Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Nature ; 609(7926): 354-360, 2022 09.
Article in English | MEDLINE | ID: mdl-35978192

ABSTRACT

CD8+ T cells that respond to chronic viral infections or cancer are characterized by the expression of inhibitory receptors such as programmed cell death protein 1 (PD-1) and by the impaired production of cytokines. This state of restrained functionality-which is referred to as T cell exhaustion1,2-is maintained by precursors of exhausted T (TPEX) cells that express the transcription factor T cell factor 1 (TCF1), self-renew and give rise to TCF1- exhausted effector T cells3-6. Here we show that the long-term proliferative potential, multipotency and repopulation capacity of exhausted T cells during chronic infection are selectively preserved in a small population of transcriptionally distinct CD62L+ TPEX cells. The transcription factor MYB is not only essential for the development of CD62L+ TPEX cells and maintenance of the antiviral CD8+ T cell response, but also induces functional exhaustion and thereby prevents lethal immunopathology. Furthermore, the proliferative burst in response to PD-1 checkpoint inhibition originates exclusively from CD62L+ TPEX cells and depends on MYB. Our findings identify CD62L+ TPEX cells as a stem-like population that is central to the maintenance of long-term antiviral immunity and responsiveness to immunotherapy. Moreover, they show that MYB is a transcriptional orchestrator of two fundamental aspects of exhausted T cell responses: the downregulation of effector function and the long-term preservation of self-renewal capacity.


Subject(s)
CD8-Positive T-Lymphocytes , Programmed Cell Death 1 Receptor , Proto-Oncogene Proteins c-myb , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , Cell Proliferation , Cell Self Renewal , Hepatocyte Nuclear Factor 1-alpha/metabolism , Immunotherapy , L-Selectin/metabolism , Precursor Cells, T-Lymphoid/cytology , Precursor Cells, T-Lymphoid/immunology , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/metabolism , Proto-Oncogene Proteins c-myb/metabolism , Viruses/immunology
2.
Nat Ecol Evol ; 3(4): 647-656, 2019 04.
Article in English | MEDLINE | ID: mdl-30886368

ABSTRACT

Imidacloprid, the world's most used insecticide, has caused considerable controversy due to harmful effects on non-pest species and increasing evidence showing that insecticides have become the primary selective force in many insect species. The genetic response to insecticides is heterogeneous across populations and environments, leading to more complex patterns of genetic variation than previously thought. This motivated the investigation of imidacloprid resistance at different temperatures in natural populations of Drosophila melanogaster originating from four climate extremes replicated across two continents. Population and quantitative genomic analysis, supported by functional tests, have revealed a mixed genetic architecture to resistance involving major genes (Paramyosin and Nicotinic-Acetylcholine Receptor Alpha 3) and polygenes with a major trade-off with thermotolerance. Reduced genetic differentiation at resistance-associated loci indicated enhanced gene flow at these loci. Resistance alleles showed stronger evidence of positive selection in temperate populations compared to tropical populations in which chromosomal inversions In(2 L)t, In(3 R)Mo and In(3 R)Payne harbour susceptibility alleles. Polygenic architecture and ecological factors should be considered when developing sustainable management strategies for both pest and beneficial insects.


Subject(s)
Drosophila melanogaster/physiology , Insecticide Resistance/physiology , Insecticides , Neonicotinoids , Nitro Compounds , Thermotolerance , Animals , Climate , Female , Genome-Wide Association Study , Receptors, Nicotinic/genetics , Tropomyosin/genetics
3.
Nat Commun ; 9(1): 3728, 2018 09 13.
Article in English | MEDLINE | ID: mdl-30214011

ABSTRACT

Anti-microbial signaling pathways are normally triggered by innate immune receptors when detecting pathogenic microbes to provide protective immunity. Here we show that the inflammasome sensor Nlrp1 aggravates DSS-induced experimental mouse colitis by limiting beneficial, butyrate-producing Clostridiales in the gut. The colitis-protective effects of Nlrp1 deficiency are thus reversed by vancomycin treatment, but recapitulated with butyrate supplementation in wild-type mice. Moreover, an activating mutation in Nlrp1a increases IL-18 and IFNγ production, and decreases colonic butyrate to exacerbate colitis. We also show that, in patients with ulcerative colitis, increased NLRP1 in inflamed regions of the colon is associated with increased IFN-γ. In this context, NLRP1, IL-18 or IFN-γ expression negatively correlates with the abundance of Clostridiales in human rectal mucosal biopsies. Our data identify the NLRP1 inflammasome to be a key negative regulator of protective, butyrate-producing commensals, which therefore promotes inflammatory bowel disease.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Butyrates/metabolism , Clostridiales , Inflammatory Bowel Diseases/metabolism , Interferon-gamma/metabolism , Interleukin-18/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Apoptosis Regulatory Proteins/genetics , Colitis/metabolism , Colon/pathology , Female , Gastrointestinal Microbiome , Gene Deletion , Humans , Inflammasomes , Inflammatory Bowel Diseases/drug therapy , Intestinal Mucosa/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , NLR Proteins , Rectum/metabolism , Signal Transduction , T-Lymphocytes/cytology , Vancomycin/pharmacology
4.
Sci Rep ; 8(1): 4386, 2018 03 12.
Article in English | MEDLINE | ID: mdl-29531234

ABSTRACT

To optimise fecal sampling for reproducible analysis of the gut microbiome, we compared different methods of sample collection and sequencing of 16S rRNA genes at two centers. Samples collected from six individuals on three consecutive days were placed in commercial collection tubes (OMNIgeneGut OMR-200) or in sterile screw-top tubes in a home fridge or home freezer for 6-24 h, before transfer and storage at -80 °C. Replicate samples were shipped to centers in Australia and the USA for DNA extraction and sequencing by their respective PCR protocols, and analysed with the same bioinformatic pipeline. Variation in gut microbiome was dominated by differences between individuals. Minor differences in the abundance of taxa were found between collection-processing methods and day of collection, and between the two centers. We conclude that collection with storage and transport at 4 °C within 24 h is adequate for 16S rRNA analysis of the gut microbiome. Other factors including differences in PCR and sequencing methods account for relatively minor variation compared to differences between individuals.


Subject(s)
Feces/microbiology , Gastrointestinal Microbiome/genetics , RNA, Ribosomal, 16S/genetics , Specimen Handling/methods , Australia , Cryopreservation/methods , Humans , Individuality , RNA, Ribosomal, 16S/standards , Sequence Analysis, DNA , United States
5.
Mol Phylogenet Evol ; 120: 129-143, 2018 03.
Article in English | MEDLINE | ID: mdl-29229488

ABSTRACT

Heliozelidae are a widespread, evolutionarily early diverging family of small, day-flying monotrysian moths, for which a comprehensive phylogeny is lacking. We generated the first molecular phylogeny of the family using DNA sequences of two mitochondrial genes (COI and COII) and two nuclear genes (H3 and 28S) from 130 Heliozelidae specimens, including eight of the twelve known genera: Antispila, Antispilina, Coptodisca, Heliozela, Holocacista, Hoplophanes, Pseliastis, and Tyriozela. Our results provide strong support for five major Heliozelidae clades: (i) a large widespread clade containing the leaf-mining genera Antispilina, Coptodisca and Holocacista and some species of Antispila, (ii) a clade containing most of the described Antispila, (iii) a clade containing the leaf-mining genus Heliozela and the monotypic genus Tyriozela, (iv) an Australian clade containing Pseliastis and (v) an Australian clade containing Hoplophanes. Each clade includes several new species and potentially new genera. Collectively, our data uncover a rich and undescribed diversity that appears to be especially prevalent in Australia. Our work highlights the need for a major taxonomic revision of the family and for generating a robust molecular phylogeny using multi-gene approaches in order to resolve the relationships among clades.


Subject(s)
Moths/classification , Animals , Biological Evolution , DNA/chemistry , DNA/isolation & purification , DNA/metabolism , Databases, Genetic , Electron Transport Complex IV/chemistry , Electron Transport Complex IV/classification , Electron Transport Complex IV/genetics , Genes, Mitochondrial , Genetic Variation , High-Throughput Nucleotide Sequencing , Histones/classification , Histones/genetics , Histones/metabolism , Insect Proteins/classification , Insect Proteins/genetics , Insect Proteins/metabolism , Moths/genetics , Phylogeny , Sequence Analysis, DNA
6.
Genome Announc ; 1(5)2013 Sep 05.
Article in English | MEDLINE | ID: mdl-24009115

ABSTRACT

Fusarium pathogens represent a major constraint to wheat and barley production worldwide. To facilitate future comparative studies of Fusarium species that are pathogenic to wheat, the genome sequences of four Fusarium pseudograminearum isolates, a single Fusarium acuminatum isolate, and an organism from the Fusarium incarnatum-F. equiseti species complex are reported.

SELECTION OF CITATIONS
SEARCH DETAIL