Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Nat Genet ; 55(12): 2160-2174, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38049665

ABSTRACT

Whole-genome sequencing of longitudinal tumor pairs representing transformation of follicular lymphoma to high-grade B cell lymphoma with MYC and BCL2 rearrangements (double-hit lymphoma) identified coding and noncoding genomic alterations acquired during lymphoma progression. Many of these transformation-associated alterations recurrently and focally occur at topologically associating domain resident regulatory DNA elements, including H3K4me3 promoter marks located within H3K27ac super-enhancer clusters in B cell non-Hodgkin lymphoma. One region found to undergo recurrent alteration upon transformation overlaps a super-enhancer affecting the expression of the PAX5/ZCCHC7 gene pair. ZCCHC7 encodes a subunit of the Trf4/5-Air1/2-Mtr4 polyadenylation-like complex and demonstrated copy number gain, chromosomal translocation and enhancer retargeting-mediated transcriptional upregulation upon lymphoma transformation. Consequently, lymphoma cells demonstrate nucleolar dysregulation via altered noncoding 5.8S ribosomal RNA processing. We find that a noncoding mutation acquired during lymphoma progression affects noncoding rRNA processing, thereby rewiring protein synthesis leading to oncogenic changes in the lymphoma proteome.


Subject(s)
Lymphoma, B-Cell , Lymphoma , Humans , Mutation , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/pathology , Translocation, Genetic/genetics , Lymphoma/genetics , Regulatory Sequences, Nucleic Acid
3.
Neuron ; 110(10): 1671-1688.e6, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35294901

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is characterized by motor neuron degeneration accompanied by aberrant accumulation and loss of function of the RNA-binding protein TDP43. Thus far, it remains unresolved to what extent TDP43 loss of function directly contributes to motor system dysfunction. Here, we employed gene editing to find whether the mouse ortholog of the TDP43-regulated gene STMN2 has an important function in maintaining the motor system. Both mosaic founders and homozygous loss-of-function Stmn2 mice exhibited neuromuscular junction denervation and fragmentation, resulting in muscle atrophy and impaired motor behavior, accompanied by an imbalance in neuronal microtubule dynamics in the spinal cord. The introduction of human STMN2 through BAC transgenesis was sufficient to rescue the motor phenotypes observed in Stmn2 mutant mice. Collectively, our results demonstrate that disrupting the ortholog of a single TDP43-regulated RNA is sufficient to cause substantial motor dysfunction, indicating that disruption of TDP43 function is likely a contributor to ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Stathmin , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Animals , Disease Models, Animal , Homozygote , Mice , Mice, Transgenic , Motor Neurons/metabolism , Neuromuscular Junction/metabolism , Stathmin/genetics , Stathmin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL