression of multiple myeloma (MM), a currently incurable plasma cell malignancy. Aberrant expression of IRF4 and the establishment of a positive auto-regulatory loop with oncogene MYC, drives a MM specific gene-expression program leading to the abnormal expansion of malignant immature plasma cells. Targeting the IRF4-MYC oncogenic loop has the potential to provide a selective and effective therapy for MM. Here we evaluate the use of bromodomain inhibitors to target the IRF4-MYC axis through combined inhibition of their known epigenetic regulators, BRD4 and CBP/EP300. Although all inhibitors induced cell death, we found no synergistic effect of targeting both of these regulators on the viability of MM cell-lines. Importantly, for all inhibitors over a time period up to 72 h, we detected reduced IRF4 mRNA, but a limited decrease in IRF4 protein expression or mRNA levels of downstream target genes. This indicates that inhibitor-induced loss of cell viability is not mediated through reduced IRF4 protein expression, as previously proposed. Further analysis revealed a long half-life of IRF4 protein in MM cells. In support of our experimental observations, gene network modeling of MM suggests that bromodomain inhibition is exerted primarily through MYC and not IRF4. These findings suggest that despite the autofeedback positive regulatory loop between IRF4 and MYC, bromodomain inhibitors are not effective at targeting IRF4 in MM and that novel therapeutic strategies should focus on the direct inhibition or degradation of IRF4.


Subject(s)
Interferon Regulatory Factors , Multiple Myeloma , Proto-Oncogene Proteins c-myc , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/pharmacology , Cell Cycle Proteins/therapeutic use , Cell Line, Tumor , Cell Proliferation , Humans , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Multiple Myeloma/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , RNA, Messenger , Transcription Factors/genetics , Transcription Factors/metabolism
4.
Toxins (Basel) ; 14(5)2022 04 29.
Article in English | MEDLINE | ID: mdl-35622566

ABSTRACT

Cry41Aa, also called parasporin-3, belongs to a group of toxins from the entomopathogenic bacterium Bacillus thuringiensis that show activity against human cancer cells. Cry41Aa exhibits preferential cytocidal activity towards HL-60 (human promyelocytic leukaemia cells) and HepG2 (human liver cancer cells) cell lines after being proteolytically activated. To better understand the mechanism of action of Cry41Aa, we evolved resistance in HepG2 cells through repeated exposure to increasing doses of the toxin. Concentrations of Cry41Aa that killed over 50% of the parental HepG2 cells had no significant effect on the viability of the resistant cells and did not induce either pore formation or p38 phosphorylation (both characteristic features of pore-forming toxins). Preliminary RNA sequencing data identified AQP9 as a potential mediator of resistance, but extensive investigations failed to show a causal link and did not support an enhanced cell repair process as the resistance mechanism.


Subject(s)
Bacillus thuringiensis , Bacterial Proteins , Bacillus thuringiensis/metabolism , Bacterial Proteins/genetics , HL-60 Cells , Hep G2 Cells , Humans
5.
Biochem J ; 476(24): 3805-3816, 2019 12 23.
Article in English | MEDLINE | ID: mdl-31794004

ABSTRACT

Bacillus thuringiensis (Bt) is a gram positive spore forming bacterium which produces intracellular protein crystals toxic to a wide variety of insect larvae and is the most commonly used biological pesticide worldwide. More recently, Bt crystal proteins known as parasporins have been discovered, that have no known insecticidal activity but target some human cancer cells exhibiting strong cytocidal activities with different toxicity spectra and varied activity levels. Parasporin-3, also called Cry41Aa, has only been shown to exhibit cytocidal activity towards HL-60 (Human promyelocytic leukemia cells) and HepG2 (Human liver cancer cells) cell lines after being proteolytically cleaved. In order to understand this activation mechanism various mutations were made in the N-terminal region of the protein and the toxicity against both HepG2 and HL-60 cell lines was evaluated. Our results indicate that only N-terminal cleavage is required for activation and that N-terminally deleted mutants show some toxicity without the need for proteolytic activation. Furthermore, we have shown that the level of toxicity towards the two cell lines depends on the protease used to activate the toxin. Proteinase K-activated toxin was significantly more toxic towards HepG2 and HL-60 than trypsin-activated toxin. N-terminal sequencing of activated toxins showed that this difference in toxicity is associated with a difference of just two amino acids (serine and alanine at positions 59 and 60, respectively) which we hypothesize occlude a binding motif.


Subject(s)
Antineoplastic Agents/pharmacology , Bacterial Proteins/pharmacology , Bacterial Toxins/pharmacology , HL-60 Cells , Hep G2 Cells , Humans , Proteolysis
6.
PLoS Pathog ; 15(7): e1007458, 2019 07.
Article in English | MEDLINE | ID: mdl-31283782

ABSTRACT

Natural variation separates Epstein-Barr virus (EBV) into type 1 and type 2 strains. Type 2 EBV is less transforming in vitro due to sequence differences in the EBV transcription factor EBNA2. This correlates with reduced activation of the EBV oncogene LMP1 and some cell genes. Transcriptional activation by type 1 EBNA2 can be suppressed through the binding of two PXLXP motifs in its transactivation domain (TAD) to the dimeric coiled-coil MYND domain (CC-MYND) of the BS69 repressor protein (ZMYND11). We identified a third conserved PXLXP motif in type 2 EBNA2. We found that type 2 EBNA2 peptides containing this motif bound BS69CC-MYND efficiently and that the type 2 EBNA2TAD bound an additional BS69CC-MYND molecule. Full-length type 2 EBNA2 also bound BS69 more efficiently in pull-down assays. Molecular weight analysis and low-resolution structures obtained using small-angle X-ray scattering showed that three BS69CC-MYND dimers bound two molecules of type 2 EBNA2TAD, in line with the dimeric state of full-length EBNA2 in vivo. Importantly, mutation of the third BS69 binding motif in type 2 EBNA2 improved B-cell growth maintenance and the transcriptional activation of the LMP1 and CXCR7 genes. Our data indicate that increased association with BS69 restricts the function of type 2 EBNA2 as a transcriptional activator and driver of B cell growth and may contribute to reduced B-cell transformation by type 2 EBV.


Subject(s)
Carrier Proteins/metabolism , Epstein-Barr Virus Nuclear Antigens/genetics , Epstein-Barr Virus Nuclear Antigens/metabolism , Herpesvirus 4, Human/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Amino Acid Sequence , Amino Acid Substitution , B-Lymphocytes/metabolism , B-Lymphocytes/virology , Binding Sites/genetics , Carrier Proteins/chemistry , Carrier Proteins/genetics , Cell Cycle Proteins , Cell Line , Cell Transformation, Viral/genetics , Cell Transformation, Viral/physiology , Co-Repressor Proteins , DNA-Binding Proteins , Epstein-Barr Virus Nuclear Antigens/chemistry , Genes, Viral , Herpesvirus 4, Human/classification , Herpesvirus 4, Human/pathogenicity , Host Microbial Interactions/genetics , Host Microbial Interactions/physiology , Humans , Models, Molecular , Mutation , Protein Interaction Domains and Motifs , Protein Structure, Quaternary , Trans-Activators/chemistry , Trans-Activators/genetics , Trans-Activators/metabolism , Viral Proteins/chemistry
7.
Toxicon ; 167: 123-133, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31181295

ABSTRACT

Bacillus thuringiensis crystal (Cry) proteins, used for decades as insecticidal toxins, are well known to be toxic to certain insects, but not to mammals. A novel group of Cry toxins called parasporins possess a strong cytocidal activity against some human cancer cells. Cry41Aa, or parasporin3, closely resembles commercially used insecticidal toxins and yet is toxic to the human hepatic cancer cell line HepG2, disrupting membranes of susceptible cells, similar to its insecticidal counterparts. In this study, we explore the protective effect that the common divalent metal chelator EGTA exerts on Cry41Aa's activity on HepG2 cells. Our results indicate that rather than interfering with a signalling pathway as a result of chelating cations in the medium, the chelator prevented the toxin's interaction with the membrane, and thus the subsequent steps of membrane damage and p38 phosphorylation, by removing cations bound to plasma membrane components. BAPTA and DTPA also inhibited Cry41Aa toxicity but at higher concentrations. We also show for the first time that Cry41Aa induces pore formation in planar lipid bilayers. This activity is not altered by EGTA, consistent with a biological context of chelation. Salt supplementation assays identified Ca2+, Mn2+ and Zn2+ as being able to reinstate Cry41Aa activity. Our data suggest the existence of one or more metal cation-dependent receptors in the Cry41Aa mechanism of action.


Subject(s)
Bacillus thuringiensis/chemistry , Bacterial Proteins/toxicity , Bacterial Toxins/toxicity , Cell Membrane/drug effects , Chelating Agents/pharmacology , Egtazic Acid/pharmacology , Lipid Bilayers/chemistry , Protective Agents/pharmacology , Bacterial Proteins/chemistry , Bacterial Toxins/chemistry , Cell Membrane/chemistry , Hep G2 Cells , Humans , Ions , Models, Molecular , Patch-Clamp Techniques
9.
PLoS Biol ; 16(10): e2005752, 2018 10.
Article in English | MEDLINE | ID: mdl-30359362

ABSTRACT

The complex life cycle of oncogenic human papillomavirus (HPV) initiates in undifferentiated basal epithelial keratinocytes where expression of the E6 and E7 oncogenes is restricted. Upon epithelial differentiation, E6/E7 transcription is increased through unknown mechanisms to drive cellular proliferation required to support virus replication. We report that the chromatin-organising CCCTC-binding factor (CTCF) promotes the formation of a chromatin loop in the HPV genome that epigenetically represses viral enhancer activity controlling E6/E7 expression. CTCF-dependent looping is dependent on the expression of the CTCF-associated Yin Yang 1 (YY1) transcription factor and polycomb repressor complex (PRC) recruitment, resulting in trimethylation of histone H3 at lysine 27. We show that viral oncogene up-regulation during cellular differentiation results from YY1 down-regulation, disruption of viral genome looping, and a loss of epigenetic repression of viral enhancer activity. Our data therefore reveal a key role for CTCF-YY1-dependent looping in the HPV life cycle and identify a regulatory mechanism that could be disrupted in HPV carcinogenesis.


Subject(s)
CCCTC-Binding Factor/metabolism , Papillomaviridae/genetics , YY1 Transcription Factor/metabolism , CCCTC-Binding Factor/genetics , Cell Differentiation/genetics , Chromatin/physiology , DNA-Binding Proteins/genetics , Down-Regulation , Epigenesis, Genetic/genetics , Histones/genetics , Humans , Promoter Regions, Genetic/genetics , Repressor Proteins , Transcription Factors , Transcriptional Activation/genetics , Virus Replication/genetics , Virus Replication/physiology , YY1 Transcription Factor/genetics
10.
J Virol ; 92(19)2018 10 01.
Article in English | MEDLINE | ID: mdl-30021904

ABSTRACT

The oncogenic microRNA (miRNA) miR-155 is the most frequently upregulated miRNA in Epstein-Barr virus (EBV)-positive B cell malignancies and is upregulated in other nonviral lymphomas. Both EBV nuclear antigen 2 (EBNA2) and the B cell transcription factor interferon regulatory factor 4 (IRF4) are known to activate transcription of the host cell gene from which miR-155 is processed (miR-155HG; BIC). EBNA2 also activates IRF4 transcription, indicating that EBV may upregulate miR-155 through direct and indirect mechanisms. The mechanism of transcriptional regulation of IRF4 and miR-155HG by EBNA2, however, has not been defined. We demonstrate that EBNA2 can activate IRF4 and miR-155HG expression through specific upstream enhancers that are dependent on the Notch signaling transcription factor RBPJ, a known binding partner of EBNA2. We demonstrate that in addition to the activation of the miR-155HG promoter, IRF4 can also activate miR-155HG via the upstream enhancer also targeted by EBNA2. Gene editing to remove the EBNA2- and IRF4-responsive miR-155HG enhancer located 60 kb upstream of miR-155HG led to reduced miR-155HG expression in EBV-infected cells. Our data therefore demonstrate that specific RBPJ-dependent enhancers regulate the IRF4-miR-155 expression network and play a key role in the maintenance of miR-155 expression in EBV-infected B cells. These findings provide important insights that will improve our understanding of miR-155 control in B cell malignancies.IMPORTANCE MicroRNA miR-155 is expressed at high levels in many human cancers, particularly lymphomas. Epstein-Barr virus (EBV) infects human B cells and drives the development of numerous lymphomas. Two genes carried by EBV (LMP1 and EBNA2) upregulate miR-155 expression, and miR-155 expression is required for the growth of EBV-infected B cells. We show that the EBV transcription factor EBNA2 upregulates miR-155 expression by activating an enhancer upstream from the miR-155 host gene (miR-155HG) from which miR-155 is derived. We show that EBNA2 also indirectly activates miR-155 expression through enhancer-mediated activation of IRF4 IRF4 then activates both the miR-155HG promoter and the upstream enhancer, independently of EBNA2. Gene editing to remove the miR-155HG enhancer leads to a reduction in miR-155HG expression. We therefore identify enhancer-mediated activation of miR-155HG as a critical step in promoting B cell growth and a likely contributor to lymphoma development.


Subject(s)
B-Lymphocytes/metabolism , Enhancer Elements, Genetic , Epstein-Barr Virus Infections/metabolism , Gene Expression Regulation , Herpesvirus 4, Human/physiology , MicroRNAs/genetics , B-Lymphocytes/pathology , B-Lymphocytes/virology , Cells, Cultured , Epstein-Barr Virus Infections/pathology , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Nuclear Antigens/genetics , Epstein-Barr Virus Nuclear Antigens/metabolism , Humans , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Promoter Regions, Genetic , Viral Proteins/genetics , Viral Proteins/metabolism
11.
Nucleic Acids Res ; 46(7): 3707-3725, 2018 04 20.
Article in English | MEDLINE | ID: mdl-29385536

ABSTRACT

Response gene to complement-32 (RGC-32) activates cyclin-dependent kinase 1, regulates the cell cycle and is deregulated in many human tumours. We previously showed that RGC-32 expression is upregulated by the cancer-associated Epstein-Barr virus (EBV) in latently infected B cells through the relief of translational repression. We now show that EBV infection of naïve primary B cells also induces RGC-32 protein translation. In EBV-immortalised cell lines, we found that RGC-32 depletion resulted in cell death, indicating a key role in B cell survival. Studying RGC-32 translational control in EBV-infected cells, we found that the RGC-32 3'untranslated region (3'UTR) mediates translational repression. Repression was dependent on a single Pumilio binding element (PBE) adjacent to the polyadenylation signal. Mutation of this PBE did not affect mRNA cleavage, but resulted in increased polyA tail length. Consistent with Pumilio-dependent recruitment of deadenylases, we found that depletion of Pumilio in EBV-infected cells increased RGC-32 protein expression and polyA tail length. The extent of Pumilio binding to the endogenous RGC-32 mRNA in EBV-infected cell lines also correlated with RGC-32 protein expression. Our data demonstrate the importance of RGC-32 for the survival of EBV-immortalised B cells and identify Pumilio as a key regulator of RGC-32 translation.


Subject(s)
Burkitt Lymphoma/genetics , Cell Cycle Proteins/genetics , Herpesvirus 4, Human/genetics , Muscle Proteins/genetics , Nerve Tissue Proteins/genetics , Protein Biosynthesis , RNA-Binding Proteins/genetics , Transcription Factors/genetics , 3' Untranslated Regions/genetics , B-Lymphocytes/virology , Burkitt Lymphoma/pathology , Burkitt Lymphoma/virology , CDC2 Protein Kinase/genetics , Cell Cycle/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Herpesvirus 4, Human/pathogenicity , Humans , Poly A/genetics , Protein Binding/genetics , RNA 3' Polyadenylation Signals/genetics
12.
Curr Opin Virol ; 26: 149-155, 2017 10.
Article in English | MEDLINE | ID: mdl-28910751

ABSTRACT

The oncogenic Epstein-Barr virus (EBV) growth transforms B cells and drives lymphoma and carcinoma development. The virus encodes four key transcription factors (EBNA2, EBNA3A, EBNA3B and EBNA3C) that hijack host cell factors to bind gene control elements and reprogramme infected B cells. These viral factors predominantly target long-range enhancers to alter the expression of host cell genes that control B cell growth and survival and facilitate virus persistence. Enhancer and super-enhancer binding by these EBNAs results in large-scale reorganisation of three-dimensional enhancer-promoter architecture to drive the overexpression of oncogenes, the silencing of tumour suppressors and the modulation of transcription, cell-cycle progression, migration and adhesion.


Subject(s)
B-Lymphocytes/virology , Carcinogenesis , Chromatin/metabolism , Herpesvirus 4, Human/pathogenicity , Host-Pathogen Interactions , Cell Transformation, Viral , Humans , Transcription Factors/metabolism , Viral Proteins/metabolism
13.
Biochem J ; 474(10): 1591-1602, 2017 04 28.
Article in English | MEDLINE | ID: mdl-28341807

ABSTRACT

Understanding how certain protein toxins from the normally insecticidal bacterium Bacillus thuringiensis (Bt) target human cell lines has implications for both the risk assessment of products containing these toxins and potentially for cancer therapy. This understanding requires knowledge of whether the human cell active toxins work by the same mechanism as their insecticidal counterparts or by alternative ones. The Bt Cry41Aa (also known as Parasporin3) toxin is structurally related to the toxins synthesised by commercially produced transgenic insect-resistant plants, with the notable exception of an additional C-terminal ß-trefoil ricin domain. To better understand its mechanism of action, we developed an efficient expression system for the toxin and created mutations in regions potentially involved in the toxic mechanism. Deletion of the ricin domain did not significantly affect the activity of the toxin against the human HepG2 cell line, suggesting that this region was not responsible for the mammalian specificity of Cry41Aa. Various biochemical assays suggested that unlike some other human cell active toxins from Bt Cry41Aa did not induce apoptosis, but that its mechanism of action was consistent with that of a pore-forming toxin. The toxin induced a rapid and significant decrease in metabolic activity. Adenosine triphosphate depletion, cell swelling and membrane damage were also observed. An exposed loop region believed to be involved in receptor binding of insecticidal Cry toxins was shown to be important for the activity of Cry41Aa against HepG2 cells.


Subject(s)
Bacillus thuringiensis/metabolism , Bacterial Proteins/toxicity , Bacterial Toxins/toxicity , Endotoxins/toxicity , Hepatocytes/drug effects , Models, Molecular , Pore Forming Cytotoxic Proteins/toxicity , Adenosine Triphosphate/antagonists & inhibitors , Adenosine Triphosphate/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Toxins/chemistry , Bacterial Toxins/genetics , Bacterial Toxins/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Membrane Permeability/drug effects , Cell Size/drug effects , Cell Survival/drug effects , Endotoxins/chemistry , Endotoxins/genetics , Endotoxins/metabolism , HeLa Cells , Hep G2 Cells , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Insecticides/chemistry , Insecticides/metabolism , Insecticides/toxicity , Mutation , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Peptide Fragments/toxicity , Pore Forming Cytotoxic Proteins/chemistry , Pore Forming Cytotoxic Proteins/genetics , Pore Forming Cytotoxic Proteins/metabolism , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/toxicity , Structural Homology, Protein
14.
Adv Exp Med Biol ; 962: 283-298, 2017.
Article in English | MEDLINE | ID: mdl-28299664

ABSTRACT

RUNX1 and RUNX3 are the main RUNX genes expressed in B lymphocytes. Both are expressed throughout B-cell development and play key roles at certain key developmental transitions. The tumour-associated Epstein-Barr virus (EBV) has potent B-cell transforming ability and manipulates RUNX3 and RUNX1 transcription through novel mechanisms to control B cell growth. In contrast to resting mature B cells where RUNX1 expression is high, in EBV-infected cells RUNX1 levels are low and RUNX3 levels are high. Downregulation of RUNX1 in these cells results from cross-regulation by RUNX3 and serves to relieve RUNX1-mediated growth repression. RUNX3 is upregulated by the EBV transcription factor (TF) EBNA2 and represses RUNX1 transcription through RUNX sites in the RUNX1 P1 promoter. Recent analysis revealed that EBNA2 activates RUNX3 transcription through an 18 kb upstream super-enhancer in a manner dependent on the EBNA2 and Notch DNA-binding partner RBP-J. This super-enhancer also directs RUNX3 activation by two further RBP-J-associated EBV TFs, EBNA3B and 3C. Counter-intuitively, EBNA2 also hijacks RBP-J to target a super-enhancer region upstream of RUNX1 to maintain some RUNX1 expression in certain cell backgrounds, although the dual functioning EBNA3B and 3C proteins limit this activation. Interestingly, the B-cell genome binding sites of EBV TFs overlap extensively with RUNX3 binding sites and show enrichment for RUNX motifs. Therefore in addition to B-cell growth manipulation through the long-range control of RUNX transcription, EBV may also use RUNX proteins as co-factors to deregulate the transcription of many B cell genes during immortalisation.


Subject(s)
B-Lymphocytes/metabolism , Core Binding Factor alpha Subunits/metabolism , Animals , B-Lymphocytes/virology , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/metabolism , Humans , Lymphocyte Activation/genetics , Transcription, Genetic/genetics , Transcriptional Activation/genetics , Viral Proteins/metabolism
15.
Elife ; 52016 08 04.
Article in English | MEDLINE | ID: mdl-27490482

ABSTRACT

Lymphomagenesis in the presence of deregulated MYC requires suppression of MYC-driven apoptosis, often through downregulation of the pro-apoptotic BCL2L11 gene (Bim). Transcription factors (EBNAs) encoded by the lymphoma-associated Epstein-Barr virus (EBV) activate MYC and silence BCL2L11. We show that the EBNA2 transactivator activates multiple MYC enhancers and reconfigures the MYC locus to increase upstream and decrease downstream enhancer-promoter interactions. EBNA2 recruits the BRG1 ATPase of the SWI/SNF remodeller to MYC enhancers and BRG1 is required for enhancer-promoter interactions in EBV-infected cells. At BCL2L11, we identify a haematopoietic enhancer hub that is inactivated by the EBV repressors EBNA3A and EBNA3C through recruitment of the H3K27 methyltransferase EZH2. Reversal of enhancer inactivation using an EZH2 inhibitor upregulates BCL2L11 and induces apoptosis. EBV therefore drives lymphomagenesis by hijacking long-range enhancer hubs and specific cellular co-factors. EBV-driven MYC enhancer activation may contribute to the genesis and localisation of MYC-Immunoglobulin translocation breakpoints in Burkitt's lymphoma.


Subject(s)
Bcl-2-Like Protein 11/metabolism , Epstein-Barr Virus Nuclear Antigens/metabolism , Gene Silencing , Herpesvirus 4, Human/enzymology , Herpesvirus 4, Human/physiology , Proto-Oncogene Proteins c-myc/metabolism , Transcriptional Activation , Bcl-2-Like Protein 11/genetics , DNA Helicases/metabolism , Nuclear Proteins/metabolism , Promoter Regions, Genetic , Protein Binding , Proto-Oncogene Proteins c-myc/genetics , Repressor Proteins/metabolism , Trans-Activators/metabolism , Transcription Factors/metabolism
16.
Nucleic Acids Res ; 44(10): 4636-50, 2016 06 02.
Article in English | MEDLINE | ID: mdl-26883634

ABSTRACT

In B cells infected by the cancer-associated Epstein-Barr virus (EBV), RUNX3 and RUNX1 transcription is manipulated to control cell growth. The EBV-encoded EBNA2 transcription factor (TF) activates RUNX3 transcription leading to RUNX3-mediated repression of the RUNX1 promoter and the relief of RUNX1-directed growth repression. We show that EBNA2 activates RUNX3 through a specific element within a -97 kb super-enhancer in a manner dependent on the expression of the Notch DNA-binding partner RBP-J. We also reveal that the EBV TFs EBNA3B and EBNA3C contribute to RUNX3 activation in EBV-infected cells by targeting the same element. Uncovering a counter-regulatory feed-forward step, we demonstrate EBNA2 activation of a RUNX1 super-enhancer (-139 to -250 kb) that results in low-level RUNX1 expression in cells refractory to RUNX1-mediated growth inhibition. EBNA2 activation of the RUNX1 super-enhancer is also dependent on RBP-J. Consistent with the context-dependent roles of EBNA3B and EBNA3C as activators or repressors, we find that these proteins negatively regulate the RUNX1 super-enhancer, curbing EBNA2 activation. Taken together our results reveal cell-type-specific exploitation of RUNX gene super-enhancers by multiple EBV TFs via the Notch pathway to fine tune RUNX3 and RUNX1 expression and manipulate B-cell growth.


Subject(s)
B-Lymphocytes/virology , Core Binding Factor alpha Subunits/genetics , Enhancer Elements, Genetic , Epstein-Barr Virus Nuclear Antigens/metabolism , Transcription Factors/metabolism , Transcriptional Activation , B-Lymphocytes/metabolism , Cell Line , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 3 Subunit/genetics , Humans , Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism , Receptors, Notch/metabolism
18.
J Virol ; 88(16): 8743-53, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24850736

ABSTRACT

UNLABELLED: Sequence differences in the EBNA-2 protein mediate the superior ability of type 1 Epstein-Barr virus (EBV) to transform human B cells into lymphoblastoid cell lines compared to that of type 2 EBV. Here we show that changing a single amino acid (S442D) from serine in type 2 EBNA-2 to the aspartate found in type 1 EBNA-2 confers a type 1 growth phenotype in a lymphoblastoid cell line growth maintenance assay. This amino acid lies in the transactivation domain of EBNA-2, and the S442D change increases activity in a transactivation domain assay. The superior growth properties of type 1 EBNA-2 correlate with the greater induction of EBV LMP-1 and about 10 cell genes, including CXCR7. In chromatin immunoprecipitation assays, type 1 EBNA-2 is shown to associate more strongly with EBNA-2 binding sites near the LMP-1 and CXCR7 genes. Unbiased motif searching of the EBNA-2 binding regions of the differentially regulated cell genes identified an ETS-interferon regulatory factor composite element motif that closely corresponds to the sequences known to mediate EBNA-2 regulation of the LMP-1 promoter. It appears that the superior induction by type 1 EBNA-2 of the cell genes contributing to cell growth is due to their being regulated in a manner different from that for most EBNA-2-responsive genes and in a way similar to that for the LMP-1 gene. IMPORTANCE: The EBNA-2 transcription factor plays a key role in B cell transformation by EBV and defines the two EBV types. Here we identify a single amino acid (Ser in type 1 EBV, Asp in type 2 EBV) of EBNA-2 that determines the superior ability of type 1 EBNA-2 to induce a key group of cell genes and the EBV LMP-1 gene, which mediate the growth advantage of B cells infected with type 1 EBV. The EBNA-2 binding sites in these cell genes have a sequence motif similar to the sequence known to mediate regulation of the EBV LMP-1 promoter. Further detailed analysis of transactivation and promoter binding provides new insight into the physiological regulation of cell genes by EBNA-2.


Subject(s)
Amino Acids/metabolism , B-Lymphocytes/metabolism , B-Lymphocytes/virology , Epstein-Barr Virus Nuclear Antigens/metabolism , Viral Proteins/metabolism , Amino Acids/genetics , Aspartic Acid/genetics , Aspartic Acid/metabolism , Binding Sites/genetics , Cell Line , Chromatin Immunoprecipitation/methods , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Epstein-Barr Virus Nuclear Antigens/genetics , Genes, Viral/genetics , HEK293 Cells , Humans , Promoter Regions, Genetic/genetics , Receptors, CXCR/genetics , Receptors, CXCR/metabolism , Serine/genetics , Serine/metabolism , Transcriptional Activation/genetics , Viral Matrix Proteins/genetics , Viral Matrix Proteins/metabolism , Viral Proteins/genetics
19.
PLoS Pathog ; 9(9): e1003636, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24068937

ABSTRACT

Epstein-Barr virus (EBV) epigenetically reprogrammes B-lymphocytes to drive immortalization and facilitate viral persistence. Host-cell transcription is perturbed principally through the actions of EBV EBNA 2, 3A, 3B and 3C, with cellular genes deregulated by specific combinations of these EBNAs through unknown mechanisms. Comparing human genome binding by these viral transcription factors, we discovered that 25% of binding sites were shared by EBNA 2 and the EBNA 3s and were located predominantly in enhancers. Moreover, 80% of potential EBNA 3A, 3B or 3C target genes were also targeted by EBNA 2, implicating extensive interplay between EBNA 2 and 3 proteins in cellular reprogramming. Investigating shared enhancer sites neighbouring two new targets (WEE1 and CTBP2) we discovered that EBNA 3 proteins repress transcription by modulating enhancer-promoter loop formation to establish repressive chromatin hubs or prevent assembly of active hubs. Re-ChIP analysis revealed that EBNA 2 and 3 proteins do not bind simultaneously at shared sites but compete for binding thereby modulating enhancer-promoter interactions. At an EBNA 3-only intergenic enhancer site between ADAM28 and ADAMDEC1 EBNA 3C was also able to independently direct epigenetic repression of both genes through enhancer-promoter looping. Significantly, studying shared or unique EBNA 3 binding sites at WEE1, CTBP2, ITGAL (LFA-1 alpha chain), BCL2L11 (Bim) and the ADAMs, we also discovered that different sets of EBNA 3 proteins bind regulatory elements in a gene and cell-type specific manner. Binding profiles correlated with the effects of individual EBNA 3 proteins on the expression of these genes, providing a molecular basis for the targeting of different sets of cellular genes by the EBNA 3s. Our results therefore highlight the influence of the genomic and cellular context in determining the specificity of gene deregulation by EBV and provide a paradigm for host-cell reprogramming through modulation of enhancer-promoter interactions by viral transcription factors.


Subject(s)
Cellular Reprogramming , Enhancer Elements, Genetic , Epstein-Barr Virus Nuclear Antigens/metabolism , Gene Targeting , Herpesvirus 4, Human/metabolism , Models, Biological , Repressor Proteins/metabolism , Alcohol Oxidoreductases/chemistry , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Binding Sites , Binding, Competitive , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line , Co-Repressor Proteins , Epstein-Barr Virus Infections/metabolism , Epstein-Barr Virus Infections/pathology , Epstein-Barr Virus Nuclear Antigens/chemistry , Epstein-Barr Virus Nuclear Antigens/genetics , Host-Pathogen Interactions , Humans , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Repressor Proteins/chemistry , Repressor Proteins/genetics , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism
20.
J Virol ; 86(9): 5165-78, 2012 May.
Article in English | MEDLINE | ID: mdl-22357270

ABSTRACT

Epstein-Barr virus (EBV) establishes a persistent latent infection in B lymphocytes and is associated with the development of numerous human tumors. Epstein-Barr nuclear antigen 3C (EBNA 3C) is essential for B-cell immortalization, has potent cell cycle deregulation capabilities, and functions as a regulator of both viral- and cellular-gene expression. We performed transcription profiling on EBNA 3C-expressing B cells and identified several chemokines and members of integrin receptor-signaling pathways, including CCL3, CCL4, CXCL10, CXCL11, ITGA4, ITGB1, ADAM28, and ADAMDEC1, as cellular target genes that could be repressed by the action of EBNA 3C alone. Chemotaxis assays demonstrated that downregulation of CXCL10 and -11 by EBNA 3C is sufficient to reduce the migration of cells expressing the CXCL10 and -11 receptor CXCR3. Gene repression by EBNA 3C was accompanied by decreased histone H3 lysine 9/14 acetylation and increased histone H3 lysine 27 trimethylation. In an EBV-positive cell line expressing all latent genes, we identified binding sites for EBNA 3C at ITGB1 and ITGA4 and in a distal regulatory region between ADAMDEC1 and ADAM28, providing the first demonstration of EBNA 3C association with cellular-gene control regions. Our data implicate indirect mechanisms in CXCL10 and CXCL11 repression by EBNA 3C. In summary, we have unveiled key cellular pathways repressed by EBNA 3C that are likely to contribute to the ability of EBV-immortalized cells to modulate immune responses, adhesion, and B-lymphocyte migration to facilitate persistence in the host.


Subject(s)
Antigens, Viral/metabolism , Down-Regulation/genetics , Integrins/genetics , Promoter Regions, Genetic , Signal Transduction , ADAM Proteins/genetics , Animals , Binding Sites , Cell Adhesion/genetics , Cell Line , Cell Migration Inhibition/genetics , Chemokines/genetics , Chemotaxis/genetics , Epstein-Barr Virus Nuclear Antigens , Gene Expression Regulation , Humans , Mice , Receptors, CXCR3/metabolism , Regulatory Elements, Transcriptional
SELECTION OF CITATIONS
SEARCH DETAIL