Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Inorg Chem ; 61(8): 3458-3471, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35175771

ABSTRACT

Structural, magnetic, and spectroscopic data on a Mn3+ spin-crossover complex with Schiff base ligand 4-OMe-Sal2323, isolated in crystal lattices with five different counteranions, are reported. Complexes of [Mn(4-OMe-Sal2323)]X where X = ClO4- (1), BF4- (2), NO3- (3), Br- (4), and I- (5) crystallize isotypically in the chiral orthorhombic space group P21212 with a range of spin state preferences for the [Mn(4-OMe-Sal2323)]+ complex cation over the temperature range 5-300 K. Complexes 1 and 2 are high-spin, complex 4 undergoes a gradual and complete thermal spin crossover, while complexes 3 and 5 show stepped crossovers with different ratios of spin triplet and quintet forms in the intermediate temperature range. High-field electron paramagnetic resonance was used to measure the zero-field splitting parameters associated with the spin triplet and quintet states at temperatures below 10 K for complexes 4 and 2 with respective values: DS=1 = +23.38(1) cm-1, ES=1 = +2.79(1) cm-1, and DS=2 = +6.9(3) cm-1, with a distribution of E parameters for the S = 2 state. Solid-state circular dichroism (CD) spectra on high-spin complex 1 at room temperature reveal a 2:1 ratio of enantiomers in the chiral conglomerate, and solution CD measurements on the same sample in methanol show that it is stable toward racemization. Solid-state UV-vis absorption spectra on high-spin complex 1 and mixed S = 1/S = 2 sample 5 reveal different intensities at higher energies, in line with the different electronic composition. The statistical prevalence of homochiral crystallization of [Mn(4-OMe-Sal2323)]+ in five lattices with different achiral counterions suggests that the chirality may be directed by the 4-OMe-Sal2323 ligand.

2.
Dalton Trans ; 48(41): 15560-15566, 2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31342029

ABSTRACT

Structural, magnetic and spectroscopic data of four complex salts, [Mn(napsal2323)]NTf2, 1,[Mn(napsal2323)]ClO4, 2, [Mn(napsal2323)]BF4, 3 and [Mn(napsal2323)]NO3, 4, of the [Mn(napsal2323)]+ complex cation indicate that the Mn3+ ion is stabilized in the rare S = 1 spin triplet form in this ligand sphere. Zero-field splitting values of D = +19.6 cm-1 and |E| = 2.02 cm-1 for complex 1 were obtained by High Field Electron Paramagnetic Resonance (HFEPR) measurements conducted over a range of frequencies. Structural and magnetic data also indicate that co-crystallization of complexes 2 and 3 with 0.5 equivalents of ethanol yields the high spin S = 2 forms of the perchlorate and tetrafluoroborate solvates [Mn(napsal2323)]ClO4·0.5(C2H5OH), 2·0.5EtOH and [Mn(napsal2323)]BF4·0.5(C2H5OH), 3·0.5EtOH.

3.
Dalton Trans ; 48(9): 3018-3027, 2019 Feb 26.
Article in English | MEDLINE | ID: mdl-30747935

ABSTRACT

Polyoxometalates (POMs) are commonly prepared using a "bottom-up" synthetic procedure. The alternative "top-down" approach of disassembling a pre-formed POM unit to generate new synthetic intermediates is promising, but relatively comparatively underused. In this paper, a rationale for the top-down method is provided, demonstrating that this approach can generate compounds that are fundamentally inaccessible from simple bottom-up assembly. We demonstrate this principle through the synthesis of a series of 10, new, mixed-metal, hybrid compounds with the general formula [TBA]2[MoVI10CoII6O30(RpPO3)6(RcCOO)2(L)x(H2O)6] (TBA = tetrabutylammonium, Rp = phosphonate moiety, Rc = carboxylate moiety, L = pyridyl ligand, and x = 2-4), including a one-dimensional polyoxometalate-based coordination polymer. We propose that these structures are generated from {MoxO3x-1} fragments that cannot be accessed from bottom-up assembly alone. The POM clusters are stabilised by three distinct classes of organic ligand - organophosphonate, carboxylate and pyridyl ligands - which can each be substituted independantly, thus providing a controlled route to ligand functionalisation.

SELECTION OF CITATIONS
SEARCH DETAIL