Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 130
Filter
Add more filters











Publication year range
1.
Fish Shellfish Immunol ; 142: 109129, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37777098

ABSTRACT

Antimicrobial peptides (AMPs) are considered a novel approach to stimulate fish antiviral mechanisms for defense against a broad range of viral infections by enhancing immunomodulatory activities. Octominin is an AMP derived from the defense proteins of Octopus minor. In this study, preliminary screening of octominin against viral hemorrhagic septicemia virus (VHSV), infectious hematopoietic necrosis virus (IHNV), and infectious pancreatic necrosis virus (IPNV) was carried out. Moreover, immune responses upon octominin treatment and IHNV challenge were investigated using fathead minnow (FHM) cells. The CC50s of octominin for FHM and Chinook salmon embryo-214 (CHSE-214) cells were 2146.2 and 1865.2 µg/mL, respectively. With octominin treatment, EC50 resulted in 732.8, 435.1, and 925.9 µg/mL for VHSV, IHNV, and IPNV, respectively. The selectivity indices were 2.9, 4.9, and 2.0, respectively. The transcriptional analysis results demonstrated the induced transcription factors (Irf3; 143-fold, Irf7; 105-fold, and NF-κB; 8-fold), stress response gene (HspB8; 2-fold), and apoptosis functional gene (p53; 3-fold) in octominin treated (500 µg/mL) FHM cells for 48 h. Moreover, IHNV viral copy number was slightly decreased with the octominin treatment (500 µg/mL) in FHM cells. Overall results suggest that octominin could be a potential antiviral agent, although further studies are necessary to understand its mode of action and the mechanism of its antiviral activity.


Subject(s)
Cyprinidae , Fish Diseases , Infectious hematopoietic necrosis virus , Infectious pancreatic necrosis virus , Animals , Cell Line , Antimicrobial Peptides , Infectious pancreatic necrosis virus/physiology , Infectious hematopoietic necrosis virus/physiology , Antiviral Agents/pharmacology , Immunity
2.
Int J Mol Sci ; 24(18)2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37762357

ABSTRACT

Most clinically isolated Candida albicans strains are drug-resistant, emphasizing the urgent need to discover alternative therapies. In this study, the previously characterized Octominin was modified into a shorter peptide with an 18 amino acid sequence (1GWLIRGAIHAGKAIHGLI18) and named Octominin II. The secondary structure of Octominin II is a random coil with a helical turn and a positive charge (+2.46) with a hydrophobic ratio of 0.46. Octominin II inhibited C. albicans, C. auris, and C. glabrata with minimum inhibitory and fungicidal concentrations against C. albicans of 80 and 120 µg/mL, respectively. Field emission scanning electron microscopy confirmed that Octominin II treatment caused ultra-structural changes in C. albicans cells. Furthermore, membrane permeability results for the fluorescent indicator propidium iodide revealed modifications in cell wall integrity in Octominin II-treated C. albicans. Octominin II treatment increases the production of reactive oxygen species (ROS) in C. albicans. Gene expression studies revealed that Octominin II suppresses virulence genes of C. albicans such as CDR1, TUP1, AGE3, GSC1, SAP2, and SAP9. In addition, a nucleic acid binding assay revealed that Octominin II degraded genomic DNA and total RNA in a concentration-dependent manner. Additionally, Octominin II inhibited and eradicated C. albicans biofilm formation. Octominin II showed relatively less cytotoxicity on raw 264.7 cells (0-200 µg/mL) and hemolysis activity on murine erythrocytes (6.25-100 µg/mL). In vivo studies confirmed that Octominin II reduced the pathogenicity of C. albicans. Overall, the data suggests that Octominin II inhibits C. albicans by employing different modes of action and can be a promising candidate for controlling multidrug-resistant Candida infections.


Subject(s)
Antifungal Agents , Candida albicans , Animals , Mice , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antimicrobial Peptides , Antimicrobial Cationic Peptides/pharmacology , Candida glabrata , Microbial Sensitivity Tests , Biofilms
3.
Antibiotics (Basel) ; 12(3)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36978490

ABSTRACT

Acinetobacter baumannii is an opportunistic bacterial pathogen that causes severe infections in immunocompromised individuals. A. baumannii forms biofilm and produces extracellular matrix, which supports bacteria to survive under harsh conditions and be resistant to antibacterial treatments. In the present study, we investigated the biofilm and quorum-sensing inhibitory effects of antimicrobial peptide, octopromycin in A. baumannii. Field emission-scanning electron microscopy results clearly showed significantly reduced biofilm mass and caused a collapse in biofilm architecture at the minimum inhibitory concentration (50 µg/mL) and minimum bactericidal concentration (200 µg/mL) of octopromycin. Antibiotic-resistant persister cells of A. baumannii were successfully killed by octopromycin treatment, and it inhibited violacein production in Chromobacterium violaceum in a concentration-dependent manner. Octopromycin also inhibited alginate production, surface movements (swarming and swimming), and twitching motility of A. baumannnii, confirming its anti-quorum-sensing activity. Multiple metabolic pathways, two-component regulation systems, quorum-sensing, and antibiotic synthesis-related pathways in A. baumannii biofilms were strongly affected by octopromycin treatment. The collective findings indicate that the antibacterial peptide octopromycin may control A. baumannii biofilms through multi-target interactions. Octopromycin could be a desirable therapeutic option for the prevention and control of A. baumannii infections.

4.
Int J Mol Sci ; 23(24)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36555539

ABSTRACT

Antimicrobial peptides (AMPs) have become a key solution for controlling multi-drug-resistant (MDR) pathogens, and the nanoencapsulation of AMPs has been used as a strategy to overcome challenges, such as poor stability, adverse interactions, and toxicity. In previous studies, we have shown the potent antimicrobial activity of Octominin against Candida albicans and Acinetobacter baumannii. This study is focused on the nanoencapsulation of Octominin with chitosan (CS) and carboxymethyl chitosan (CMC) as a drug delivery system using the ionotropic gelation technique. Octominin-encapsulated CS nanoparticles (Octominin-CNPs) had an average diameter and zeta potential of 372.80 ± 2.31 nm and +51.23 ± 0.38 mV, respectively, while encapsulation efficiency and loading capacity were 96.49 and 40.20%, respectively. Furthermore, Octominin-CNPs showed an initial rapid and later sustained biphasic release profile, and up to 88.26 ± 3.26% of the total Octominin release until 96 h. Transmission electron microscopy data showed the irregular shape of the Octominin-CNPs with aggregations. In vitro and in vivo toxicity of Octominin-CNPs was significantly lower than the Octominin at higher concentrations. The antifungal and antibacterial activities of Octominin-CNPs were slightly higher than those of Octominin in both the time-kill kinetic and microbial viability assays against C. albicans and A. baumannii, respectively. Mode of action assessments of Octominin-CNPs revealed that morphological alterations, cell membrane permeability alterations, and reactive oxygen species generation were slightly higher than those of Octominin at the tested concentrations against both C. albicans and A. baumannii. In antibiofilm activity assays, Octominin-CNPs showed slightly higher biofilm inhibition and biofilm eradication activities compared to that of Octominin. In conclusion, Octominin was successfully encapsulated into CS, and Octominin-CNPs showed lower toxicity and greater antimicrobial activity against C. albicans and A. baumannii compared to Octominin.


Subject(s)
Chitosan , Nanoparticles , Chitosan/pharmacology , Antifungal Agents/pharmacology , Antimicrobial Peptides , Anti-Bacterial Agents/pharmacology , Biofilms
5.
Pharmaceuticals (Basel) ; 15(8)2022 Jul 27.
Article in English | MEDLINE | ID: mdl-36015076

ABSTRACT

Octoprohibitin is a synthetic antimicrobial peptide (AMP), derived from the prohibitin-2 gene of Octopus minor. It showed substantial activity against multidrug resistant (MDR) Acinetobacter baumannii with a minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 200 and 400 µg/mL, respectively. Time-kill kinetics and bacterial viability assays confirmed the concentration-dependent antibacterial activity of octoprohibitin against A. baumannii. The morphology and ultrastructure of A. baumannii were altered by treatment with octoprohibitin at the MIC and MBC levels. Furthermore, propidium iodide-fluorescein diacetate (PI-FDA) staining and 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) staining of octoprohibitin-treated A. baumannii revealed membrane permeability alterations and reactive oxygen species (ROS) generation, respectively. Agarose gel retardation results confirmed the DNA-binding ability of octoprohibitin to the genomic DNA of A. baumannii. Furthermore, octoprohibitin showed concentration-dependent inhibition of biofilm formation and eradication. The minimum biofilm inhibition concentration (MBIC) and minimum biofilm eradication concentration (MBEC) of octoprohibitin were 1000 and 1460 µg/mL, respectively. Octoprohibitin produced no significant cytotoxicity up to 800 µg/mL, and no hemolysis was observed up to 400 µg/mL. Furthermore, in vivo analysis in an A. baumannii-infected zebrafish model confirmed the effective bactericidal activity of octoprohibitin with higher cumulative survival percent (46.6%) and fewer pathological signs. Histological analysis showed reduced alterations in the gut, kidney, and gill tissues in the octoprohibitin-treated group compared with those in the phosphate-buffered saline (PBS)-treated group. In conclusion, our results suggest that octoprohibitin is a potential antibacterial and antibiofilm agent against MDR A. baumannii.

6.
Fish Shellfish Immunol ; 117: 82-94, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34311097

ABSTRACT

The emergence of carbapenem-resistant Acinetobacter baumannii has increased the risk of nosocomial infections, which pose a huge health threat. There is an urgent need to develop alternative therapies, including broad-spectrum antimicrobial peptides. In this study, we designed, characterized, and studied the antibacterial, antibiofilm effects and possible mode of actions of a novel synthetic peptide Octopromycin, derived from the proline-rich protein 5 of Octopus minor. Octopromycin consists of 38 amino acids, (+5) net positive charge, high hydrophobic residue ratio (36%), and two α-helix secondary structures. The minimum inhibitory concentration and minimum bactericidal concentration against A. baumannii were 50 and 200 µg/mL, respectively. Time-kill kinetics and bacterial viability assays confirmed the concentration-dependent antibacterial activity of Octopromycin. Field emission scanning electron microscopy images clearly showed ultrastructural alterations in Octopromycin-treated A. baumannii cells. Propidium iodide penetrated into Octopromycin-treated A. baumannii cells, demonstrating the loss of cell membrane integrity. Octopromycin treatment increased the production of reactive oxygen species in a concentration-dependent manner, and it inhibited the biofilm formation and showed biofilm eradication activity against A. baumannii. In vitro and in vivo safety evaluation revealed that Octopromycin was nontoxic to HEK293T and Raw 264.7 cells (<400 µg/mL), as well as mice red blood cells (<300 µg/mL), and zebrafish embryos (<4 µg/mL). An in vivo study results revealed that the A. baumannii-infected fish treated with Octopromycin exhibited a significantly higher relative percent survival (37.5%) than the infected mock-treated fish with PBS (16.6%). Furthermore, a decreased bacterial load and fewer alterations in histological analysis confirmed the successful control of A. baumannii by Octopromycin in vivo. Collectively, the results indicate that the antibacterial peptide Octopromycin may achieve rapid control of A. baumannii through multi-target interactions; it presents a desirable therapeutic option for the prevention and control of the infections.


Subject(s)
Acinetobacter Infections/drug therapy , Anti-Bacterial Agents/therapeutic use , Antimicrobial Cationic Peptides/therapeutic use , Fish Diseases/drug therapy , Octopodiformes , Acinetobacter Infections/pathology , Acinetobacter Infections/veterinary , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/growth & development , Acinetobacter baumannii/physiology , Animals , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Biofilms/drug effects , Cell Survival/drug effects , Drug Resistance, Multiple, Bacterial/drug effects , Embryo, Nonmammalian , Erythrocytes/drug effects , Fish Diseases/pathology , HEK293 Cells , Humans , Kidney/drug effects , Kidney/pathology , Mice , RAW 264.7 Cells , Zebrafish
7.
Int J Mol Sci ; 22(10)2021 May 19.
Article in English | MEDLINE | ID: mdl-34069596

ABSTRACT

Acinetobacter baumannii is a serious nosocomial pathogen with multiple drug resistance (MDR), the control of which has become challenging due to the currently used antibiotics. Our main objective in this study is to determine the antibacterial and antibiofilm activities of the antimicrobial peptide, Octominin, against MDR A. baumannii and derive its possible modes of actions. Octominin showed significant bactericidal effects at a low minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of 5 and 10 µg/mL, respectively. Time-kill kinetic analysis and bacterial viability tests revealed that Octominin showed a concentration-dependent antibacterial activity. Field-emission scanning electron microscopy (FE-SEM) analysis revealed that Octominin treatment altered the morphology and membrane structure of A. baumannii. Propidium iodide (PI) and reactive oxygen species (ROS) generation assays showed that Octominin increased the membrane permeability and ROS generation in A. baumannii, thereby causing bacterial cell death. Further, a lipopolysaccharides (LPS) binding assay showed an Octominin concentration-dependent LPS neutralization ability. Biofilm formation inhibition and eradication assays further revealed that Octominin inhibited biofilm formation and showed a high biofilm eradication activity against A. baumannii. Furthermore, up to a concentration of 100 µg/mL, Octominin caused no hemolysis and cell viability changes in mammalian cells. An in vivo study in zebrafish showed that the Octominin-treated group had a significantly higher relative percentage survival (54.1%) than the untreated group (16.6%). Additionally, a reduced bacterial load and fewer alterations in histological analysis confirmed the successful control of A. baumannii by Octominin in vivo. Collectively, these data suggest that Octominin exhibits significant antibacterial and antibiofilm activities against the multidrug-resistant A. baumannii, and this AMP can be developed further as a potent AMP for the control of antibiotic resistance.


Subject(s)
Acinetobacter baumannii/drug effects , Antimicrobial Cationic Peptides/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Peptide Fragments/pharmacology , Acinetobacter Infections/microbiology , Acinetobacter baumannii/metabolism , Animals , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/metabolism , Biofilms/drug effects , Drug Resistance, Multiple/drug effects , Drug Synergism , Kinetics , Microbial Viability/drug effects , Models, Animal , Peptide Fragments/metabolism , Zebrafish
8.
Fish Shellfish Immunol ; 110: 23-34, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33378697

ABSTRACT

Streptococcus parauberis is a pathogenic gram-positive bacterium that causes streptococcosis infection in fish. Since S. parauberis is becoming resistant to multiple antibiotics, the development of alternatives, such as antimicrobial peptides, has gained great attention. Octominin, derived from the defense protein of Octopus minor, showed a significant antimicrobial activity against multidrug resistance S. parauberis, with a minimum inhibitory concentration (MIC) and a minimum bactericidal concentration (MBC) of 50 and 100 µg/mL, respectively. Furthermore, time-kill kinetics, agar diffusion, and bacterial viability assays confirmed the concentration-dependent antibacterial activity of Octominin against S. parauberis. Field emission scanning electron microscopy analysis showed morphological and ultra-structural changes in S. parauberis upon Octominin treatment. Moreover, Octominin treatment demonstrated changes in membrane permeability, induced reactive oxygen species (ROS), and its binding ability to genomic DNA, suggesting its strong bactericidal activity with multiple modes of action. We confirmed the inhibition of biofilm formation and the eradication of existing biofilms in a concentration-dependent manner. Additionally, Octominin on S. parauberis at transcriptional level exhibited downregulation of membrane formation (pgsA and cds1), DNA repairing (recF), biofilm formation (pgaB and epsF) genes, while upregulation of ROS detoxification (sodA) and DNA protecting (ahpF) related genes. An in vivo study confirmed a significantly (P < 0.05) higher relative percentage survival in Octominin-treated larval zebrafish exposed to S. parauberis (93.3%) compared to the control group (20.0%). Collectively, our results confirm that Octominin could be a potential antibacterial and anti-biofilm agent against S. parauberis.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Biofilms/drug effects , Microbial Viability/drug effects , Peptide Fragments/pharmacology , Streptococcus/drug effects , Animals , Drug Resistance, Multiple, Bacterial , Fish Diseases/prevention & control , Microbial Sensitivity Tests/veterinary , Microscopy, Electron, Scanning , Streptococcal Infections/prevention & control , Streptococcal Infections/veterinary , Streptococcus/physiology , Streptococcus/ultrastructure
9.
J Vet Sci ; 21(6): e86, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33263233

ABSTRACT

BACKGROUND: Dicyemids are parasites found in the renal sac of cephalopods. The first species of dicyemid was found from kidneys of the Korean common octopus Callistoctopus minor. OBJECTIVES: This study aimed to identify the dicyemid and investigate the effect on renal sac of host. METHODS: In this study, we compared the morphological characteristics of isolate to dicyemids (Dicyema sphyrocephalum, Dicyema clavatum, and Dicyema dolichocephalum) reported from C. minor in Japan. We compared the 18S ribosomal RNA (rDNA) and cytochrome c oxidase subunit I (COI) sequences of isolate to the sequences of D. shyrocephalum and D. clavatum. The infected octopuses renal tissues were histologically compared with the tissues of uninfected individuals. RESULTS: The morphological characteristic of this isolated species corresponds to D. sphyrocephalum. The sequences similarities of 18S rDNA and COI gene of isolate are 99.7% and 98.1% with D. sphyrocephalum. We observed morphological changes in the epithelia folds of kidney at the dicyemids attached areas. CONCLUSIONS: The present study identified the isolate as D. sphyrocephalum and this is the first report of dicyemid species from Republic of Korea. Further studies on the effects of dicyemids on growth and health status of cephalopods will be needed.


Subject(s)
Animal Distribution , Invertebrates/physiology , Octopodiformes/parasitology , Animals , Electron Transport Complex IV/analysis , Invertebrates/genetics , Kidney/parasitology , Phylogeny , RNA, Ribosomal, 18S/analysis , Republic of Korea
10.
Molecules ; 25(13)2020 Jun 29.
Article in English | MEDLINE | ID: mdl-32610600

ABSTRACT

Purified porcine gastric mucin (PGM) is an alternative biomaterial to native mucin which displays multifunctional properties for exploring a wide range of biomedical applications. The present study evaluated the in vitro (RAW 264.7 macrophage cells) and in vivo (zebrafish embryos and larvae) bioactivities of PGM. The median lethal concentration (LC50) of PGM was 197.9 µg/mL for embryos, while it was non-toxic to RAW 264.7 cells, even at 500 µg/mL. Following PGM exposure (100 µg/mL), a higher embryo hatching rate (59.9%) was observed at 48 h post fertilization, compared to the control (30.6%). Protective effects of PGM from pathogenic Aeromonas hydrophila were demonstrated by high larvae survival rates of 85.0% and 94.0% at 50 and 100 µg/mL of PGM exposure, respectively. Heat tolerance effect of PGM (50 and 100 µg/mL) on larvae (40 °C for 48 h) was confirmed by 75% and 100% of survival rates, respectively. Additionally, PGM reduced the A. hydrophila-induced reactive oxygen species (ROS) generation in larvae. The qRT-PCR results in PGM exposed larvae exhibited induction of immune-related genes (tlr5a and tlr5b, myd88, c-rel, il1ß, tnf-α, il6, il10, cxcl18b, ccl34a.4, defbl1, hamp, ctsd, muc2.1, muc5.1, muc5.2, and muc5.3), stress response (hsp70, hsp90aa1.1, and hsp90ab1), and antioxidant genes (cat and sod1). Moreover, our results revealed that PGM involved in the regulation of transcriptional gene induction increases Hsp90 protein in the zebrafish larvae. Furthermore, upregulation of Il6, Il10, Tnfα, Ccl3, Defa-rs2, Defa21 and Camp and antioxidant genes (Sod2 and Cat) were observed in PGM-exposed RAW 264.7 cells. Overall findings confirmed the activation of immune responses, disease resistance against pathogenic bacteria, heat tolerance, and ROS-scavenging properties by PGM, which may provide insights into new applications for PGM as a multifunctional immunomodulator.


Subject(s)
Antioxidants/pharmacology , Gastric Mucins/pharmacology , Immunomodulation/drug effects , Oxidative Stress/drug effects , Aeromonas hydrophila/drug effects , Aeromonas hydrophila/pathogenicity , Animals , Antioxidants/chemistry , Disease Resistance/genetics , Embryo, Mammalian , Embryo, Nonmammalian , Gastric Mucins/chemistry , Humans , Larva/drug effects , Mice , RAW 264.7 Cells , Swine/metabolism , Zebrafish/growth & development
11.
Biomolecules ; 10(4)2020 03 27.
Article in English | MEDLINE | ID: mdl-32230927

ABSTRACT

Inflammation is a well-organized innate immune response that plays an important role during the pathogen attacks and mechanical injuries. The Toll-like receptors (TLR)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is a major signal transduction pathway observed in RAW 264.7 macrophages during the inflammatory responses. Here, we investigated the anti-inflammatory effects of Octominin; a bio-active peptide developed from Octopus minor in RAW 264.7 macrophages in vitro. Octominin was found to inhibit lipopolysaccharides (LPS)-stimulated transcriptional activation of NF-κB in RAW 264.7 cells and dose-dependently decreased the mRNA expression levels of TLR4. Specifically, in silico docking results demonstrated that Octominin has a potential to inhibit TLR4 mediated inflammatory responses via blocking formation of TLR4/MD-2/LPS complex. We also demonstrated that Octominin could significantly inhibit LPS-induced secretion of pro-inflammatory cytokine (interleukin-ß; IL-1ß, IL-6, and tumor necrosis factor-α) and chemokines (CCL3, CCL4, CCL5, and CXCL10) from RAW 264.7 cells. Additionally, Octominin repressed the LPS-induced pro-inflammatory mediators including nitric oxide (NO), prostaglandin E2, inducible NO synthase, and cyclooxygenase 2 in macrophages. These results suggest that Octominin is a potential inhibitor of TLRs/NF-κB signal transduction pathway and is a potential candidate for the treatment of inflammatory diseases.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Cytokines/metabolism , Octopodiformes/chemistry , Peptide Fragments/pharmacology , Peptides/pharmacology , Signal Transduction/drug effects , Animals , Chemokines/genetics , Chemokines/metabolism , Cytokines/genetics , Dinoprostone/metabolism , Inflammation Mediators/metabolism , Lipopolysaccharides/pharmacology , Lymphocyte Antigen 96/chemistry , Lymphocyte Antigen 96/metabolism , Macrophages/drug effects , Macrophages/metabolism , Mice , NF-kappa B/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Peptides/genetics , Phosphorylation/drug effects , RAW 264.7 Cells , Toll-Like Receptor 4/classification , Toll-Like Receptor 4/metabolism
12.
Mar Drugs ; 18(1)2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31952292

ABSTRACT

: The rapid emergence of multidrug-resistant pathogens makes an urgent need for discovering novel antimicrobial agents as alternatives to conventional antibiotics. Towards this end, we designed and synthesized a synthetic peptide of 23 amino acids (AAs) (1GWLIRGAIHAGKAIHGLIHRRRH23) from a defense protein 3 cDNA sequence of Octopus minor. The sequence of the peptide, which was named Octominin, had characteristic features of known antimicrobial peptides (AMPs) such as a positive charge (+5), high hydrophobic residue ratio (43%), and 1.86 kcal/mol of Boman index. Octominin was predicted to have an alpha-helix secondary structure. The synthesized Octominin was 2625.2 Da with 92.5% purity. The peptide showed a minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of 50 and 200 µg/mL, respectively, against Candida albicans. Field emission scanning electron microscopy observation confirmed that Octominin caused ultrastructural cell wall deformities in C. albicans. In addition, propidium iodide penetrated the Octominin-treated C. albicans cells, further demonstrating loss of cell membrane integrity that caused cell death at both MIC and MFC. Octominin treatment increased the production of intracellular reactive oxygen species and decreased cell viability in a concentration dependent manner. Cytotoxicity assays revealed no significant influence of Octominin on the viability of human embryonic kidney 293T cell line, with over 95% live cells in the Octominin-treated group observed up to 100 µg/mL. Moreover, we confirmed the antifungal action of Octominin in vivo using a zebrafish experimental infection model. Overall, our results demonstrate the Octominin is a lead compound for further studies, which exerts its effects by inducing cell wall damage, causing loss of cell membrane integrity, and elevating oxidative stress.


Subject(s)
Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Candida albicans/drug effects , Octopodiformes/chemistry , Animals , Cell Membrane/drug effects , Cell Survival/drug effects , Cell Wall/drug effects , Cells, Cultured , HEK293 Cells , Humans , Microbial Sensitivity Tests/methods , Oxidative Stress/drug effects , Protein Conformation, alpha-Helical , Reactive Oxygen Species/metabolism , Zebrafish
13.
J Invertebr Pathol ; 163: 86-93, 2019 05.
Article in English | MEDLINE | ID: mdl-30905857

ABSTRACT

Paramyxean parasites in the genus Marteilia deteriorate digestive tissues of the host organisms, resulting in mortality of oysters, cockles, and mussels. Most reports of infection by Marteilia spp. are from Europe, while a new species of Marteilia was identified recently in Japan. Here, we report a previously unidentified species in the genus Marteilia from digestive diverticula of Manila clam Ruditapes philippinarum from the south coast of Korea. Prevalence of the parasite was low, 0.5-3.3% in the study sites. We characterized this species using light and transmission electron microscopy (TEM), and analyzed the 18S rDNA sequence. Light microscopy revealed the sporulation process from uninucleated stage to spore in the epithelial tissues of the digestive gland. TEM revealed that the parasites produced four secondary cells containing four tri-cellular spores. An electron-dense haplosporosome-like structure and striated inclusions were evident in the spore and the primary cells, respectively, while refringent granules were rarely observed in the secondary cells. Phylogenetic analyses of the 18S rDNA sequence placed this isolate in the genus Marteilia, although it is not identical to other known species in the genus. Based on morphological and molecular characters, we describe this species as Marteilia tapetis sp. nov., the second Marteilia species reported parasitizing Manila clams in Asian waters.


Subject(s)
Bivalvia/parasitology , Cercozoa , Animals , Cercozoa/classification , Cercozoa/genetics , Cercozoa/isolation & purification , Cercozoa/ultrastructure , DNA, Protozoan , Digestive System/microbiology , Phylogeny , Protozoan Infections/diagnosis , Protozoan Infections/parasitology , RNA, Ribosomal, 18S/genetics
14.
Anim Cells Syst (Seoul) ; 22(2): 76-81, 2018.
Article in English | MEDLINE | ID: mdl-30460083

ABSTRACT

Mind bomb (Mib) is an E3 ubiquitin ligase that activates the Notch signaling pathway. A previous study demonstrated that the generation of late-born GABAergic neurons may be regulated by the interplay between Mib and retinoic acid (RA). However, the relationship between Mib function and the retinoid pathway during the generation of late-born motor neurons remains unclear. We investigated the differentiation of neural progenitors into motor neurons by inhibition of Notch signaling and administration of RA to Tg[hsp70-Mib:EGFP] embryos. The number of motor neurons in the ventral spinal cord increased or decreased depending on the temporal inhibition of Mib-mediated Notch signaling. Inhibition of the retinoid pathway by citral treatment had a synergistic effect with overexpression of Mib:EGFP on the generation of ectopic motor neurons. Additionally, the proteolytic fragment of Mib was detected in differentiated P19 cells following treatment with RA. Our observations imply that the function of Mib may be attenuated by the retinoid pathway, and that Mib-mediated Notch signaling and the retinoid pathway play critical roles in the spatiotemporal differentiation of motor neurons.

15.
Exp Neurobiol ; 27(4): 257-266, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30181688

ABSTRACT

Cephalopods have the most advanced nervous systems and intelligent behavior among all invertebrates. Their brains provide comparative insights for understanding the molecular and functional origins of the human brain. Although brain maps that contain information on the organization of each subregion are necessary for a study on the brain, no whole brain atlas for adult cephalopods has been constructed to date. Here, we obtained sagittal and coronal sections covering the entire brain of adult Octopus minor (Sasaki), which belongs to the genus with the most species in the class Cephalopoda and is commercially available in East Asia throughout the year. Sections were stained using Hematoxylin and Eosin (H&E) to visualize the cellular nuclei and subregions. H&E images of the serial sections were obtained at 30~70-µm intervals for the sagittal plain and at 40~80-µm intervals for the coronal plain. Setting the midline point of the posterior end as the fiducial point, we also established the distance coordinates of each image. We found that the brain had the typical brain structure of the Octopodiformes. A number of subregions were discriminated by a Hematoxylin-positive layer, the thickness and neuronal distribution pattern of which varied markedly depending upon the region. We identified more than 70 sub-regions based on delineations of representative H&E images. This is the first brain atlas, not only for an Octopodiformes species but also among adult cephalopods, and we anticipate that this atlas will provide a valuable resource for comparative neuroscience research.

16.
Fish Shellfish Immunol ; 50: 66-78, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26792759

ABSTRACT

In this study, we describe the identification and characterization of a proto type galectin, galectin-1, from rock bream Oplegnathus fasciatus (OfGal-1). Galectins are evolutionarily conserved carbohydrate binding lectins that show a wide range of functions related to development and immune physiology. They have been identified as pattern recognition receptors of innate immune system that recognize a broad range of microbes. OfGal-1 cDNA comprised of 993 bp with an open reading frame of 408 bp that encodes 135 amino acids. A single carbohydrate recognition domain was present in the OfGal-1 amino acid sequence. The sequence comparison by multiple and pairwise alignments and the phylogenetic tree emphasized the strong evolutionary conservation of Gal-1. The typical ß-sandwich structure was identified from the predicted tertiary structure. The constitutive expression of mRNA transcripts was detected in a wide range of tissues examined, with the highest expression in the heart. Immune challenges with live bacteria (Edwardsiella tarda and Streptococcus iniae), rock bream irido virus, and mitogens (lipopolysaccharide and poly I:C) modulated the expression of OfGal-1 mRNAs in the gills, head kidney, and liver. The recombinant OfGal-1 (rOfGal-1) strongly agglutinatinated the human erythrocytes, and this hemagglutination was inhibited by lactose and D-galactose. A wide range of bacteria (S. iniae, S. parauberis, Escherichia coli, Edwardsiella tarda, Vibrio anguillarum, Vibrio harveyi, and Vibrio tapetis) and a ciliate (Miamiensis avidus) were also effectively recognized by rOfGal-1. Significant antiviral activity against rock bream irido virus was also demonstrated by rOfGal-1. Collectively, results from the present study indicate that OfGal-1 can recognize a wide range of microbes and is a vital pattern recognition receptor in the innate immune system of rock bream.


Subject(s)
Fish Diseases/immunology , Fish Proteins/genetics , Galectin 1/genetics , Immunity, Innate , Perciformes , Amino Acid Sequence , Animals , DNA Virus Infections/genetics , DNA Virus Infections/immunology , DNA Virus Infections/veterinary , Edwardsiella tarda/physiology , Enterobacteriaceae Infections/genetics , Enterobacteriaceae Infections/immunology , Enterobacteriaceae Infections/microbiology , Fish Diseases/genetics , Fish Diseases/microbiology , Fish Diseases/virology , Fish Proteins/chemistry , Fish Proteins/metabolism , Galectin 1/chemistry , Galectin 1/metabolism , Iridoviridae/physiology , Lipopolysaccharides/pharmacology , Organ Specificity , Phylogeny , Poly I-C/pharmacology , Protein Structure, Tertiary , Sequence Alignment/veterinary , Streptococcal Infections/genetics , Streptococcal Infections/immunology , Streptococcal Infections/microbiology , Streptococcus iniae/physiology
17.
Gene ; 575(2 Pt 3): 732-42, 2016 Jan 10.
Article in English | MEDLINE | ID: mdl-26449313

ABSTRACT

Interleukin 1ß (IL-1ß) and interleukin 8 (IL-8) are two major pro-inflammatory cytokines which play a central role in initiation of inflammatory responses against bacterial- and viral-infections. IL-1ß is a member of the interleukin 1 family proteins and IL-8 is classified as a CXC-chemokine. In the current study, putative IL-1ß and IL-8 counterparts were identified from a black rockfish transcriptomic database and designated as RfIL-1ß and RfIL-8. The RfIL-1ß cDNA sequence consists of 1140 nucleotides with a 759bp open reading frame (ORF) which encodes a 252 amino acid (aa) protein, whereas the RfIL-8 cDNA sequence (898bp) harbors a 300bp ORF encoding a 99 aa protein. Furthermore, the RfIL-1ß aa sequence contains an IL-1 super family-like domain and an N-terminal IL-1 super family propeptide, while the amino acid sequence of RfIL-8 consists of a typical chemokine-CXC domain. Analysis of sequenced BAC clones containing RfIL-1ß and RfIL-8 showed each gene to contain 4 exons interrupted by 3 introns. Pairwise comparison and phylogeny analysis of these cytokine sequences clearly revealed their closer relationship with other corresponding members of teleosts compared to birds and mammals. Constitutive differences in RfIL-1ß and RfIL-8 mRNA expression were detected in a tissue-specific manner with the highest expression of each mRNA in spleen tissue. Two immune challenge experiments were conducted with Streptococcus iniae and polyinosinic:polycytidylic acid (poly I:C; a viral double stranded RNA mimic), and transcripts were quantified in spleen and peripheral blood cells. Significantly increased RfIL-1ß and RfIL8 transcript levels were detected with almost similar profile patterns, further suggesting a putative involvement of these pro-inflammatory cytokines in the rockfish immunity.


Subject(s)
Fish Proteins/genetics , Interleukin-1beta/genetics , Interleukin-8/genetics , Perciformes/metabolism , Animals , Cloning, Molecular/methods , Fish Proteins/chemistry , Fish Proteins/metabolism , Gene Expression Profiling/methods , Interleukin-1beta/chemistry , Interleukin-1beta/metabolism , Interleukin-8/chemistry , Interleukin-8/metabolism , Models, Molecular , Organ Specificity , Perciformes/genetics , Phylogeny , Spleen/metabolism
18.
Dev Comp Immunol ; 55: 1-11, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26455464

ABSTRACT

B cell activating factor (BAFF) is a member of the tumor necrosis factor (TNF) ligand family. BAFF has been shown to induce survival and proliferation of lymphocytes. We characterized the gene encoding BAFF (RbBAFF) in rock bream (Oplegnathus fasciatus), and attempted to determine its biological functions upon immune responses. In silico analysis of RbBAFF demonstrated the presence of common TNF ligand family features, including a TNF domain, a D-E loop, and three cysteine residues that are crucial for trimer formation. Amino acid sequence alignment confirmed that RbBAFF and its homologs were conserved at secondary and tertiary levels. Transcriptional analysis indicated that RbBAFF mRNAs were ubiquitously expressed in wide array of tissues. The higher levels of constitutive expression were observed in the kidney, head kidney and spleen, suggesting an important physiological relationship with lymphocytes. Under pathological conditions, RbBAFF mRNA levels were significantly elevated. The role of RbBAFF in lymphocyte survival and proliferation was confirmed by MTT assays and flow cytometry. Recombinant RbBAFF protein (10 µg/mL) was able to prolong the survival and/or enhance the proliferation of rock bream lymphocytes by approximately 30%. Transcription of IL-10 and NFκB-1 was significantly stimulated by RbBAFF. Our findings provide further information regarding fish BAFF gene and its role in adaptive immunity.


Subject(s)
B-Cell Activating Factor/metabolism , Fish Proteins/metabolism , Lymphocytes/immunology , Lymphoid Tissue/immunology , Amino Acid Sequence , Animals , B-Cell Activating Factor/genetics , Cell Proliferation/genetics , Cell Survival/genetics , Cells, Cultured , Fish Proteins/genetics , Fishes , Gene Expression Regulation , Immunization , Molecular Sequence Data , Protein Conformation , Sequence Homology, Amino Acid
19.
Dev Comp Immunol ; 56: 13-24, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26615008

ABSTRACT

Galectins, a family of ß-galactoside-binding lectins, are pattern recognition receptors that recognize pathogen-associated molecular patterns and are subsequently involved in the opsonization, phagocytosis, complement activation, and killing of microbes. Here, we report a novel galectin related protein (GRP) identified from rock bream (Oplegnathus fasciatus), designated OfGal like B. The cDNA of OfGal like B is 517 bp with an open reading frame (ORF) of 438 bp, encoding 145 amino acids, with a single carbohydrate recognition domain (CRD). However, only two of the seven critical residues responsible for carbohydrate recognition were identified in the CRD. There was no signal peptide identified in the OfGal like B protein. The genomic structure of OfGal like B, determined using a bacterial artificial chromosome (BAC) genomic library, consists of four exons and three introns. Homology assessment, multiple sequence alignment, and phylogenetic analysis indicated that OfGal like B is an evolutionarily conserved lectin that is closely related to the proto-type galectins. OfGal like B mRNA was constitutively expressed in a wide range of tissues in healthy rock breams. When challenged with bacterial or viral stimulants, OfGal like B was up-regulated in the gills and spleen of rock breams, indicating that it likely plays an important role during bacterial and viral infections. Furthermore, recombinant OfGal like B (rOfGal like B) lacked carbohydrate-binding activity but was able to recognize and agglutinate bacteria, including Streptococcus iniae, Listeria monocytogenes, Vibrio tapetis, Escherichia coli, and Edwardsiella tarda, and a ciliate parasite, Miamiensis avidus. These results collectively suggest that OfGal like B is involved in pathogen recognition and plays a significant role(s) in the innate defense mechanism of rock bream.


Subject(s)
Fish Proteins/immunology , Galectins/immunology , Agglutination Tests , Amino Acid Sequence , Animals , Base Sequence , Cloning, Molecular , Fish Proteins/chemistry , Fish Proteins/genetics , Fish Proteins/isolation & purification , Fishes/classification , Galectins/chemistry , Galectins/genetics , Galectins/isolation & purification , Models, Molecular , Molecular Sequence Data , Phylogeny , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Sequence Alignment
20.
Fish Shellfish Immunol ; 47(2): 697-705, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26455649

ABSTRACT

Apoptosis inducing factor (AIF) is a flavoprotein that is involved in oxidative phosphorylation and induces apoptosis in eukaryotic cells. There are three isozymes of AIF that have been identified to date, designated as AIF1, AIF2, and AIF3; the human AIF3 is also known as an AIF-like protein (AIFL). This study aimed to identify and characterize a homologue of AIF3 from disk abalone (AbAIF3) that belongs to the phylum Mollusca. The open reading frame (ORF) of AbAIF3 is 1749 base pairs (bp) in length and encodes a protein of 583 amino acids, with a predicted molecular mass of 63.14 kDa. Based on our in-silico analysis, the AbAIF3 protein harbored the typical domain architecture as that of the known AIF family proteins, consisting of N-terminal Rieske and pyridine nucleotide-disulphide oxidoreductase domain. Comparative protein sequence analysis confirmed that AbAIF3 is a homolog of AIF3. Moreover, our phylogenetic analysis revealed that AbAIF3 had a close evolutionary relationship with the molluscan counterparts. Interestingly, AbAIF3 was shown to induce apoptosis in HEK293T cells using transfection assays followed by flow cytometric analysis. In addition, we found that AbAIF3 mRNA expression was ubiquitous in physiologically important tissues, and significantly modulated upon experimental immune stimulations in hemocytes. Collectively, our study illustrates the indispensable role of AbAIF3 in inducing apoptosis in disk abalones, which in turn might be involved in hosts' immune defense mechanisms against microbial infections.


Subject(s)
Apoptosis Inducing Factor/genetics , Gastropoda/genetics , Gastropoda/immunology , Gene Expression Regulation , Animals , Apoptosis Inducing Factor/metabolism , Cloning, Molecular , DNA, Complementary/genetics , DNA, Complementary/metabolism , Gastropoda/metabolism , Gastropoda/microbiology , Mitogens/pharmacology , Molecular Sequence Data , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Alignment , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL