Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Platelets ; 35(1): 2322733, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38968449

ABSTRACT

Liver failure and cirrhosis are characterized by abnormal hemostasis with aberrant platelet activation. In particular, the consequences of cholestatic liver disease and molecular mechanisms, including the role of bile acids leading to impaired platelet responses, are not well understood. Here, we demonstrate that bile acids inhibit human and murine platelet activation, adhesion and spreading, leading to reduced thrombus formation under flow conditions. We identified the G-protein coupled receptor TGR5 in platelets and provide support for its role as mediator of bile acid-induced impairment of platelet activation. In the liver, TGR5 couples to Gαs proteins, activates the adenylate cyclase to induce a transient cAMP rise and stimulates the MAPK signaling pathway to regulate cholangiocyte proliferation, hepatocyte survival and inflammation. In this report, we demonstrate that the genetic deficiency of TGR5 in mice led to enhanced platelet activation and thrombus formation, suggesting that TGR5 plays an important role in hemostasis. Mechanistically, platelet inhibition is achieved by TGR5 mediated PKA activation and modulation of AKT and ERK1/2 phosphorylation. Thus, this report provides evidence for the ability of TGR5 ligands to reduce platelet activation and identifies TGR5 agonism as a new target for the prevention of cardiovascular diseases.


What is the context? Liver failure or cirrhosis are related to impaired hemostasis and a role of bile acids in impaired platelet responses is known but only less understood.Platelets express the bile acid receptor FXR. Ligand binding to the FXR on platelets causes a shift in platelet reactivity and is atheroprotective suggesting that the FXR is a potential target for the prevention of atherothrombotic diseases.What is new? Treatment of murine and human blood with bile acids in low molecular quantity led to reduced platelet activation, adhesion and thrombus formation.The bile acid receptor TGR5 was identified on human and murine platelets.TGR5 plays an important role in hemostasis because TGR5 deficient mice showed elevated platelet reactivity and enhanced thrombus formation.Loss of TGR5 led to enhanced PKA activation and modulated the phosphorylation of MAPK such as AKT and ERK1/2.What is the impact? Impairment of platelet activation by bile acids is mediated by TGR5 via the protein kinase A signaling pathway.Our findings provide evidence for the modulation of TGR5 activation as a potential new target of both, anti-platelet therapy in cardiovascular diseases and the restoration of hemostasis upon liver injury.


Subject(s)
Platelet Activation , Receptors, G-Protein-Coupled , Thrombosis , Receptors, G-Protein-Coupled/metabolism , Animals , Mice , Humans , Platelet Activation/drug effects , Thrombosis/metabolism , Blood Platelets/metabolism , Bile Acids and Salts/metabolism , Mice, Knockout , Signal Transduction
2.
Hepatology ; 74(1): 411-427, 2021 07.
Article in English | MEDLINE | ID: mdl-33369745

ABSTRACT

BACKGROUND AND AIMS: Thrombocytopenia has been described in most patients with acute and chronic liver failure. Decreased platelet production and decreased half-life of platelets might be a consequence of low levels of thrombopoietin (TPO) in these patients. Platelet production is tightly regulated to avoid bleeding complications after vessel injury and can be enhanced under elevated platelet destruction as observed in liver disease. Thrombopoietin (TPO) is the primary regulator of platelet biogenesis and supports proliferation and differentiation of megakaryocytes. APPROACH AND RESULTS: Recent work provided evidence for the control of TPO mRNA expression in liver and bone marrow (BM) by scanning circulating platelets. The Ashwell-Morell receptor (AMR) was identified to bind desialylated platelets to regulate hepatic thrombopoietin (TPO) production by Janus kinase (JAK2)/signal transducer and activator of transcription (STAT3) activation. Two-thirds partial hepatectomy (PHx) was performed in mice. Platelet activation and clearance by AMR/JAK2/STAT3 signaling and TPO production were analyzed at different time points after PHx. Here, we demonstrate that PHx in mice led to thrombocytopenia and platelet activation defects leading to bleeding complications, but unaltered arterial thrombosis, in these mice. Platelet counts were rapidly restored by up-regulation and crosstalk of the AMR and the IL-6 receptor (IL-6R) to induce JAK2-STAT3-TPO activation in the liver, accompanied by an increased number of megakaryocytes in spleen and BM before liver was completely regenerated. CONCLUSIONS: The AMR/IL-6R-STAT3-TPO signaling pathway is an acute-phase response to liver injury to reconstitute hemostasis. Bleeding complications were attributable to thrombocytopenia and platelet defects induced by elevated PGI2 , NO, and bile acid plasma levels early after PHx that might also be causative for the high mortality in patients with liver disease.


Subject(s)
Hepatectomy/adverse effects , Thrombocytopenia/blood , Thrombopoietin/biosynthesis , Animals , Asialoglycoprotein Receptor/genetics , Asialoglycoprotein Receptor/metabolism , Disease Models, Animal , Humans , Janus Kinase 2/metabolism , Mice , Mice, Knockout , Platelet Count , Receptors, Interleukin-6/genetics , Receptors, Interleukin-6/metabolism , STAT3 Transcription Factor/metabolism , Specific Pathogen-Free Organisms , Thrombocytopenia/etiology , Thrombopoietin/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...