Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Phytother Res ; 14(3): 187-91, 2000 May.
Article in English | MEDLINE | ID: mdl-10815012

ABSTRACT

Ten compounds derived from plants indigenous to Northeast Brazil were examined for antiproliferative effects on human cells in vitro. The effects of these phytochemicals on cell growth were determined by the MTT microtitre assay with 3-day continuous drug exposure. Three human cell lines were used: CEM leukaemia, SW1573 lung tumour and CCD922 normal skin fibroblasts. Four active compounds were found with IC(50) values less than 10 microg/mL in the two cancer cell lines. Oncocalyxones A and C, both 1,4-anthracenediones from Auxemma oncocalyx (Boraginaceae), showed cytotoxicity with mean IC(50) values of 0.8-2, 7-8 and 12-13 microg/mL against CEM, SW1573 and CCD922, respectively. One diterpene and one flavonoid, both from Egletes viscosa (Compositae), were also active. 12-Acetoxy-hawtriwaic acid lactone was cytotoxic with mean IC(50) values of 6, 10 and 10 microg/mL, respectively. 4,5-Dihydroxy-3,3,7, 8-tetramethoxy flavone (ternatin) was only growth-inhibitory with mean IC(50) values of 2, 1 and 10 microg/mL, respectively. These four most active compounds were examined further for their effects on DNA integrity and on DNA synthesis. All but ternatin caused substantial DNA damage and marked inhibition of 5-bromo-2'-deoxyuridine incorporation within 24 h. This study demonstrated the antiproliferative activity of four novel phytochemicals, three of which are DNA-reactive and inhibit DNA synthesis. Further studies are warranted to evaluate these compounds for antitumour potential.


Subject(s)
Antineoplastic Agents, Phytogenic/toxicity , Plants, Medicinal , Anthraquinones/toxicity , Brazil , Cell Division/drug effects , Cell Line , Cell Survival/drug effects , Diterpenes/toxicity , Fibroblasts , Flavonoids/toxicity , Humans , Leukemia , Lung Neoplasms , Plants, Medicinal/chemistry , Skin , Tumor Cells, Cultured
2.
Eur J Cancer ; 35(5): 833-9, 1999 May.
Article in English | MEDLINE | ID: mdl-10505046

ABSTRACT

We investigated the potential mechanisms of tamoxifen cytotoxicity in the U-373, U-138, and U-87 human glioblastoma cell lines, namely interference with protein kinase C (PKC) activity, the oestrogen receptor, and/or the production of transforming growth factor beta 1 (TGF-beta 1). We further examined the effects of tamoxifen on the cytotoxicity exerted by gamma-radiation, 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), and etoposide in this cell line panel. Thus, the cells were treated for 4 days with tamoxifen, gamma-radiation, purified recombinant human TGF-beta 1 (rhTGF-beta 1), BCNU, or etoposide, either alone or at certain combinations. Cellular responses were evaluated with the sulphorhodamine B assay, as well as by multiple drug effect analysis, and related to PKC activities in particulate and cellular fractions; cellular oestrogen receptor contents; and the influence of rhTGF-beta 1 on cell growth. Tamoxifen inhibited cell proliferation as well as the phosphorylation capacity of the particulate, but not of the cytosolic fractions dose-dependently, at comparable kinetics, and at IC50 values of approximately 15 microM. At these concentrations, tamoxifen acted synergistically with gamma-radiation (4- to 6-fold) and additively with BCNU (approximately 2-fold), but did not affect etoposide cytotoxicity. The cells were negative to immunostaining for the oestrogen receptor, and rhRGF-beta 1 did not influence their growth up to 100 nm. Our data suggest that tamoxifen can sensitise cultured glioblastoma cells not to etoposide but to gamma-radiation and BCNU, possibly through interference with membrane PKC, supporting its evaluation in experimental protocols for primary malignant gliomas.


Subject(s)
Antineoplastic Agents/therapeutic use , Carmustine/therapeutic use , Etoposide/therapeutic use , Gamma Rays , Glioblastoma/drug therapy , Protein Kinase C/antagonists & inhibitors , Tamoxifen/therapeutic use , Transforming Growth Factor beta/pharmacology , Cell Division , Drug Synergism , Humans , Immunohistochemistry , Receptors, Estrogen/metabolism , Tumor Cells, Cultured/drug effects , Tumor Cells, Cultured/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL