Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 421
Filter
1.
Stroke ; 55(8): 2045-2054, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39038097

ABSTRACT

BACKGROUND: Individuals who have experienced a stroke, or transient ischemic attack, face a heightened risk of future cardiovascular events. Identification of genetic and molecular risk factors for subsequent cardiovascular outcomes may identify effective therapeutic targets to improve prognosis after an incident stroke. METHODS: We performed genome-wide association studies for subsequent major adverse cardiovascular events (MACE; ncases=51 929; ncontrols=39 980) and subsequent arterial ischemic stroke (AIS; ncases=45 120; ncontrols=46 789) after the first incident stroke within the Million Veteran Program and UK Biobank. We then used genetic variants associated with proteins (protein quantitative trait loci) to determine the effect of 1463 plasma protein abundances on subsequent MACE using Mendelian randomization. RESULTS: Two variants were significantly associated with subsequent cardiovascular events: rs76472767 near gene RNF220 (odds ratio, 0.75 [95% CI, 0.64-0.85]; P=3.69×10-8) with subsequent AIS and rs13294166 near gene LINC01492 (odds ratio, 1.52 [95% CI, 1.37-1.67]; P=3.77×10-8) with subsequent MACE. Using Mendelian randomization, we identified 2 proteins with an effect on subsequent MACE after a stroke: CCL27 ([C-C motif chemokine 27], effect odds ratio, 0.77 [95% CI, 0.66-0.88]; adjusted P=0.05) and TNFRSF14 ([tumor necrosis factor receptor superfamily member 14], effect odds ratio, 1.42 [95% CI, 1.24-1.60]; adjusted P=0.006). These proteins are not associated with incident AIS and are implicated to have a role in inflammation. CONCLUSIONS: We found evidence that 2 proteins with little effect on incident stroke appear to influence subsequent MACE after incident AIS. These associations suggest that inflammation is a contributing factor to subsequent MACE outcomes after incident AIS and highlights potential novel targets.


Subject(s)
Biological Specimen Banks , Genome-Wide Association Study , Mendelian Randomization Analysis , Stroke , Veterans , Humans , Male , Stroke/genetics , Stroke/epidemiology , Female , United Kingdom/epidemiology , Middle Aged , Aged , Disease Progression , Polymorphism, Single Nucleotide/genetics , Ischemic Stroke/genetics , Ischemic Stroke/epidemiology , Risk Factors , Quantitative Trait Loci , UK Biobank
2.
Med ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38906141

ABSTRACT

BACKGROUND: Obesity rates have nearly tripled in the past 50 years, and by 2030 more than 1 billion individuals worldwide are projected to be obese. This creates a significant economic strain due to the associated non-communicable diseases. The root cause is an energy expenditure imbalance, owing to an interplay of lifestyle, environmental, and genetic factors. Obesity has a polygenic genetic architecture; however, single genetic variants with large effect size are etiological in a minority of cases. These variants allowed the discovery of novel genes and biology relevant to weight regulation and ultimately led to the development of novel specific treatments. METHODS: We used a case-control approach to determine metabolic differences between individuals homozygous for a loss-of-function genetic variant in the small integral membrane protein 1 (SMIM1) and the general population, leveraging data from five cohorts. Metabolic characterization of SMIM1-/- individuals was performed using plasma biochemistry, calorimetric chamber, and DXA scan. FINDINGS: We found that individuals homozygous for a loss-of-function genetic variant in SMIM1 gene, underlying the blood group Vel, display excess body weight, dyslipidemia, altered leptin to adiponectin ratio, increased liver enzymes, and lower thyroid hormone levels. This was accompanied by a reduction in resting energy expenditure. CONCLUSION: This research identified a novel genetic predisposition to being overweight or obese. It highlights the need to investigate the genetic causes of obesity to select the most appropriate treatment given the large cost disparity between them. FUNDING: This work was funded by the National Institute of Health Research, British Heart Foundation, and NHS Blood and Transplant.

3.
Nat Med ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918629

ABSTRACT

Diabetes complications occur at higher rates in individuals of African ancestry. Glucose-6-phosphate dehydrogenase deficiency (G6PDdef), common in some African populations, confers malaria resistance, and reduces hemoglobin A1c (HbA1c) levels by shortening erythrocyte lifespan. In a combined-ancestry genome-wide association study of diabetic retinopathy, we identified nine loci including a G6PDdef causal variant, rs1050828 -T (Val98Met), which was also associated with increased risk of other diabetes complications. The effect of rs1050828 -T on retinopathy was fully mediated by glucose levels. In the years preceding diabetes diagnosis and insulin prescription, glucose levels were significantly higher and HbA1c significantly lower in those with versus without G6PDdef. In the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial, participants with G6PDdef had significantly higher hazards of incident retinopathy and neuropathy. At the same HbA1c levels, G6PDdef participants in both ACCORD and the Million Veteran Program had significantly increased risk of retinopathy. We estimate that 12% and 9% of diabetic retinopathy and neuropathy cases, respectively, in participants of African ancestry are due to this exposure. Across continentally defined ancestral populations, the differences in frequency of rs1050828 -T and other G6PDdef alleles contribute to disparities in diabetes complications. Diabetes management guided by glucose or potentially genotype-adjusted HbA1c levels could lead to more timely diagnoses and appropriate intensification of therapy, decreasing the risk of diabetes complications in patients with G6PDdef alleles.

4.
Am J Hum Genet ; 111(7): 1481-1493, 2024 07 11.
Article in English | MEDLINE | ID: mdl-38897203

ABSTRACT

Type 2 diabetes (T2D) is a major risk factor for heart failure (HF) and has elevated incidence among individuals with HF. Since genetics and HF can independently influence T2D, collider bias may occur when T2D (i.e., collider) is controlled for by design or analysis. Thus, we conducted a genome-wide association study (GWAS) of diabetes-related HF with correction for collider bias. We first performed a GWAS of HF to identify genetic instrumental variables (GIVs) for HF and to enable bidirectional Mendelian randomization (MR) analysis between T2D and HF. We identified 61 genomic loci, significantly associated with all-cause HF in 114,275 individuals with HF and over 1.5 million controls of European ancestry. Using a two-sample bidirectional MR approach with 59 and 82 GIVs for HF and T2D, respectively, we estimated that T2D increased HF risk (odds ratio [OR] 1.07, 95% confidence interval [CI] 1.04-1.10), while HF also increased T2D risk (OR 1.60, 95% CI 1.36-1.88). Then we performed a GWAS of diabetes-related HF corrected for collider bias due to the study design of index cases. After removing the spurious association of TCF7L2 locus due to collider bias, we identified two genome-wide significant loci close to PITX2 (chromosome 4) and CDKN2B-AS1 (chromosome 9) associated with diabetes-related HF in the Million Veteran Program and replicated the associations in the UK Biobank. Our MR findings provide strong evidence that HF increases T2D risk. As a result, collider bias leads to spurious genetic associations of diabetes-related HF, which can be effectively corrected to identify true positive loci.


Subject(s)
Diabetes Mellitus, Type 2 , Genome-Wide Association Study , Heart Failure , Mendelian Randomization Analysis , Humans , Heart Failure/genetics , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/complications , Male , Female , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease , Middle Aged , Risk Factors , Aged , Cyclin-Dependent Kinase Inhibitor p15/genetics , White People/genetics , Bias , Homeodomain Proteins/genetics , Transcription Factors/genetics
5.
Diabetes Care ; 47(6): 1032-1041, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38608262

ABSTRACT

OBJECTIVE: To characterize high type 1 diabetes (T1D) genetic risk in a population where type 2 diabetes (T2D) predominates. RESEARCH DESIGN AND METHODS: Characteristics typically associated with T1D were assessed in 109,594 Million Veteran Program participants with adult-onset diabetes, 2011-2021, who had T1D genetic risk scores (GRS) defined as low (0 to <45%), medium (45 to <90%), high (90 to <95%), or highest (≥95%). RESULTS: T1D characteristics increased progressively with higher genetic risk (P < 0.001 for trend). A GRS ≥90% was more common with diabetes diagnoses before age 40 years, but 95% of those participants were diagnosed at age ≥40 years, and their characteristics resembled those of individuals with T2D in mean age (64.3 years) and BMI (32.3 kg/m2). Compared with the low-risk group, the highest-risk group was more likely to have diabetic ketoacidosis (low GRS 0.9% vs. highest GRS 3.7%), hypoglycemia prompting emergency visits (3.7% vs. 5.8%), outpatient plasma glucose <50 mg/dL (7.5% vs. 13.4%), a shorter median time to start insulin (3.5 vs. 1.4 years), use of a T1D diagnostic code (16.3% vs. 28.1%), low C-peptide levels if tested (1.8% vs. 32.4%), and glutamic acid decarboxylase antibodies (6.9% vs. 45.2%), all P < 0.001. CONCLUSIONS: Characteristics associated with T1D were increased with higher genetic risk, and especially with the top 10% of risk. However, the age and BMI of those participants resemble those of people with T2D, and a substantial proportion did not have diagnostic testing or use of T1D diagnostic codes. T1D genetic screening could be used to aid identification of adult-onset T1D in settings in which T2D predominates.


Subject(s)
Diabetes Mellitus, Type 1 , Veterans , Humans , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/epidemiology , Male , Middle Aged , Veterans/statistics & numerical data , Female , Adult , Aged , Genetic Predisposition to Disease , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/epidemiology , Risk Factors
6.
J Am Heart Assoc ; 13(9): e031861, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38686888

ABSTRACT

BACKGROUND: Heart failure (HF) is a serious condition with increasing prevalence, high morbidity, and increased mortality. Obesity is an established risk factor for HF. Fluctuation in body mass index (BMI) has shown a higher risk of cardiovascular outcomes. We investigated the association between BMI variability and incident HF. METHODS AND RESULTS: In the UK Biobank, we established a prospective cohort after excluding participants with prevalent HF or cancer at enrollment. A total of 99 368 White participants with ≥3 BMI measures during >2 years preceding enrollment were included, with a median follow-up of 12.5 years. The within-participant variability of BMI was evaluated using standardized SD and coefficient of variation. The association of BMI variability with incident HF was assessed using Fine and Gray's competing risk model, adjusting for confounding factors and participant-specific rate of BMI change. Higher BMI variability measured in both SD and coefficient of variation was significantly associated with higher risk in HF incidence (SD: hazard ratio [HR], 1.05 [95% CI, 1.03-1.08], P<0.0001; coefficient of variation: HR, 1.07 [95% CI, 1.04-1.10], P<0.0001). CONCLUSIONS: Longitudinal health records capture BMI fluctuation, which independently predicts HF incidence.


Subject(s)
Body Mass Index , Heart Failure , Obesity , Humans , Heart Failure/epidemiology , Heart Failure/diagnosis , Male , Female , Middle Aged , Incidence , Obesity/epidemiology , Obesity/complications , Obesity/diagnosis , Prospective Studies , United Kingdom/epidemiology , Aged , Risk Factors , Risk Assessment/methods , Adult , Time Factors
7.
Sci Rep ; 14(1): 6267, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38491158

ABSTRACT

Previous studies found lipid levels, especially triglycerides (TG), are associated with acute pancreatitis, but their causalities and bi-directions were not fully examined. We determined whether abnormal levels of TG, high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) are precursors and/or consequences of acute pancreatitis using bidirectional two-sample Mendelian randomization (MR) with two non-overlapping genome-wide association study (GWAS) summary statistics for lipid levels and acute pancreatitis. We found phenotypic associations that both higher TG levels and lower HDL-C levels contributed to increased risk of acute pancreatitis. Our GWAS meta-analysis of acute pancreatitis identified seven independent signals. Genetically predicted TG was positively associated with acute pancreatitis when using the variants specifically associated with TG using univariable MR [Odds ratio (OR), 95% CI 2.02, 1.22-3.31], but the reversed direction from acute pancreatitis to TG was not observed (mean difference = 0.003, SE = 0.002, P-value = 0.138). However, a bidirectional relationship of HDL-C and acute pancreatitis was observed: A 1-SD increment of genetically predicted HDL-C was associated with lower risk of acute pancreatitis (OR, 95% CI 0.84, 0.76-0.92) and genetically predisposed individuals with acute pancreatitis have, on average, 0.005 SD lower HDL-C (mean difference = - 0.005, SE = 0.002, P-value = 0.004). Our MR analysis confirms the evidence of TG as a risk factor of acute pancreatitis but not a consequence. A potential bidirectional relationship of HDL-C and acute pancreatitis occurs and raises the prospect of HDL-C modulation in the acute pancreatitis prevention and treatment.


Subject(s)
Genome-Wide Association Study , Pancreatitis , Humans , Genome-Wide Association Study/methods , Mendelian Randomization Analysis/methods , Acute Disease , Pancreatitis/genetics , Polymorphism, Single Nucleotide , Triglycerides , Risk Factors , Cholesterol, LDL/genetics , Cholesterol, HDL/genetics
8.
JAMA Netw Open ; 7(3): e243062, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38512255

ABSTRACT

Importance: Body mass index (BMI; calculated as weight in kilograms divided by height in meters squared) is a commonly used estimate of obesity, which is a complex trait affected by genetic and lifestyle factors. Marked weight gain and loss could be associated with adverse biological processes. Objective: To evaluate the association between BMI variability and incident cardiovascular disease (CVD) events in 2 distinct cohorts. Design, Setting, and Participants: This cohort study used data from the Million Veteran Program (MVP) between 2011 and 2018 and participants in the UK Biobank (UKB) enrolled between 2006 and 2010. Participants were followed up for a median of 3.8 (5th-95th percentile, 3.5) years. Participants with baseline CVD or cancer were excluded. Data were analyzed from September 2022 and September 2023. Exposure: BMI variability was calculated by the retrospective SD and coefficient of variation (CV) using multiple clinical BMI measurements up to the baseline. Main Outcomes and Measures: The main outcome was incident composite CVD events (incident nonfatal myocardial infarction, acute ischemic stroke, and cardiovascular death), assessed using Cox proportional hazards modeling after adjustment for CVD risk factors, including age, sex, mean BMI, systolic blood pressure, total cholesterol, high-density lipoprotein cholesterol, smoking status, diabetes status, and statin use. Secondary analysis assessed whether associations were dependent on the polygenic score of BMI. Results: Among 92 363 US veterans in the MVP cohort (81 675 [88%] male; mean [SD] age, 56.7 [14.1] years), there were 9695 Hispanic participants, 22 488 non-Hispanic Black participants, and 60 180 non-Hispanic White participants. A total of 4811 composite CVD events were observed from 2011 to 2018. The CV of BMI was associated with 16% higher risk for composite CVD across all groups (hazard ratio [HR], 1.16; 95% CI, 1.13-1.19). These associations were unchanged among subgroups and after adjustment for the polygenic score of BMI. The UKB cohort included 65 047 individuals (mean [SD] age, 57.30 (7.77) years; 38 065 [59%] female) and had 6934 composite CVD events. Each 1-SD increase in BMI variability in the UKB cohort was associated with 8% increased risk of cardiovascular death (HR, 1.08; 95% CI, 1.04-1.11). Conclusions and Relevance: This cohort study found that among US veterans, higher BMI variability was a significant risk marker associated with adverse cardiovascular events independent of mean BMI across major racial and ethnic groups. Results were consistent in the UKB for the cardiovascular death end point. Further studies should investigate the phenotype of high BMI variability.


Subject(s)
Ischemic Stroke , Myocardial Infarction , Female , Male , Humans , Middle Aged , Body Mass Index , Cohort Studies , Retrospective Studies , Myocardial Infarction/epidemiology , Cholesterol, HDL
9.
JAMA Cardiol ; 9(4): 357-366, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38416462

ABSTRACT

Importance: Polygenic risk scores (PRSs) have proven to be as strong as or stronger than established clinical risk factors for many cardiovascular phenotypes. Whether this is true for aortic stenosis remains unknown. Objective: To develop a novel aortic stenosis PRS and compare its aortic stenosis risk estimation to established clinical risk factors. Design, Setting, and Participants: This was a longitudinal cohort study using data from the Million Veteran Program (MVP; 2011-2020), UK Biobank (2006-2010), and 6 Thrombolysis in Myocardial Infarction (TIMI) trials, including DECLARE-TIMI 58 (2013-2018), FOURIER (TIMI 59; 2013-2017), PEGASUS-TIMI 54 (2010-2014), SAVOR-TIMI 53 (2010-2013), SOLID-TIMI 52 (2009-2014), and ENGAGE AF-TIMI 48 (2008-2013), which were a mix of population-based and randomized clinical trials. Individuals from UK Biobank and the MVP meeting a previously validated case/control definition for aortic stenosis were included. All individuals from TIMI trials were included unless they had a documented preexisting aortic valve replacement. Analysis took place from January 2022 to December 2023. Exposures: PRS for aortic stenosis (developed using data from MVP and validated in UK Biobank) and other previously validated cardiovascular PRSs, defined either as a continuous variable or as low (bottom 20%), intermediate, and high (top 20%), and clinical risk factors. Main Outcomes: Aortic stenosis (defined using International Classification of Diseases or Current Procedural Terminology codes in UK Biobank and MVP or safety event data in the TIMI trials). Results: The median (IQR) age in MVP was 67 (57-73) years, and 135 140 of 147 104 participants (92%) were male. The median (IQR) age in the TIMI trials was 66 (54-78) years, and 45 524 of 59 866 participants (71%) were male. The best aortic stenosis PRS incorporated 5 170 041 single-nucleotide variants and was associated with aortic stenosis in both the MVP testing sample (odds ratio, 1.41; 95% CI, 1.37-1.45 per 1 SD PRS; P = 4.6 × 10-116) and TIMI trials (hazard ratio, 1.44; 95% CI, 1.27-1.62 per 1 SD PRS; P = 3.2 × 10-9). Among genetic and clinical risk factors, the aortic stenosis PRS performed comparably to most risk factors besides age, and within a given age range, the combination of clinical and genetic risk factors was additive, providing a 3- to 4-fold increased gradient of risk of aortic stenosis. However, the addition of the aortic stenosis PRS to a model including clinical risk factors only improved risk discrimination of aortic stenosis by 0.01 to 0.02 (C index in MVP: 0.78 with clinical risk factors, 0.79 with risk factors and aortic stenosis PRS; C index in TIMI: 0.71 with clinical risk factors, 0.73 with risk factors and aortic stenosis PRS). Conclusions: This study developed and validated 1 of the first aortic stenosis PRSs. While aortic stenosis genetic risk was independent from clinical risk factors and performed comparably to all other risk factors besides age, genetic risk resulted in only a small improvement in overall aortic stenosis risk discrimination beyond age and clinical risk factors. This work sets the stage for further development of an aortic stenosis PRS.


Subject(s)
Aortic Valve Stenosis , Myocardial Infarction , Humans , Male , Aged , Female , Genetic Risk Score , Longitudinal Studies , Genetic Predisposition to Disease , Risk Factors , Aortic Valve Stenosis/genetics
10.
Sci Rep ; 14(1): 952, 2024 01 10.
Article in English | MEDLINE | ID: mdl-38200186

ABSTRACT

Most prior studies on the prognostic significance of newly-diagnosed atrial fibrillation (AF) in COVID-19 did not differentiate newly-diagnosed AF from pre-existing AF. To determine the association between newly-diagnosed AF and in-hospital and 30-day mortality among regular users of Veterans Health Administration using data linked to Medicare. We identified Veterans aged ≥ 65 years who were hospitalized for ≥ 24 h with COVID-19 from 06/01/2020 to 1/31/2022 and had ≥ 2 primary care visits within 24 months prior to the index hospitalization. We performed multivariable logistic regression analyses to estimate adjusted risks, risk differences (RD), and odds ratios (OR) for the association between newly-diagnosed AF and the mortality outcomes adjusting for patient demographics, baseline comorbidities, and presence of acute organ dysfunction on admission. Of 23,299 patients in the study cohort, 5.3% had newly-diagnosed AF, and 29.2% had pre-existing AF. In newly-diagnosed AF adjusted in-hospital and 30-day mortality were 16.5% and 22.7%, respectively. Newly-diagnosed AF was associated with increased mortality compared to pre-existing AF (in-hospital: OR 2.02, 95% confidence interval [CI] 1.72-2.37; RD 7.58%, 95% CI 5.54-9.62) (30-day: OR 1.86; 95% CI 1.60-2.16; RD 9.04%, 95% CI 6.61-11.5) or no AF (in-hospital: OR 2.24, 95% CI 1.93-2.60; RD 8.40%, 95% CI 6.44-10.4) (30-day: 2.07, 95% CI 1.80-2.37; RD 10.2%, 95% CI 7.89-12.6). There was a smaller association between pre-existing AF and the mortality outcomes. Newly-diagnosed AF is an important prognostic marker for patients hospitalized with COVID-19. Whether prevention or treatment of AF improves clinical outcomes in these patients remains unknown.


Subject(s)
Atrial Fibrillation , COVID-19 , Veterans , Aged , United States/epidemiology , Humans , Atrial Fibrillation/diagnosis , Atrial Fibrillation/epidemiology , Prognosis , Incidence , COVID-19/epidemiology , Medicare
11.
J Am Geriatr Soc ; 72(2): 410-422, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38055194

ABSTRACT

BACKGROUND: Statins are part of long-term medical regimens for many older adults. Whether frailty modifies the protective relationship between statins, mortality, and major adverse cardiovascular events (MACE) is unknown. METHODS: This was a retrospective study of US Veterans ≥65, without CVD or prior statin use seen in 2002-2012, followed through 2017. A 31-item frailty index was used. The co-primary endpoint was all-cause mortality or MACE (MI, stroke/TIA, revascularization, or cardiovascular death). Cox proportional hazards models were developed to evaluate the association of statin use with outcomes; propensity score overlap weighting accounted for confounding by indication. RESULTS: We identified 710,313 Veterans (mean age (SD) 75.3(6.5), 98% male, 89% white); 86,327 (12.1%) were frail. Over mean follow-up of 8 (5) years, there were 48.6 and 72.6 deaths per 1000 person-years (PY) among non-frail statin-users vs nonusers (weighted Incidence Rate Difference (wIRD)/1000 person years (PY), -24.0[95% CI, -24.5 to -23.6]), and 90.4 and 130.4 deaths per 1000PY among frail statin-users vs nonusers (wIRD/1000PY, -40.0[95% CI, -41.8 to -38.2]). There were 51.7 and 60.8 MACE per 1000PY among non-frail statin-users vs nonusers (wIRD/1000PY, -9.1[95% CI, -9.7 to -8.5]), and 88.2 and 102.0 MACE per 1000PY among frail statin-users vs nonusers (wIRD/1000PY, -13.8[95% CI, -16.2 to -11.4]). There were no significant interactions by frailty for statin users vs non-users by either mortality or MACE outcomes, p-interaction 0.770 and 0.319, respectively. Statin use was associated with lower risk of all-cause mortality (HR, 0.61 (0.60-0.61)) and MACE (HR 0.86 (0.85-0.87)). CONCLUSIONS: New statin use is associated with a lower risk of mortality and MACE, independent of frailty. These findings should be confirmed in a randomized clinical trial.


Subject(s)
Cardiovascular Diseases , Frailty , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Stroke , Veterans , Aged , Female , Humans , Male , Cardiovascular Diseases/epidemiology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Retrospective Studies , Stroke/epidemiology
12.
medRxiv ; 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38014167

ABSTRACT

Objectives: To develop, validate and implement algorithms to identify diabetic retinopathy (DR) cases and controls from electronic health care records (EHR)s. Methods : We developed and validated EHR-based algorithms to identify DR cases and individuals with type I or II diabetes without DR (controls) in three independent EHR systems: Vanderbilt University Medical Center Synthetic Derivative (VUMC), the VA Northeast Ohio Healthcare System (VANEOHS), and Massachusetts General Brigham (MGB). Cases were required to meet one of three criteria: 1) two or more dates with any DR ICD-9/10 code documented in the EHR, or 2) at least one affirmative health-factor or EPIC code for DR along with an ICD9/10 code for DR on a different day, or 3) at least one ICD-9/10 code for any DR occurring within 24 hours of an ophthalmology exam. Criteria for controls included affirmative evidence for diabetes as well as an ophthalmology exam. Results: The algorithms, developed and evaluated in VUMC through manual chart review, resulted in a positive predictive value (PPV) of 0.93 for cases and negative predictive value (NPV) of 0.97 for controls. Implementation of algorithms yielded similar metrics in VANEOHS (PPV=0.94; NPV=0.86) and lower in MGB (PPV=0.84; NPV=0.76). In comparison, use of DR definition as implemented in Phenome-wide association study (PheWAS) in VUMC, yielded similar PPV (0.92) but substantially reduced NPV (0.48). Implementation of the algorithms to the Million Veteran Program identified over 62,000 DR cases with genetic data including 14,549 African Americans and 6,209 Hispanics with DR. Conclusions/Discussion: We demonstrate the robustness of the algorithms at three separate health-care centers, with a minimum PPV of 0.84 and substantially improved NPV than existing high-throughput methods. We strongly encourage independent validation and incorporation of features unique to each EHR to enhance algorithm performance for DR cases and controls.

13.
J Am Heart Assoc ; 12(21): e030496, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37889207

ABSTRACT

Background The lipid hypothesis postulates that lower blood cholesterol is associated with reduced coronary heart disease (CHD) risk, which has been challenged by reports of a U-shaped relation between cholesterol and death in recent studies. We sought to examine whether the U-shaped relationship is true and to assess the impact of age on this association. Method and Results We conducted a prospective cohort study of 4 467 942 veterans aged >18 years, with baseline outpatient visits from 2002 to 2007 and follow-up to December 30, 2018, in the Veterans Health Administration electronic health record system. We observed a J-shaped relation between total cholesterol (TC) and CHD mortality after a comprehensive adjustment of confounding factors: flat for TC <180 mg/dL, and greater risk was present at higher cholesterol levels. Compared with veterans with TC between 180 and 199 mg/dL, the multiadjusted hazard ratios (HRs) for CHD death were 1.03 (95% CI, 1.02-1.04), 1.07 (95% CI, 1.06-1.09), 1.15 (95% CI, 1.13-1.18), 1.25 (95% CI, 1.22-1.28), and 1.45 (95% CI, 1.42-1.49) times greater among veterans with TC (mg/dL) of 200 to 219, 220 to 239, 140 to 259, 260 to 279 and ≥280, respectively. Similar J-shaped TC-CHD mortality patterns were observed among veterans with and without statin use at or before baseline. Conclusions The cholesterol paradox, for example, higher CHD death in patients with a low cholesterol level, was a reflection of reverse causality, especially among older participants. Our results support the lipid hypothesis that lower blood cholesterol is associated with reduced CHD. Furthermore, the hypothesis remained true when TC was low due to use of statins or other lipid-lowering medication.


Subject(s)
Coronary Disease , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Veterans , Humans , Prospective Studies , Risk Factors , Cholesterol , Cholesterol, HDL
14.
Cell Genom ; 3(8): 100345, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37601974

ABSTRACT

Stroke is the second leading cause of death and disability worldwide. Stroke prevalence varies by sex and ancestry, possibly due to genetic heterogeneity between subgroups. We performed a genome-wide meta-analysis of 16 biobanks across multiple ancestries to study the genetics of ischemic stroke (60,176 cases, 1,310,725 controls) as part of the Global Biobank Meta-analysis Initiative (GBMI) and further combined the results with previously published MegaStroke. Five novel loci for ischemic stroke (LAMC1, CALCRL, PLSCR1, CDKN1A, and SWAP70) were identified after replication in four additional datasets. One previously reported locus showed significant ancestry heterogeneity (ABO), and one showed significant sex heterogeneity (ALDH2). The ALDH2 association was male specific (males p = 1.67e-24, females p = 0.126) and was additionally observed only in the East Asian ancestry (male) samples. These findings emphasize the need for more diverse datasets with large sample sizes to further understand the genetic predisposition of stroke in different ancestry and sex groups.

15.
Poult Sci ; 102(10): 102990, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37598557

ABSTRACT

The cuticle is an invisible barrier that protects the internal egg contents from microorganisms entering through gas exchange pores. Eggs which have a good cuticle are least likely to be penetrated by microorganisms and improved cuticle cover should reduce vertical transmission of microorganisms and improve biosecurity. The aim was to carry out a genome wide association study for cuticle deposition in 3 independent populations of laying hens using tartrazine and lissamine green staining. Eggs from ∼8,000 hens represented 2 White Leghorn and 1 Rhode Island Red breed. Estimates of heritability using pedigree or genomic relationship matrices were in the 0.2 to 0.3 range. The results were breed specific. Across the populations, genomic regions on chromosomes 1, 2, 4, 5, and 8 were identified as significantly associated with cuticle deposition. No single loci had a large effect. A comparison was made with genes differentially expressed in the shell gland when cuticle deposition was manipulated, however none were obvious candidates for cuticle deposition. The results support the polygenic nature of the trait and the information will help in the future to understand the genetic variance and what might control cuticle deposition and the microbiological safety of the egg.


Subject(s)
Chickens , Genome-Wide Association Study , Animals , Female , Genome-Wide Association Study/veterinary , Chickens/genetics , Chickens/microbiology , Ovum , Genome , Phenotype , Egg Shell/microbiology , Eggs
16.
Nat Commun ; 14(1): 3826, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37429843

ABSTRACT

We conduct a large-scale meta-analysis of heart failure genome-wide association studies (GWAS) consisting of over 90,000 heart failure cases and more than 1 million control individuals of European ancestry to uncover novel genetic determinants for heart failure. Using the GWAS results and blood protein quantitative loci, we perform Mendelian randomization and colocalization analyses on human proteins to provide putative causal evidence for the role of druggable proteins in the genesis of heart failure. We identify 39 genome-wide significant heart failure risk variants, of which 18 are previously unreported. Using a combination of Mendelian randomization proteomics and genetic cis-only colocalization analyses, we identify 10 additional putatively causal genes for heart failure. Findings from GWAS and Mendelian randomization-proteomics identify seven (CAMK2D, PRKD1, PRKD3, MAPK3, TNFSF12, APOC3 and NAE1) proteins as potential targets for interventions to be used in primary prevention of heart failure.


Subject(s)
Genome-Wide Association Study , Heart Failure , Humans , Mendelian Randomization Analysis , Proteomics , Heart Failure/drug therapy , Heart Failure/genetics
17.
Nat Med ; 29(7): 1793-1803, 2023 07.
Article in English | MEDLINE | ID: mdl-37414900

ABSTRACT

Identification of individuals at highest risk of coronary artery disease (CAD)-ideally before onset-remains an important public health need. Prior studies have developed genome-wide polygenic scores to enable risk stratification, reflecting the substantial inherited component to CAD risk. Here we develop a new and significantly improved polygenic score for CAD, termed GPSMult, that incorporates genome-wide association data across five ancestries for CAD (>269,000 cases and >1,178,000 controls) and ten CAD risk factors. GPSMult strongly associated with prevalent CAD (odds ratio per standard deviation 2.14, 95% confidence interval 2.10-2.19, P < 0.001) in UK Biobank participants of European ancestry, identifying 20.0% of the population with 3-fold increased risk and conversely 13.9% with 3-fold decreased risk as compared with those in the middle quintile. GPSMult was also associated with incident CAD events (hazard ratio per standard deviation 1.73, 95% confidence interval 1.70-1.76, P < 0.001), identifying 3% of healthy individuals with risk of future CAD events equivalent to those with existing disease and significantly improving risk discrimination and reclassification. Across multiethnic, external validation datasets inclusive of 33,096, 124,467, 16,433 and 16,874 participants of African, European, Hispanic and South Asian ancestry, respectively, GPSMult demonstrated increased strength of associations across all ancestries and outperformed all available previously published CAD polygenic scores. These data contribute a new GPSMult for CAD to the field and provide a generalizable framework for how large-scale integration of genetic association data for CAD and related traits from diverse populations can meaningfully improve polygenic risk prediction.


Subject(s)
Coronary Artery Disease , Humans , Coronary Artery Disease/epidemiology , Coronary Artery Disease/genetics , Genome-Wide Association Study , Genetic Predisposition to Disease/genetics , Risk Factors , Phenotype
18.
Genet Sel Evol ; 55(1): 44, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37386416

ABSTRACT

BACKGROUND: Bone damage has welfare and economic impacts on modern commercial poultry and is known as one of the major challenges in the poultry industry. Bone damage is particularly common in laying hens and is probably due to the physiological link between bone and the egg laying process. Previous studies identified and validated quantitative trait loci (QTL) for bone strength in White Leghorn laying hens based on several measurements, including bone composition measurements on the cortex and medulla of the tibia bone. In a previous pedigree-based analysis, bone composition measurements showed heritabilities ranging from 0.18 to 0.41 and moderate to strong genetic correlations with tibia strength and density. Bone composition was measured using infrared spectroscopy and thermogravimetry. The aim of this study was to combine these bone composition measurements with genotyping data via a genome-wide association study (GWAS) to investigate genetic markers that contribute to genetic variance in bone composition in Rhode Island Red laying hens. In addition, we investigated the genetic correlations between bone composition and bone strength. RESULTS: We found novel genetic markers that are significantly associated with cortical lipid, cortical mineral scattering, medullary organic matter, and medullary mineralization. Composition of the bone organic matter showed more significant associations than bone mineral composition. We also found interesting overlaps between the GWAS results for tibia composition traits, particularly for cortical lipid and tibia strength. Bone composition measurements by infrared spectroscopy showed more significant associations than thermogravimetry measurements. Based on the results of infrared spectroscopy, cortical lipid showed the highest genetic correlations with tibia density, which was negative (- 0.20 ± 0.04), followed by cortical CO3/PO4 (0.18 ± 0.04). Based on the results of thermogravimetry, medullary organic matter% and mineral% showed the highest genetic correlations with tibia density (- 0.25 ± 0.04 and 0.25 ± 0.04, respectively). CONCLUSIONS: This study detected novel genetic associations for bone composition traits, particularly those involving organic matter, that could be used as a basis for further molecular genetic investigations. Tibia cortical lipids displayed the strongest genetic associations of all the composition measurements, including a significantly high genetic correlation with tibia density and strength. Our results also highlighted that cortical lipid may be a key measurement for further avian bone studies.


Subject(s)
Chickens , Genome-Wide Association Study , Animals , Female , Genetic Markers , Chickens/genetics , Rhode Island , Lipids
19.
Am J Clin Nutr ; 118(2): 406-411, 2023 08.
Article in English | MEDLINE | ID: mdl-37353210

ABSTRACT

BACKGROUND: Although recent large randomized clinical trials have reported an increased risk of atrial fibrillation (AF) with marine ω-3 fatty acid supplements, it is unclear whether dietary marine ω-3 fatty acids assessed through food frequency questionnaires are associated with AF risk. OBJECTIVES: We sought to test the hypothesis that dietary eicosapentaenoic acid/docosahexaenoic acid/docosapentaecnoic acid (EPA/DHA/DPA) is associated with a higher risk of AF in a large prospective cohort of US Veterans. METHODS: We analyzed data from Million Veteran Program participants who completed self-reported food frequency questionnaires. We used multivariable Cox regression to estimate the HRs of AF across quintiles of ω-3 fatty acid consumption and a cubic spline analysis to assess the dose-response relations between ω-3 fatty acids and AF. RESULTS: Of the 301,294 veterans studied, the median intake of ω-3 fatty acids (EPA/DHA/DPA) was 219 mg/d (IQR: 144-575), and the mean age was 64.9 y (SD: 12.0); 91% were men, and 84% were White. Consumption of EPA/DHA/DPA exhibited a nonlinear inverse relation with incident AF characterized by an initial decline to 11% at 750 mg/d of marine ω-3 fatty acid intake followed by a plateau. CONCLUSIONS: Contrary to our hypothesis, dietary EPA/DHA/DPA was not associated with a higher risk of AF but was inversely related to AF risk in a nonlinear manner.


Subject(s)
Atrial Fibrillation , Fatty Acids, Omega-3 , Veterans , Male , Humans , Middle Aged , Aged , Female , Atrial Fibrillation/epidemiology , Atrial Fibrillation/etiology , Incidence , Prospective Studies , Docosahexaenoic Acids , Eicosapentaenoic Acid
20.
Int J Cardiol ; 387: 131120, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37330018

ABSTRACT

BACKGROUND: Morbidity and mortality following COVID-19 infection may be influenced by baseline atherosclerotic cardiovascular disease (ASCVD) risk, yet limited data are available to identify those at highest risk. We examined the association between baseline ASCVD risk with mortality and major adverse cardiovascular events (MACE) in the year following COVID-19 infection. METHODS: We evaluated a nationwide retrospective cohort of US Veterans free of ASCVD who were tested for COVID-19. The primary outcome was absolute risk of all-cause mortality in the year following a COVID-19 test among those hospitalized vs. not stratified by baseline VA-ASCVD risk scores. Secondarily, risk of MACE was examined. RESULTS: There were 393,683 Veterans tested for COVID-19 and 72,840 tested positive. Mean age was 57 years, 86% were male, and 68% were white. Within 30 days following infection, hospitalized Veterans with VA-ASCVD scores >20% had an absolute risk of death of 24.6% vs. 9.7% (P ≤0.0001) for those who tested positive and negative for COVID-19 respectively. In the year following infection, risk of mortality attenuated with no difference in risk after 60 days. The absolute risk of MACE was similar for Veterans who tested positive or negative for COVID-19. CONCLUSIONS: Veterans without clinical ASCVD experienced an increased absolute risk of death within 30 days of a COVID-19 infection compared to Veterans with the same VA-ASCVD risk score who tested negative, but this risk attenuated after 60 days. Whether cardiovascular preventive medications can lower the risk of mortality and MACE in the acute period following COVID-19 infection should be evaluated.


Subject(s)
Atherosclerosis , COVID-19 , Cardiovascular Diseases , Veterans , Humans , Male , Middle Aged , Female , Retrospective Studies , Risk Assessment , Risk Factors , Cardiovascular Diseases/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL